Bitwise Operations, Floating Point Numbers

CS 2130: Computer Systems and Organization 1
January 27, 2023

Announcements

- TA Office Hours starting very soon
- Discord link coming this afternoon
- Quiz 1 opens this afternoon, due Sunday night
- Homework 1 due Feb 6 (Mon)

Two's Complement

Two's Complement

This scheme is called Two's Complement

- More generically, a signed integer
- There is a break as far away from 0 as possible
- First bit acts vaguely like a minus sign
- Works as long as we do not pass number too large to represent

Two's Complement

Values of Two's Complement Numbers

Consider the following 8-bit binary number in Two's Complement:

11010011

What is its value in decimal?

Values of Two's Complement Numbers

Consider the following 8-bit binary number in Two's Complement:

11010011

What is its value in decimal?

1. Flip all bits
2. Add 1

Operations

So far, we have discussed:

- Addition: x + y
- Can get multiplication
- Subtraction: x - y
- Can get division, but more difficult
- Unary minus (negative): -x
- Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

- Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: $\sim x$ - flips all bits (unary)
- Bitwise and: x \& y - set bit to 1 if x, y have 1 in same bit
- Bitwise or: $\mathrm{x} \mid \mathrm{y}$ - set bit to 1 if either x or y have 1
- Bitwise xor: $x^{\wedge} y$ - set bit to 1 if x, y bit differs

Example: Bitwise AND

11001010
 \& 01111100

Example: Bitwise OR

11001010 01111100

Example: Bitwise XOR

11001010
 ^ 01111100

Your Turn!

What is: $0 x 1 \mathrm{a} \wedge 0 \times 72$

Operations (on Integers)

- Logical not: ! x
- $!0=1$ and $!x=0, \forall x \neq 0$
- Useful in C, no booleans
- Some languages name this one differently
- Left shift: $x \ll y$ - move bits to the left
- Effectively multiply by powers of 2
- Right shift: x >> y - move bits to the right
- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

Left Bit-shift Example

01011010 << 2

Right Bit-shift Example

01011010 >> 3

Bit-shift

Computing bit-shift effectively multiplies/divides by powers of 2

Consider decimal:

$$
\begin{gathered}
2130 \ll{ }_{10} 2=213000=2130 \times 100 \\
2130 \gg_{10} 1=213=2130 / 10
\end{gathered}
$$

Right Bit-shift Example 2

11001010 >> 1

Right Bit-shift Example 2

For signed integers, extend the sign bit (1)

- Keeps negative value (if applicable)
- Approximates divide by powers of 2

11001010 >> 1

Bit fiddling example

What about other kinds of numbers?

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159
- Binary: 11.10110

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159
- Binary: 11.10110
- With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159
- Binary: 11.10110
- With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

Scientific Notation

Convert the following decimal to scientific notation:

2130

Scientific Notation

Convert the following binary to scientific notation:

101101

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0

$$
2.13 \times 10^{3}
$$

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0

$$
2.13 \times 10^{3}
$$

- Binary: first digit can be any number except 0 Wait!
1.01101×2^{5}

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0

$$
2.13 \times 10^{3}
$$

- Binary: first digit can be any number except 0 Wait!

$$
1.01101 \times 2^{5}
$$

- First digit can only be 1

Floating Point in Binary

We must store 3 components

- sign (1-bit): 1 if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

Floating Point in Binary

How do we store them?

- Originally many different systems
- IEEE standardized system (IEEE 754 and IEEE 854)
- Agreed-upon order, format, and number of bits for each

1.01101×2^{5}

Example

A rough example in Decimal:

$$
6.42 \times 10^{3}
$$

Exponent

How do we store the exponent?

- Exponents can be negative

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

- Need positive and negative ints (but no minus sign)

Exponent

How do we store the exponent?

- Exponents can be negative

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement?

Exponent

How do we store the exponent?

- Exponents can be negative

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not

Exponent

How do we store the exponent?

- Exponents can be negative

$$
2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}
$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not
- Biased integers
- Make comparison operations run more smoothly
- Hardware more efficient to build
- Other valid reasons

Biased Integers

Similar to Two's Complement, but add bias

- Two's Complement: Define 0 as 00... 0
- Biased: Define 0 as 0111... 1
- Biased wraps from 000... 0 to 111... 1

Biased Integers

Two's Complement

Biased

Biased Integers Example

Calculate value of biased integers (4-bit example)

0010

Biased Integers

Floating Point Example

101.011_{2}

Floating Point Example

101.011_{2}

Floating Point Example

What does the following encode?
$1 \longdiv { 0 0 1 1 1 0 } 1 0 1 0 1 0 1$

Floating Point Example

What does the following encode?
110011101010101

What about 0?

Floating Point Numbers

Four cases:

- Normalized: What we have seen today

$$
\text { s eeee ffff }= \pm 1 . f f f f \times 2^{\text {eeee-bias }}
$$

- Denormalized: Exponent bits all 0

$$
\text { s eeee ffff }= \pm 0 . f f f f \times 2^{1-\text { bias }}
$$

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., $\pm \infty$)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

