
C, Memory, malloc, free

CS 2130: Computer Systems and Organization 1
April 10, 2023

Announcements

• Homework 8 available, due next Monday at 11pm
• Gradescope submission available Wednesday
• Limited number of submissions, test your code before submitting

• Lab tomorrow: Memory errors

1

C Reference Guide

1

Calling Functions

The C code

long a = f(23, "yes", 34uL);
compiles to

movl $23, %edi
leaq label_of_yes_string, %rsi
movq $34, %rdx
callq f
%rax is "long a" here
without respect to how f was defined. It is the calling convention, not
the type declaration of f, that controls this.

2

Calling Functions

But, if the C code has access to the type declaration of f, then it might
perform some implicit casting first; for example, if we declared

long f(double a, const char *b, double c);

long a = f(23, "yes", 34uL);

then the call would be interpreted by C as having implicit casts in it:

long a = f((double)23, "yes", (double)34uL);

3

Calling Functions

and the arguments would be passed in floating-point registers, like so:

movl $23, %eax
cvtsi2sd %eax, %xmm0 # first floating-point argument

leaq label_of_yes_string, %rdi # first integer/pointer argument

movl $34, %eax
cvtsi2sd %eax, %xmm1 # second floating-point argument

callq f
%rax is "long a" here

4

Function Declaration

int f(int x);

• Declaration of the function
• Function header
• Function signature
• Function prototype

We want this in every file that invokes f()

5

Function Definition

int f(int x) {
return 2130 * x;

}

• Definition of the function

We only want this in one .c file

• Do not want 2 definitions
• Which one should the linker choose?

6

Header Files

C header files: .h files

• Written in C, so look like C
• Only put header information in them

• Function headers
• Macros
• typedefs
• struct definitions

• Essentially: information for the type checker that does not
produce any actual binary

• #include the header files in our .c files

7

Big Picture

Header files

• Things that tell the type checker how to work
• Do not generate any actual binary

C files

• Function definitions and implementation
• Include the header files

8

Including Headers

#include "myfile.h"

• Quotes: look for a file where I’m writing code
• Our header files

#include <string.h>

• Angle brackets: look in the standard place for includes
• Code that came with the compiler
• Likely in /usr/include

9

Memory

10

The Heap

The heap: unorganized memory for our data

• Most code we write will use the heap
• Not a heap data structure...

11

The Heap: Requesting Memory

void *malloc(size_t size);

• Ask for size bytes of memory
• Returns a (void *) pointer to the first byte
• It does not know what we will use the space for!
• Does not erase (or zero) the memory it returns

12

malloc Example

typedef struct student_s {
const char *name;
int credits;

} student;

student *enroll(const char *name, int transfer_credits) {
student *ans = (student *)malloc(sizeof(student));
ans->name = name;
ans->credits = transfer_credits;
return ans;

}

13

The Heap: Freeing Memory

Freeing memory: free
void free(void *ptr);

• Accepts a pointer returned by malloc
• Marks that memory as no longer in use, available to use later
• You should free() memory to avoid memory leaks

14

15

An Interesting Stack Example

int *makeArray() {
int answer[5];
return answer;

}

void setTo(int *array, int length, int value) {
for(int i=0; i<length; i+=1)

array[i] = value;
}

int main(int argc, const char *argv[]) {
int *a1 = makeArray();
setTo(a1, 5, -2);
return 0;

}

16

