Binary Arithmetic, Bitwise Operations

CS 2130: Computer Systems and Organization 1 January 25, 2023

- My Office Hours
 - Wednesdays 2:30-4:30pm, Rice 210
 - Thursdays 2-3pm, Discord
 - This week only: Wed until 4:15, Thurs in Rice 210
- TA Office Hours starting soon
- Discord link coming soon
- Homework 1 due Feb 6 (Mon)

From our oldest cultures, how do we mark numbers?

- Arabic numerals
 - Positional numbering system
 - The 10 is significant:
 - 10 symbols, using 10 as base of exponent
 - The **10** is arbitrary
 - We can use other bases! π , 2130, 2, ...

We will discuss a few in this class

- Base-10 (decimal) talking to humans
- Base-8 (octal) shows up occasionally
- Base-2 (binary) most important! (we've been discussing 2 things!)
- Base-16 (hexadecimal) nice grouping of bits

Binary

Diliary Dilas 4 C	L 7 8 1	10
Powers of 2: 1248 16 32	64 128 256 51	2 1024
Any downsides to binary?		
0.40.0	10 10	
Turn 2130₁₀ into base-2 :	2130	
hint: find largest power of 2 and subtract	-2048 = 2	I
	0082	
	- 64	
100001010010	18	
	- 16	

_____16

2

.

How do we deal with numbers too long to read?

How do we deal with numbers too long to read?

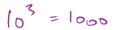
• Group them by 3 (right to left)

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- \cdot In decimal, use commas: ,
- Numbers between commas: 000 999

How do we deal with numbers too long to read?

- Group them by 3 (right to left)
- In decimal, use commas: ,
- Numbers between commas: 000 999
- Effectively base-1000

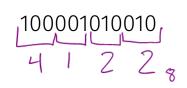


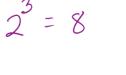
Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?

Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?





Making binary more readable

- Typical to group by 3 or 4 bits
- No need for commas *Why*?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation

100001010010

Making binary more readable

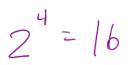
- Typical to group by 3 or 4 bits
- No need for commas Why?
- We can use a separate symbol per group
- How many do we need for groups of 3?
- Turn each group into decimal representation
- Converts binary to **octal**

 $\frac{100001010010}{4 I Z Z_8}$

1011011

Making binary more readable

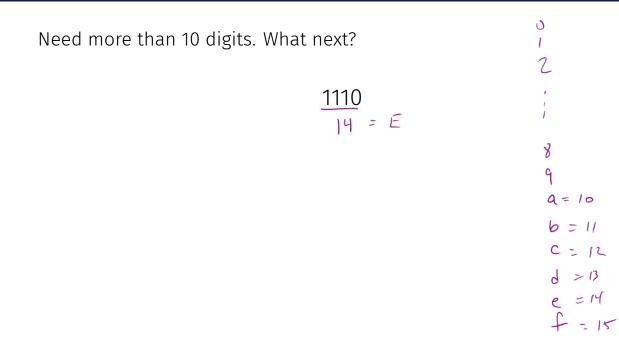
- $\cdot\,$ Groups of 4 more common
- How many symbols do we need for groups of 4?



Making binary more readable

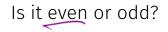
- \cdot Groups of 4 more common
- How many symbols do we need for groups of 4?
- Converts binary to hexadecimal
- Base-16 is very common in computing

Hexadecimal



Consider the following hexadecimal number:

16 16 16 14 10 16 16 16 852dab1e



 \emptyset

		Old Languages	New Languages
8	binary	no vay	060(1010110
	octal	073	00725
	decimal	2130	4282
	hexadecimal	Øx 3af	Ox 3af

Storing Integers

- Use binary representation of decimal numbers
- Usually have a limited number of bits (ex: 32, 64)
 - Depending on language
 - Depending on hardware

Storing Integers

- Use binary representation of decimal numbers
- Usually have a limited number of bits (ex: 32, 64)
 - Depending on language
 - Depending on hardware
- Is there something missing?

Representing negative integers

• Can we use the minus sign?

Representing negative integers

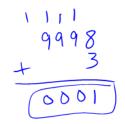
• Can we use the minus sign?

- In binary we only have 2 symbols, must do something else!
- Almost all hardware uses the following observation:

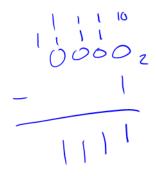
$$\begin{array}{c}
 9 & 9 & 9 & 10 \\
 1 & 0 & 0 & 0 \\
 - & 0 & 0 & 0 & 1 \\
 0 & 9 & 9 & 9 & 9 \\
 0 & 9 & 9 & 9 & 9 \\
 \end{array}$$

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers

- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
 - 0000 0001 = <u>999</u>9 == -1
 - 9999 0001 = 9998 == -2
 - Normal subtraction/addition still works
 - Ex: -2 + 3



- Computers store numbers in fixed number of wires
- Ex: consider 4-digit decimal numbers
- Throw away the last borrow:
 - 0000 0001 = 9999 == -1
 - 9999 0001 = 9998 == -2
 - Normal subtraction/addition still works
 - Ex: -2 + 3
- \cdot This works the same in binary



Two's Complement

This scheme is called Two's Complement

- More generically, a *signed* integer
- There is a break as far away from 0 as possible
- First bit acts vaguely like a minus sign
- Works as long as we do not pass number too large to represent

0000 1111 0001 0 1110 0010 +1-2 +2 1101 0011 +3 1100 +4 0100 -4+5 0101 1011 +6 1010 0110 1001 0111 1000

Two's Complement

Questions?

Consider the following 8-bit binary number in Two's Complement:

11010011

What is its value in decimal?

Consider the following 8-bit binary number in Two's Complement:

11010011

What is its value in decimal?

- 1. Flip all bits
- 2. Add 1

So far, we have discussed:

- Addition: x + y
 - Can get multiplication
- Subtraction: x y
 - $\cdot\,$ Can get division, but more difficult
- Unary minus (negative): -x
 - Flip the bits and add 1

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: ~x flips all bits (unary)
- Bitwise and: $\mathbf{x} \cdot \mathbf{\delta} \mathbf{y}$ set bit to 1 if x, y have 1 in same bit
- Bitwise or: x | y set bit to 1 if either x or y have 1
- Bitwise xor: $\mathbf{x} \circ \mathbf{y}$ set bit to 1 if x, y bit differs

Example: Bitwise AND

11001010 & 01111100

Example: Bitwise OR

Example: Bitwise XOR

11001010 ^ 01111100

Your Turn!

What is: **0x1a** ^ **0x72**

Operations (on Integers)

- Logical not: !x
 - $!0 = 1 \text{ and } !x = 0, \forall x \neq 0$
 - Useful in C, no booleans
 - \cdot Some languages name this one differently
- Left shift: $x \ll y$ move bits to the left
 - Effectively multiply by powers of 2
- Right shift: x >> y move bits to the right
 - Effectively divide by powers of 2
 - Signed (extend sign bit) vs unsigned (extend 0)