
C and Compilation

CS 2130: Computer Systems and Organization 1
March 20, 2023



Announcements

• Homework 5 due tonight at 11pm
• Homework 6 due Monday at 11pm

• Full details later today
• You’ll start it in lab tomorrow!

1



Review from last week

1



Patents and Copyright

Copyright

• “Everyone is a copyright owner. Once you create an original work
and fix it, like taking a photograph, writing a poem or blog, or
recording a new song, you are the author and the owner.”

from https://www.copyright.gov/what-is-copyright/

Patent

• “Whoever invents or discovers any new and useful process,
machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefor, subject
to the conditions and requirements of this title.”

from 35 U.S.C. 101
2

https://www.copyright.gov/what-is-copyright/


Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

3



Patents

In software and hardware, patents become messy

• Code is a description of a process we want the computer to do
• Do not have to implement the process to patent it

Question: Should we patent something like our ISA?

What is the current state of the art?

3



Common Approaches to Software

How can we get value from what we create?

• Copyright - distribute closed source software
• License Agreements (in contract law)
• Always innovate

4



Calling Conventions: Parameters

Calling conventions - recommendations for making function calls

• Where to put arguments/parameters for the function call?
• First 6 arguments (in order): rdi, rsi, rdx, rcx, r8, r9
• If more arguments, push onto stack (last to first)

• Where to put return value? in rax before calling retq
• What happens to values in the registers?

• Callee-save - The function should ensure the values in these registers are
unchanged when the function returns

• rbx, rsp, rbp, r12, r13, r14, r15
• Caller-save - Before making a function call, save the value, since the
function may change it

5



Most Common x86-64 Instructions

• mov - =
• lea - load effective address
• call - push PC and jump to address
• add - +=
• cmp - set flags as if performing subtract
• jmp - unconditional jump
• test - set flags as if performing &
• je - jump iff flags indicate == 0
• pop - pop value from stack
• push - push value onto stack
• ret - pop PC from the stack

6



The Stack

pushq %rax
popq %rdx

7



stack.s and lea.s

7



Compilation Pipeline

Turning our code into something that runs

• Pipeline - a sequence of steps in which each builds off the last

8



Why did we discuss assembly?

8



C

C is a thin wrapper around assembly

• This is by design!
• Invented to write an operating system

• Can write inline assembly in C

• Many other languages decided to look like C

9



Simple C Example

int main() {
int y = 5;
return 0;

}

10



Compilation Pipeline

Earlier, we saw:

• C files (.c) compiled to assembly (.s)
• Assembly (.s) assembled into object files (.o)
• Object files (.o) linked into a program / executable

11



Compiling C to Assembly

Multiple stages to compile C to assembly

• Preprocess - produces C
• C is actually implemented as 2 languages:
C preprocessor language, C language

• Removes comments, handles preprocessor directives (#)
• #include, #define, #if, #else, ...

• Lex - breaks input into individual tokens
• Parse - assembles tokens into intended meaning (parse tree)
• Type check - ensures types match, adds casting as needed
• Code generation - creates assembly from parse tree

12



Compiling C to Assembly

13



Compiling C to Assembly

14



Errors

Compile-time errors

• Errors we can catch during compilation (this process)
• Before running our program

Runtime errors

• Errors that occur when running our programs

15



Simple C Example

int main() {
return 0;

}

The main function

• Start running the main() function
• main must return an integer - exit code

• 0 = everything went okay
• Anything else = something went wrong

• There should be arguments to main

16



Example

16


