
Bitwise Operations, Floating Point Numbers

CS 2130: Computer Systems and Organization 1
January 27, 2023



Announcements

• TA Office Hours starting very soon
• Discord link coming this afternoon
• Quiz 1 opens this afternoon, due Sunday night
• Homework 1 due Feb 6 (Mon)

1



Two’s Complement

2



Two’s Complement

This scheme is called Two’s Complement

• More generically, a signed
integer

• There is a break as far away
from 0 as possible

• First bit acts vaguely like a
minus sign

• Works as long as we do not
pass number too large to
represent

3



Two’s Complement

4



Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

5



Values of Two’s Complement Numbers

Consider the following 8-bit binary number in Two’s Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

5



Operations

So far, we have discussed:

• Addition: x + y
• Can get multiplication

• Subtraction: x - y
• Can get division, but more difficult

• Unary minus (negative): -x
• Flip the bits and add 1

6



Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

• Bitwise not: ~x - flips all bits (unary)
• Bitwise and: x & y - set bit to 1 if x, y have 1 in same bit
• Bitwise or: x | y - set bit to 1 if either x or y have 1
• Bitwise xor: x ^ y - set bit to 1 if x, y bit differs

7



Example: Bitwise AND

11001010
& 01111100

8



Example: Bitwise OR

11001010
| 01111100

9



Example: Bitwise XOR

11001010
^ 01111100

10



Your Turn!

What is: 0x1a ^ 0x72

11



Operations (on Integers)

• Logical not: !x
• !0 = 1 and !x = 0, ∀x ̸= 0
• Useful in C, no booleans
• Some languages name this one differently

• Left shift: x << y - move bits to the left
• Effectively multiply by powers of 2

• Right shift: x >> y - move bits to the right
• Effectively divide by powers of 2
• Signed (extend sign bit) vs unsigned (extend 0)

12



Left Bit-shift Example

01011010 << 2

13



Right Bit-shift Example

01011010 >> 3

14



Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

2130 <<10 2 = 213000 = 2130 × 100

2130 >>10 1 = 213 = 2130 / 10

15



Right Bit-shift Example 2

11001010 >> 1

16



Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

• Keeps negative value (if applicable)
• Approximates divide by powers of 2

11001010 >> 1

17



Bit fiddling example

17



What about other kinds of numbers?

17



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159

• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

18



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110

• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

18



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

18



Non-Integer Numbers

Floating point numbers

• Decimal: 3.14159
• Binary: 11.10110
• With integers, the point is always fixed after all digits
• With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

18



Scientific Notation

Convert the following decimal to scientific notation:

2130

19



Scientific Notation

Convert the following binary to scientific notation:

101101

20



Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

2.13× 103

• Binary: first digit can be any number except 0 Wait!

1.01101× 25

• First digit can only be 1

21



Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

2.13× 103

• Binary: first digit can be any number except 0 Wait!

1.01101× 25

• First digit can only be 1

21



Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

2.13× 103

• Binary: first digit can be any number except 0 Wait!

1.01101× 25

• First digit can only be 1

21



Floating Point in Binary

We must store 3 components

• sign (1-bit): 1 if negative, 0 if positive
• fraction or mantissa: (?-bits): bits after binary point
• exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

22



Floating Point in Binary

How do we store them?

• Originally many different systems
• IEEE standardized system (IEEE 754 and IEEE 854)
• Agreed-upon order, format, and number of bits for each

1.01101× 25

23



Example

A rough example in Decimal:

6.42× 103

24



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)

• Don’t we always use Two’s Complement?
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

25



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement?

• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

25



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not

• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

25



Exponent

How do we store the exponent?

• Exponents can be negative

2−3 =
1
23 =

1
8

• Need positive and negative ints (but no minus sign)
• Don’t we always use Two’s Complement? Unfortunately Not
• Biased integers

• Make comparison operations run more smoothly
• Hardware more efficient to build
• Other valid reasons

25



Biased Integers

Similar to Two’s Complement, but add bias

• Two’s Complement: Define 0
as 00...0

• Biased: Define 0 as 0111...1
• Biased wraps from
000...0 to 111...1

26



Biased Integers

Two’s Complement Biased

27



Biased Integers Example

Calculate value of biased integers (4-bit example)

0010

28



Biased Integers

29



Floating Point Example

101.0112

30



Floating Point Example

101.0112

31



Floating Point Example

What does the following encode?

1 001110 1010101

32



Floating Point Example

What does the following encode?

1 001110 1010101

33



34



What about 0?

34



Floating Point Numbers

Four cases:

• Normalized: What we have seen today

s eeee ffff = ±1.ffff× 2eeee−bias

• Denormalized: Exponent bits all 0

s eeee ffff = ±0.ffff× 21−bias

• Infinity: Exponent bits all 1, fraction bits all 0 (i.e., ±∞)
• Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

35


