
C Introduction

CS 2130: Computer Systems and Organization 1
March 27, 2023

Announcements

• Homework 6 Escape Room due tonight at 11pm
• If you are having git issues, please come to office hours!
• Exam 2 next Friday

1

Simple C Example

int main() {
return 0;

}

The main function

• Start running the main() function
• main must return an integer - exit code

• 0 = everything went okay
• Anything else = something went wrong

• There should be arguments to main

2

Examples

2

C

Helpful Resources

• Wikipedia
• Our Reference and Summary

sizeof() - returns size in bytes

• sizeof(int) returns 4

3

Data Types in C

Integer data types

Data type Size
char
short
int
long
long long

Each has 2 versions: signed and unsigned

4

Data Types in C

Floating point

• float
• double

5

Data Types in C

• Hold the address of a position in memory
• Need to know the kind of information stored at that location

6

Data Types in C

Pointers - how C uses addresses!

• Hold the address of a position in memory
• Need to know the kind of information stored at that location

6

Data Types in C

Pointers - how C uses addresses!

• Hold the address of a position in memory
• Need to know the kind of information stored at that location

6

Example

int main() {
int x = 3;
long y = 4;
int *a = &x;
long *b = &y;
long z = *a;
int w = *b;
return 0;

}

7

Example

int main() {
int x = 3;
long y = 4;
int *a = &x;
long *b = &y;
long z = *a;
int w = *b;
return 0;

}

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 31 c0 xor %eax,%eax
6: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
d: c7 45 f8 03 00 00 00 movl $0x3,-0x8(%rbp)
14: 48 c7 45 f0 04 00 00 movq $0x4,-0x10(%rbp)
1b: 00
1c: 48 8d 4d f8 lea -0x8(%rbp),%rcx
20: 48 89 4d e8 mov %rcx,-0x18(%rbp)
24: 48 8d 4d f0 lea -0x10(%rbp),%rcx
28: 48 89 4d e0 mov %rcx,-0x20(%rbp)
2c: 48 8b 4d e8 mov -0x18(%rbp),%rcx
30: 48 63 09 movslq (%rcx),%rcx
33: 48 89 4d d8 mov %rcx,-0x28(%rbp)
37: 48 8b 4d e0 mov -0x20(%rbp),%rcx
3b: 48 8b 09 mov (%rcx),%rcx
3e: 89 4d d4 mov %ecx,-0x2c(%rbp)
41: 5d pop %rbp
42: c3 retq

8

Arrays

Array: 0 or more values of same type stored contiguously in memory

• Declare as you would use: int myarr[100];
• sizeof(myarr) = 400 — 100 4-byte integers
• myarr treated as pointer to first element
• Can declare array literals:
int y[5] = {1, 1, 2, 3, 5}

9

Pointers and Arrays

*x and x[0] are equivalent

• Pointer to single value and pointer to first value in array
• Treat array as pointer to the first value (lowest address)
• Indexing into array: x[n] and *(x+n)

• If x is an int *, then x+1 points to next int in memory
• Adding 1 to pointer adds sizeof() the type we’re pointing to

10

Pointers and Arrays

Consider: int **a

11

Example

Swap Example

void swap(int *a, int *b) {
int tmp = *a;
*a = *b;
*b = tmp;

}

12

Pointers

• All pointers are the same size: address size in underlying ISA
• Two special int types (defined using typedef)

• size_t - integer the size of a pointer (unsigned)
• ssize_t - integer the size of a pointer (signed)
• With our compiler and ISA, these are both variants of long

13

Pointers

Consider the following code:

int x = 10;
int *y = &x;
int *z = y + 2;
long w = ((long)z) - ((long)y);

Why is w = 8?

14

Other Types and Values

• Literal values - integer literals are implicitly cast
• unsigned long very_big = 9223372036854775808uL
• u for unsigned, L for long

• enum - named integer constants (in ascending order)
• enum { a, b, c, d=100, e };
int foo = e;

• void - a byte with no meaning or ”nothing”
• Pointers: void *p
• Return values: void myfunction();

• Casting - changing type, converting
• Integer: zero- or sign-extend or truncate to space
• Int to float: convert to nearby representable value
• Float to int: truncate remainder (no rounding)

15

Structures

struct - Structures in C
• Act like Java classes, but no methods
and all public fields

• Stores fields adjacently in memory
(but may have padding)

• Compiler determines padding, use
sizeof() to get size

• Name of the resulting type includes
word struct

struct foo {
long a;
int b;
short c;
char d;

};

struct foo x;
x.b = 123;
x.c = 4;

16

Structure Literals

struct a {
int b;
double c;

};

/* Both of the following initialize b to 0 and c to 1.0 */
struct a x = { 0, 1.0 };
struct a y = { .b = 0, .c = 1.0 };

17

typedef

typedef - give new names to any type!

• Fairly common to see several names for same data type to convey
intent

• Ex: unsigned long may be size_t when used in sizes
• Examples:
typedef int Integer;
Integer x = 4;
typedef double ** dpp;

• Used with anonymous structs:
typedef struct { int x; double y; } foo;
foo z = { 42, 17.4 };

18

Struct Example

19

20

