Binary Arithmetic, Bitwise Operations

CS 2130: Computer Systems and Organization 1
January 25, 2023

Announcements

- My Office Hours
- Wednesdays 2:30-4:30pm, Rice 210
- Thursdays 2-3pm, Discord
- This week only: Wed until 4:15, Thurs in Rice 210
- TA Office Hours starting soon
- Discord link coming soon
- Homework 1 due Feb 6 (Mon)

Numbers

From our oldest cultures, how do we mark numbers?

- Arabic numerals
- Positional numbering system

- The 10 is significant:
- 10 symbols, using 10 as base of exponent
- The 10 is arbitrary
- We can use other bases! $\pi, 2130,2, \ldots$

Bases

We will discuss a few in this class

- Base-10 (decimal) - talking to humans
- Base-8 (octal) - shows up occasionally
- Base-2 (binary) - most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) - nice grouping of bits

Any downsides to binary?

Turn 213010 into base-2:
hint: find largest power of 2 and subtract

$$
\frac{1}{2^{11}} \underline{0} 00 \underline{0} 101 \frac{1}{2^{3} z^{2}} \frac{0}{i} \frac{0}{i^{0}}
$$

Long Numbers

How do we deal with numbers too long to read?

Long Numbers

How do we deal with numbers too long to read?

- Group them by 3 (right to left)

Long Numbers

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000-999

Long Numbers

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000-999

$$
10^{3}=1000
$$

- Effectively base-1000

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?

100,001,010,010

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation

100001010010

Long Numbers in Binary

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?

$$
\frac{1011}{1} \frac{011}{3}
$$

- We can use a separate symbol per group
- How many do we need for groups of 3 ?
- Turn each group into decimal representation
- Converts binary to octal

$$
\frac{100001010010}{1} \frac{1}{2} \frac{1}{2}
$$

Long Numbers in Binary

Making binary more readable

- Groups of 4 more common
- How many symbols do we need for groups of 4 ?

$$
2^{4}=16
$$

100001010010

Long Numbers in Binary

Making binary more readable

- Groups of 4 more common
- How many symbols do we need for groups of 4 ?
- Converts binary to hexadecimal
- Base-16 is very common in computing

$$
\frac{10000010210010}{8} \frac{16}{2}
$$

Hexadecimal

Need more than 10 digits. What next?

$$
\begin{array}{ll}
\text { next? } & \begin{array}{l}
1 \\
140 \\
\end{array} \\
& 2 \\
& \vdots \\
& \\
& \\
& \\
& a=10 \\
& b=11 \\
& c=12 \\
& d=13 \\
e & e 14 \\
& f=15
\end{array}
$$

Hexadecimal Exercise

Consider the following hexadecimal number:

$$
\begin{aligned}
& \text { 852dab1e }
\end{aligned}
$$

Is it even or odd?

Using Different Bases in Code

	Old Languages	New Languages
binary	no way	06011010110
octal	073	00725
decimal	2130	4282
hexadecimal	$0 \times 3 a f$	$0 \times 3 \mathrm{af}$

Finally, Numbers!

Storing Integers

- Use binary representation of decimal numbers
- Usually have a limited number of bits (ex: 32, 64)
- Depending on language
- Depending on hardware

Finally, Numbers!

Storing Integers

- Use binary representation of decimal numbers
- Usually have a limited number of bits (ex: 32, 64)
- Depending on language
- Depending on hardware
- Is there something missing?

Negative Integers

Representing negative integers

$$
-25
$$

Negative Integers

Representing negative integers

- Can we use the minus sign?

Negative Integers

Representing negative integers

- Can we use the minus sign?
- In binary we only have 2 symbols, must do something else!
- Almost all hardware uses the following observation:

Negative Integers

Representing negative integers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers

Negative Integers

Representing negative integers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
- $0000-0001=9999==-1$
- $9999-0001=9998==-2$
- Normal subtraction/addition still works
- Ex: $-2+3$

Negative Integers

Representing negative integers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
- $0000-0001=9999=-1$
- $9999-0001=9998=-2$
- Normal subtraction/addition still works
- Ex: $-2+3$
- This works the same in binary

Two's Complement

This scheme is called Two's Complement

- More generically, a signed integer
- There is a break as far away from 0 as possible
- First bit acts vaguely like a minus sign
- Works as long as we do not pass number too large to represent

Two's Complement

Questions?

Values of Two's Complement Numbers

Consider the following 8-bit binary number in Two's Complement:

11010011

What is its value in decimal?

Values of Two's Complement Numbers

Consider the following 8-bit binary number in Two's Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

Operations

So far, we have discussed:

- Addition: $x+y$
- Can get multiplication
- Subtraction: $x-y$
- Can get division, but more difficult
- Unary minus (negative): $-x$
- Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

- Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: $\sim x$ - flips all bits (unary)
- Bitwise and: x \& y - set bit to 1 if x, y have 1 in same bit
- Bitwise or: $\mathrm{x} \mid \mathrm{y}$ - set bit to 1 if either x or y have 1
- Bitwise xor: $x^{\wedge} y$ - set bit to 1 if x, y bit differs

Example: Bitwise AND

11001010
 \& 01111100

Example: Bitwise OR

11001010 01111100

Example: Bitwise XOR

11001010
 ^ 01111100

Your Turn!

What is: $0 x 1 \mathrm{a} \wedge 0 \times 72$

Operations (on Integers)

- Logical not: !x
- $!0=1$ and $!x=0, \forall x \neq 0$
- Useful in C, no booleans
- Some languages name this one differently
- Left shift: $x \ll y$ - move bits to the left
- Effectively multiply by powers of 2
- Right shift: $x \gg y$ - move bits to the right
- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

