Floating Point Numbers

CS 2130: Computer Systems and Organization 1
January 30, 2023

Announcements

- TA Office Hours starting Wednesday

- Wednesdays, Rice 011
- Thurs-Sun, Olsson 001

- Please join our Discord server
- Lab tomorrow: hex editor
- Homework 1 due Feb 6 (Mon)

So far, we have discussed:

- Addition: x + y

- Can get multiplication
- Subtraction: x -y

- Can get division, but more difficult
- Unary minus (negative): -x

- Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)
- Manipulated by bitwise operations
Bitwise operations: operate over the bits in a bit vector

- Bitwise not: ~x - flips all bits (unary)

- Bitwise and: x & y -setbitto 1if x,y have 1in same bit
- Bitwise or: x | y -setbitto 1if either x or y have 1

- Bitwise xor: x "~ y - set bit to 1if x,y bit differs

Operations (on Integers)

- Logical not: !x [000D D000 <t
- 10=17and Ix=0,Vx#0 /
- Useful in C, no booleans
- Some languages name this one differently DoODOO D 71
- Left shift: x << y - move bits to the left N

- Effectively multiply by powers of 2
- Right shift: x >> y - move bits to the right

- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

99000 Oo0D

What about other kinds of numbers?

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159
Lalfcl.hal (Pslva

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

- Binary: 11.10110
L bEn«W P“‘\’A’

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

- Binary: 11.10110

- With integers, the point is always fixed after all digits Dlloiol,
- With floating point numbers, the point can move!

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

- Binary: 11.10110

- With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

Scientific Notation

Convert the following decimal to scientific notation:

213

S

——

2
0,150 x (D

Scientific Notation

Convert the following binary to scientific notation:

| ollol x 2

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0

2.13 x 10° D.C L0

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0
2.13 x 10°
- Binary: first digit can be any number except 0 Wait!

1.01101 x 2°

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0
2.13 x 10°
- Binary: first digit can be any number except 0 Wait!

() 1.01101 x £
|

- First digit can only be 1

Floating Point in Binary

We must store 3 components

- sign (1-bit): 1if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

Floating Point in Binary

How do we store them?

- Originally many different systems
- |EEE standardized system (IEEE 754 and |IEEE 854)
- Agreed-upon order, format, and number of bits for each

f©1 ><2‘=EJ

€ﬂ? e MY

A rough example in Decimal: q"l/‘/; | Ssigv
4 L e
8.42 x 10° 2, frec
o] | 03] [420
S ew ‘?‘?‘“V (2.0

1

How do we store the exponent?

- Exponents can be negative
0o°,

1 1 S
PR R ——
23 8

- Need positive and negative ints (but no minus sign)

How do we store the exponent?

- Exponents can be negative

1 1
273 = — = —
22 8
- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement?

How do we store the exponent?

- Exponents can be negative

1 1
273 = — = —
22 8
- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not

How do we store the exponent?

- Exponents can be negative

1 1
273 = — = —
23 8

- Need positive and negative ints (but no minus sign)

- Don't we always use Two's Complement? Unfortunately Not
- Biased integers

- Make comparison operations run more smoothly
- Hardware more efficient to build
- Other valid reasons

Biased Integers

Similar to Two's Complement, but add bias

- Two's Complement: Define 0
as 00...0

- Biased: Define 0 as 0111..1

SRV O VIS

- Biased wraps from
000...0 to 111..1

13

Biased Integers

| .
1111 2999 hoot
110 -1\ © 41 0010

2 +2

0011

+3

+4 0100

+5

1010 *2 0 0110
+1 ~

1007 400 9111

Tvvo’shCBmplement ~O0(¢ Biased

14

Biased Integers Example

Calculate value of biased integers (4-bit example)

Liord __J éé'ﬁ;g - -S) b <> #Q‘L_’Q = ;
gt 0010 = ° ~ _ M = -7
. ¥ f__ S T - ——
= T (o o
| (VY 0 —
o) o

N > Ol v]|=5

15

Biased Integers

16

Floating Point Example

[030 — b>
/‘{_)_g_tgo((l /———j, P
+ 1&_-//\'/0/'12 , g_, €>‘f9
+ 010/ x 2 L Rk
| |
D0 O
+ O/
o
00 !
O_l_l_?_(_?_’_ l O / (_J

7

Floating Point Example

101.011,

18

Floating Point Example
What does the following encode? (] D = #
O [;"J | { & bia
exr b -

l 001110

1010101

K e

~ .10l b1 O/

0. 00"~

:,]7

-7
X

2l lo)olo/

19

Floating Point Example

What does the following encode?

001110//1010101

20

21

What about 0?

Floating Point Numbers

Four cases:

- Normalized: What we have seen today
s eeee ffff = L1.ffff x 20e¢ebias
- Denormalized: Exponent bits all 0

N
s ecee ffff — +Offff x 2

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., +00)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

22

