Floating Point Numbers

CS 2130: Computer Systems and Organization 1
January 30, 2023

Announcements

- TA Office Hours starting Wednesday

- Wednesdays, Rice 011
- Thurs-Sun, Olsson 001

- Please join our Discord server
- Lab tomorrow: hex editor
- Homework 1 due Feb 6 (Mon)

So far, we have discussed:

- Addition: x + y

- Can get multiplication
- Subtraction: x -y

- Can get division, but more difficult
- Unary minus (negative): -x

- Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)
- Manipulated by bitwise operations
Bitwise operations: operate over the bits in a bit vector

- Bitwise not: ~x - flips all bits (unary)

- Bitwise and: x & y -setbitto 1if x,y have 1in same bit
- Bitwise or: x | y -setbitto 1if either x or y have 1

- Bitwise xor: x "~ y - set bit to 1if x,y bit differs

Operations (on Integers)

- Logical not: !'x v
- 10=17and Ix=0,Vx#0
- Useful in C, no booleans
- Some languages name this one differently

- Left shift: x << y - move bits to the left
- Effectively multiply by powers of 2
. Right shift: x >> y - move bits to the right 0poo000 L

|
- Effectively divide by powers of 2 | | DeoDoD
- Signed (extend sign bit) vs unsigned (extend 0) =

10000000 & |

g
DO PCPLOoocoo =0

What about other kinds of numbers?

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159
‘t_' ng(; rﬂ‘-k ‘9;""*’

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

- Binary: 11.10110
Lbi"-"‘{ (;w\’f

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

- Binary: 11.10110

- With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Non-Integer Numbers

Floating point numbers

- Decimal: 3.14159

- Binary: 11.10110

- With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

Scientific Notation

Convert the following decimal to scientific notation:

2130.

£

2,130 & [0

| 5°0

Scientific Notation

Convert the following binary to scientific notation:

101101,

N
g

/,DHD} X ;

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0

2.13 x 103 O%

Something to Notice

An interesting phenomenon:

- Decimal: first digit can be any number except 0
2.13 x 10°
- Binary: first digit can be any number except 0 Wait!

1.01101 x 2°

Something to Notice

An interesting phenomenon:
- Decimal: first digit can be any number except 0
2.13 x 10°
- Binary: first digit can be any number except 0 Wait!

- 1{(51_1% X 2@
Gt_df— /P

- First digit can only be 1

Floating Point in Binary

We must store 3 components

- sign (1-bit): 1if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

Floating Point in Binary

How do we store them?

- Originally many different systems
- |EEE standardized system (IEEE 754 and |IEEE 854)
- Agreed-upon order, format, and number of bits for each

1. 01101 X 22
grjm

$ohon

o et

Example

A rough example in Decimal: L%o o
l\ 2 Cxf
2
6.42 x 10°
420 0
p| 05, = e

1

How do we store the exponent?

- Exponents can be negative

1 1
PR R ——
— 23 8

- Need positive and negative ints (but no minus sign)

How do we store the exponent?

- Exponents can be negative

1 1
273 = — = —
22 8
- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement?

How do we store the exponent?

- Exponents can be negative

1 1
273 = — = —
22 8
- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not

How do we store the exponent?

- Exponents can be negative

1 1
273 = — = —
23 8

- Need positive and negative ints (but no minus sign)

- Don't we always use Two's Complement? Unfortunately Not
- Biased integers

- Make comparison operations run more smoothly
- Hardware more efficient to build
- Other valid reasons

Biased Integers

Similar to Two's Complement, but add bias %

- Two's Complement: Define 0
as 00...0

- Biased: Define 0 as 0111..1
—_—

- Biased wraps from
000...0 to 111..1

13

Biased Integers

Two's Complement Biased

14

Biased Integers Example

Calculate value of biased integers (4-bit example)

| 1| o
“) @10
I —
o lol | =%
e Ol o=
£\ 0\0[=9

-

15

Biased Integers

16

Floating Point Example

oy 21 o | e
erprn
S 3 77 +101,011, 3 feaers
I-Eﬁztl x & o[D
Qi+bu'-
jol. oLl Toor
Zf.zn ,20 ’2422
y 7 | JZ: ¢ }9'
{ 2
Yyl + 55 =57
19 IDOI \Ol Lk

14 *usfent frches

7

Floating Point Example

101.011,

18

Floating Point Example

What does the following encode? el

S ewr foe

001110//1010101

—|.lolojo | x 2

— 000000000 0000 000D~ ~— O [Ls| oot

19

Floating Point Example

What does the following encode?

001110//1010101

20

21

What about 0?

Floating Point Numbers

Four cases:

- Normalized: What we have seen today

s eeee ffff = £1.ffff x Heeee—bias

- Denormalized: Exponent bits all 0

s eeee ffff — +£0.ffff x 21"

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e, +o0)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

22

