
Binary Arithmetic, Bitwise Operations

CS 2130: Computer Systems and Organization 1
January 25, 2023



Announcements

• My Office Hours
• Wednesdays 2:30-4:30pm, Rice 210
• Thursdays 2-3pm, Discord
• This week only: Wed until 4:15, Thurs in Rice 210

• TA Office Hours starting soon
• Discord link coming soon
• Homework 1 due Feb 6 (Mon)

1



Numbers

From our oldest cultures, how do we mark numbers?

• Arabic numerals
• Positional numbering system
• The 10 is significant:

• 10 symbols, using 10 as base of exponent

• The 10 is arbitrary
• We can use other bases! π, 2130, 2, ...

2



Bases

We will discuss a few in this class

• Base-10 (decimal) - talking to humans
• Base-8 (octal) - shows up occasionally
• Base-2 (binary) - most important! (we’ve been discussing 2 things!)
• Base-16 (hexadecimal) - nice grouping of bits

3



Binary

Any downsides to binary?

Turn213010 into base-2:
hint: find largest power of 2 and subtract

4



Long Numbers

How do we deal with numbers too long to read?

• Group them by 3 (right to left)
• In decimal, use commas: ,
• Numbers between commas: 000 - 999
• Effectively base-1000

5



Long Numbers

How do we deal with numbers too long to read?

• Group them by 3 (right to left)

• In decimal, use commas: ,
• Numbers between commas: 000 - 999
• Effectively base-1000

5



Long Numbers

How do we deal with numbers too long to read?

• Group them by 3 (right to left)
• In decimal, use commas: ,
• Numbers between commas: 000 - 999

• Effectively base-1000

5



Long Numbers

How do we deal with numbers too long to read?

• Group them by 3 (right to left)
• In decimal, use commas: ,
• Numbers between commas: 000 - 999
• Effectively base-1000

5



Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?

• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010

6



Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?

• Turn each group into decimal representation
• Converts binary to octal

100001010010

6



Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation

• Converts binary to octal

100001010010

6



Long Numbers in Binary

Making binary more readable

• Typical to group by 3 or 4 bits
• No need for commas Why?
• We can use a separate symbol per group
• How many do we need for groups of 3?
• Turn each group into decimal representation
• Converts binary to octal

100001010010

6



Long Numbers in Binary

Making binary more readable

• Groups of 4 more common
• How many symbols do we need for groups of 4?

• Converts binary to hexadecimal
• Base-16 is very common in computing

100001010010

7



Long Numbers in Binary

Making binary more readable

• Groups of 4 more common
• How many symbols do we need for groups of 4?
• Converts binary to hexadecimal
• Base-16 is very common in computing

100001010010

7



Hexadecimal

Need more than 10 digits. What next?

1110

8



Hexadecimal Exercise

Consider the following hexadecimal number:

852dab1e

Is it even or odd?

9



Using Different Bases in Code

Old Languages New Languages
binary
octal
decimal
hexadecimal

10



Finally, Numbers!

Storing Integers

• Use binary representation of decimal numbers
• Usually have a limited number of bits (ex: 32, 64)

• Depending on language
• Depending on hardware

• Is there something missing?

11



Finally, Numbers!

Storing Integers

• Use binary representation of decimal numbers
• Usually have a limited number of bits (ex: 32, 64)

• Depending on language
• Depending on hardware

• Is there something missing?

11



Negative Integers

Representing negative integers

• Can we use the minus sign?
• In binary we only have 2 symbols, must do something else!
• Almost all hardware uses the following observation:

12



Negative Integers

Representing negative integers

• Can we use the minus sign?

• In binary we only have 2 symbols, must do something else!
• Almost all hardware uses the following observation:

12



Negative Integers

Representing negative integers

• Can we use the minus sign?
• In binary we only have 2 symbols, must do something else!
• Almost all hardware uses the following observation:

12



Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers

• Throw away the last borrow:

• 0000 - 0001 = 9999 == -1
• 9999 - 0001 = 9998 == -2
• Normal subtraction/addition still works
• Ex: -2 + 3

• This works the same in binary

13



Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:

• 0000 - 0001 = 9999 == -1
• 9999 - 0001 = 9998 == -2
• Normal subtraction/addition still works
• Ex: -2 + 3

• This works the same in binary

13



Negative Integers

Representing negative integers

• Computers store numbers in fixed number of wires
• Ex: consider 4-digit decimal numbers
• Throw away the last borrow:

• 0000 - 0001 = 9999 == -1
• 9999 - 0001 = 9998 == -2
• Normal subtraction/addition still works
• Ex: -2 + 3

• This works the same in binary

13



Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent

14



Two’s Complement

15



Questions?

15



Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

16



Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

16



Operations

So far, we have discussed:

• Addition: x+ y
• Can get multiplication

• Subtraction: x− y
• Can get division, but more difficult

• Unary minus (negative): −x
• Flip the bits and add 1

17



Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ~x - flips all bits (unary)
• Bitwise and: x & y - set bit to 1 if x, y have 1 in same bit
• Bitwise or: x | y - set bit to 1 if either x or y have 1
• Bitwise xor: x ^ y - set bit to 1 if x, y bit differs

18



Example: Bitwise AND

11001010
& 01111100

19



Example: Bitwise OR

11001010
| 01111100

20



Example: Bitwise XOR

11001010
^ 01111100

21



Your Turn!

What is: 0x1a ^ 0x72

22



Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)

23



24


