Logic Gates, Mux, Binary Arithmetic

CS 2130: Computer Systems and Organization 1
January 23, 2023

Announcements

If you need to switch labs:

- Please fill out the form today!
- Must be justified (i.e. class conflicts)
- Very limited space to make swaps

Lab 1 tomorrow!

Transistors

push to open

push to close

Wiring Diagram

source of voltage

So far...

Last time, we built up to logic gates:
$=-1--D_{-}$

- and, or, not
- nand, nor, xor
$\Rightarrow 1 D-$

So far...

Last time, we built up to logic gates:

- and, or, not
- nand, nor, xor

Now let's build something powerful

Trinary Operator

Trinary operator

this will be key when we are constructing our computer out of these gates and circuits

Trinary Operator

Trinary operator

- General idea:

this will be key when we are constructing our computer out of these gates and circuits

Trinary Operator

Trinary operator

- General idea:
if (...) \{
\} else \{
\}
- Python: $x=b$ if a else c
this will be key when we are constructing our computer out of these gates and circuits

Trinary Operator

Trinary operator

- General idea:
if (...) \{

$a b c$	x
0	c
2	b

\} else \{
\}

- Python: $x=b$ if a else c
- Java: $x=a \quad$? b : c
this will be key when we are constructing our computer out of these gates and circuits

Multiplexer (mux)

$$
x=a \quad ? \quad b: c
$$

Multiplexer (max)

How can we build a mux out of what we have learned so far?

$$
\begin{aligned}
x= & (1 a \&!b b c) \mid \\
& (1 a \& b b c) \mid \\
& (a \& b b!c) \mid
\end{aligned}((a b b b c))
$$

Multiplexer (mux)

Can be built from and, or, and not

- Can be built using transistors
- Can physically put it in silicon!

Questions?

More bits!

2-bit Multiplexer (mux)

2-bit values instead of 1-bit values

Multi-bit Values

- So far, only talking about 2 things
- Numbers, strings, objects, ...

Numbers

From our oldest cultures, how do we mark numbers?

$$
|||||||||\mid
$$

Numbers

From our oldest cultures, how do we mark numbers?

- unary representation: make marks, one per "thing"

Numbers

From our oldest cultures, how do we mark numbers?

- unary representation: make marks, one per "thing"
- Awkward for large numbers, ex: CS 2130?
- Hard to tell how many marks there are

Numbers

From our oldest cultures, how do we mark numbers?

- unary representation: make marks, one per "thing"
- Awkward for large numbers, ex: CS 2130?
- Hard to tell how many marks there are
- Update: group them!

Numbers

From our oldest cultures, how do we mark numbers?

- unary representation: make marks, one per "thing"
- Awkward for large numbers, ex: CS 2130?
- Hard to tell how many marks there are
- Update: group them!
- Romans used new symbols:

Numbers
From our oldest cultures, how do we mark numbers?

- Arabic numerals
- Positional numbering system

$$
\begin{aligned}
& 10000 \sum_{1000}^{10^{4}} \frac{1}{10^{3}} \frac{1}{10^{2}} \frac{3}{10^{1}} \frac{1}{10^{0}} \\
& 2 \times 1000+1 \times 100+3 \times 10+0 \times 1
\end{aligned}
$$

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
- Positional numbering system
- The 10 is significant:
- 10 symbols, using 10 as base of exponent

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
- Positional numbering system
- The 10 is significant:
- 10 symbols, using 10 as base of exponent
- The 10 is arbitrary
- We can use other bases! $\pi, 2130,2, \ldots$

Base-8 Example

$$
0 \cdots 7
$$

Try to turn 134_{8} into base-10:

$$
\begin{aligned}
& -\frac{1}{8^{4}} \frac{1}{8^{3}} \frac{3}{8^{2}} \frac{3}{8^{4}} \frac{4}{8^{8}} \\
& 6^{4} \frac{8}{1} \\
& 1 \times 64+3 \times 8+4 \times 1=92_{10}
\end{aligned}
$$

Bases

We will discuss a few in this class

- Base-10 (decimal) - talking to humans
- Base-8 (octal) - shows up occasionally
- Base-2 (binary) - most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) - nice grouping of bits

Binary

2 digits: 0,1

Try to turn $\begin{aligned} & 11001012 \text { into base-10: } \\ & 2^{6} 2^{5} \partial^{4} a^{3} a^{2} \lambda^{1} 2^{2}\end{aligned}$
$1024512226128 \quad 6432168421$
10110
$64+32+4+1$

Binary

Any downsides to binary?
Turn 213010 into base-2:
hint: find largest power of 2 and subtract

Long Numbers

How do we deal with numbers too long to read?

Long Numbers

How do we deal with numbers too long to read?

- Group them by 3 (right to left)

Long Numbers

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000-999

Long Numbers

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000-999
- Effectively base-1000

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?

100001010010

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3 ?

100001010010

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation

100001010010

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation
- Converts binary to octal

100001010010

Long Numbers in Binary

Making binary more readable

- Groups of 4 more common
- How many symbols do we need for groups of 4 ?

100001010010

Long Numbers in Binary

Making binary more readable

- Groups of 4 more common
- How many symbols do we need for groups of 4 ?
- Converts binary to hexadecimal
- Base-16 is very common in computing

100001010010

Hexadecimal

Need more than 10 digits. What next?

1110

Hexadecimal Exercise

Consider the following hexadecimal number:

852dab1e

Is it even or odd?

Using Different Bases in Code

	Old Languages	New Languages
binary		
octal		
decimal		
hexadecimal		

