Floating Point Numbers

CS 2130: Computer Systems and Organization 1 January 30, 2023

Announcements

- TA Office Hours starting Wednesday
 - · Wednesdays, Rice 011
 - · Thurs-Sun, Olsson 001
- Please join our Discord server
- · Lab tomorrow: hex editor
- Homework 1 due Feb 6 (Mon)

Operations

So far, we have discussed:

- Addition: x + y
 - Can get multiplication
- Subtraction: x y
 - · Can get division, but more difficult
- Unary minus (negative): -x
 - Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: ~x flips all bits (unary)
- Bitwise and: $\mathbf{x} \cdot \mathbf{b} \cdot \mathbf{y}$ set bit to 1 if x, y have 1 in same bit
- Bitwise or: x | y set bit to 1 if either x or y have 1
- Bitwise xor: \mathbf{x} * \mathbf{y} set bit to 1 if x, y bit differs

Operations (on Integers)

- Logical not: !x
 - !0 = 1 and $!x = 0, \forall x \neq 0$
 - · Useful in C, no booleans
 - · Some languages name this one differently
- Left shift: x << y move bits to the left
 - Effectively multiply by powers of 2
- Right shift: $x \gg y$ move bits to the right
 - Effectively divide by powers of 2
 - Signed (extend sign bit) vs unsigned (extend 0)

What about other kinds of numbers?

Floating point numbers

• Decimal: 3.14159

Floating point numbers

• Decimal: 3.14159

• Binary: 11.10110

Floating point numbers

- Decimal: 3.14159
- Binary: 11.10110
- · With integers, the point is always fixed after all digits
- With floating point numbers, the point can move!

Floating point numbers

- Decimal: 3.14159
- Binary: 11.10110
- · With integers, the point is always fixed after all digits
- · With floating point numbers, the point can move!

Challenge! only 2 symbols in binary

Scientific Notation

Convert the following decimal to scientific notation:

2130

Scientific Notation

Convert the following binary to scientific notation:

101101

Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

$$2.13 \times 10^{3}$$

Something to Notice

An interesting phenomenon:

• Decimal: first digit can be any number except 0

$$2.13 \times 10^{3}$$

Binary: first digit can be any number except 0 Wait!

$$1.01101 \times 2^5$$

Something to Notice

An interesting phenomenon:

Decimal: first digit can be any number except 0

$$2.13 \times 10^{3}$$

Binary: first digit can be any number except 0 Wait!

$$1.01101 \times 2^5$$

First digit can only be 1

Floating Point in Binary

We must store 3 components

- sign (1-bit): 1 if negative, 0 if positive
- fraction or mantissa: (?-bits): bits after binary point
- exponent (?-bits): how far to move binary point

We do not need to store the value before the binary point. Why?

Floating Point in Binary

How do we store them?

- Originally many different systems
- IEEE standardized system (IEEE 754 and IEEE 854)
- · Agreed-upon order, format, and number of bits for each

$$1.01101 \times 2^5$$

Example

A rough example in Decimal:

$$6.42 \times 10^{3}$$

How do we store the exponent?

• Exponents can be negative

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

Need positive and negative ints (but no minus sign)

How do we store the exponent?

• Exponents can be negative

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement?

How do we store the exponent?

• Exponents can be negative

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not

How do we store the exponent?

• Exponents can be negative

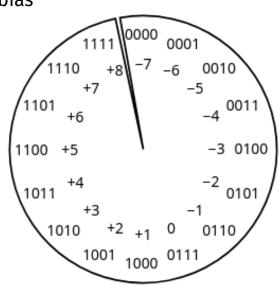
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

- Need positive and negative ints (but no minus sign)
- Don't we always use Two's Complement? Unfortunately Not
- Biased integers
 - Make comparison operations run more smoothly
 - · Hardware more efficient to build
 - Other valid reasons

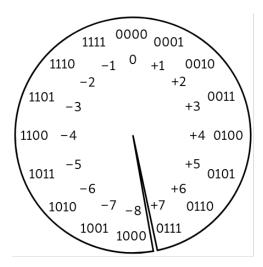
Biased Integers

Similar to Two's Complement, but add bias

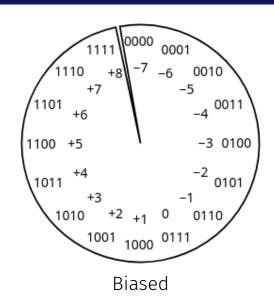
- Two's Complement: Define 0 as 00...0
- Biased: Define 0 as 0111...1
- Biased wraps from 000...0 to 111...1



Biased Integers



Two's Complement



Biased Integers Example

Calculate value of biased integers (4-bit example)

0010

Biased Integers

101.011₂

101.011₂

What does the following encode?

1 001110 1010101

What does the following encode?

1 001110 1010101

What about 0?

Floating Point Numbers

Four cases:

· Normalized: What we have seen today

s eeee ffff =
$$\pm 1.ffff \times 2^{eeee-bias}$$

• Denormalized: Exponent bits all 0

s eeee ffff =
$$\pm 0.$$
ffff $\times 2^{1-\text{bias}}$

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., $\pm \infty$)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0