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Announcements

• My Office Hours
• Wednesdays 2:30-4:30pm, Rice 210
• Thursdays 2-3pm, Discord
• This week only: Wed until 4:15, Thurs in Rice 210

• TA Office Hours starting soon
• Discord link coming soon
• Homework 1 due Feb 6 (Mon)
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Numbers

From our oldest cultures, how do we mark numbers?

• Arabic numerals
• Positional numbering system
• The 10 is significant:

• 10 symbols, using 10 as base of exponent

• The 10 is arbitrary
• We can use other bases! π, 2130, 2, ...
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Bases

We will discuss a few in this class

• Base-10 (decimal) - talking to humans
• Base-8 (octal) - shows up occasionally
• Base-2 (binary) - most important! (we’ve been discussing 2 things!)
• Base-16 (hexadecimal) - nice grouping of bits
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Binary

Any downsides to binary?

Turn213010 into base-2:
hint: find largest power of 2 and subtract
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Long Numbers

How do we deal with numbers too long to read?

• Group them by 3 (right to left)
• In decimal, use commas: ,
• Numbers between commas: 000 - 999
• Effectively base-1000
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Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?

• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010
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Long Numbers in Binary

Making binary more readable

• Groups of 4 more common
• How many symbols do we need for groups of 4?

• Converts binary to hexadecimal
• Base-16 is very common in computing
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Hexadecimal

Need more than 10 digits. What next?

1110
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Hexadecimal Exercise

Consider the following hexadecimal number:

852dab1e

Is it even or odd?
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Using Different Bases in Code

Old Languages New Languages
binary
octal
decimal
hexadecimal
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Finally, Numbers!

Storing Integers

• Use binary representation of decimal numbers
• Usually have a limited number of bits (ex: 32, 64)

• Depending on language
• Depending on hardware

• Is there something missing?
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Negative Integers

Representing negative integers

• Can we use the minus sign?
• In binary we only have 2 symbols, must do something else!
• Almost all hardware uses the following observation:
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Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers

• Throw away the last borrow:

• 0000 - 0001 = 9999 == -1
• 9999 - 0001 = 9998 == -2
• Normal subtraction/addition still works
• Ex: -2 + 3

• This works the same in binary
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Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent
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Two’s Complement
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Questions?
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Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1
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Operations

So far, we have discussed:

• Addition: x+ y
• Can get multiplication

• Subtraction: x− y
• Can get division, but more difficult

• Unary minus (negative): −x
• Flip the bits and add 1
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Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ~x - flips all bits (unary)
• Bitwise and: x & y - set bit to 1 if x, y have 1 in same bit
• Bitwise or: x | y - set bit to 1 if either x or y have 1
• Bitwise xor: x ^ y - set bit to 1 if x, y bit differs
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Example: Bitwise AND

11001010
& 01111100
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Example: Bitwise OR

11001010
| 01111100
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Example: Bitwise XOR

11001010
^ 01111100
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Your Turn!

What is: 0x1a ^ 0x72
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Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)
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