Computer Systems and Organization 1

Warm up!

Can I make an n-input AND

 from 2-input AND gates?

Warm up!
What about XOR gates?

$$
\begin{aligned}
& 110 \rightarrow 0 \\
& 010 \rightarrow 1 \\
& 000 \rightarrow 0
\end{aligned}
$$

More bits, circuits, adders

CS 2130: Computer Systems and Organization 1
February 1, 2023

Announcements

- TA Office Hours start tonight!
- Wednesdays, Rice 011
- Thurs-Sun, Olsson 001
- Please join our Discord server
- Homework 1 due Monday

Quiz Review

$$
\begin{aligned}
& 0 \times 6=6 \\
& 0 \times 16>16 \\
& \begin{array}{cc}
\uparrow & 4 \\
16 & 10^{1}
\end{array} \\
& 22 \\
& -a=\sim a+1 \\
& \begin{array}{l}
a-a=0 \\
a+-a=0 \\
a+\sim a+1=0
\end{array} \\
& \begin{array}{l}
a-a=0 \\
a+-a=0 \\
a+\sim a+1=0
\end{array} \\
& a+\sim a+1=0 \quad a+\sim a=-1 \\
& \text { OXCA } 11001010 \\
& >3 \quad|1| 100 \mid=-7 \\
& \begin{array}{l}
1 \sim, 1 \quad 111=7 \\
1001000 \\
\frac{1001010}{10000010}
\end{array} \\
& <311001000 \\
& \wedge \operatorname{DyCA}_{4} \frac{111001010}{00000010}
\end{aligned}
$$

Operations

So far, we have discussed:

- Addition: x + y
- Can get multiplication
- Subtraction: x - y
- Can get division, but more difficult
- Unary minus (negative): -x
- Flip the bits and add 1

Operations (on Integers)

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

- Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: $\sim x$ - flips all bits (unary)
- Bitwise and: x \& y - set bit to 1 if x, y have 1 in same bit
- Bitwise or: $\mathrm{x} \mid \mathrm{y}$ - set bit to 1 if either x or y have 1
- Bitwise xor: $x^{\wedge} y$ - set bit to 1 if x, y bit differs

Operations (on Integers)

- Logical not: ! x
- $!0=1$ and $!x=0, \forall x \neq 0$
- Useful in C, no booleans
- Some languages name this one differently
- Left shift: $x \ll y$ - move bits to the left
- Effectively multiply by powers of 2
- Right shift: x >> y - move bits to the right
- Effectively divide by powers of 2
- Signed (extend sign bit) vs unsigned (extend 0)

Floating Point Numbers

Four cases:

- Normalized: What we saw last time

$$
\text { s eeee ffff }= \pm 1 . f f f f \times 2^{\text {eeee-bias }}
$$

- Denormalized: Exponent bits all 0

$$
\text { s eeee ffff }= \pm 0 . f f f f \times 2^{1-\text { bias }}
$$

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., $\pm \infty$)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Our story so far

- Transistors
- Information modeled by voltage through wires (1 vs 0)
- Gates:

- Multi-bit values: representing integers
- Signed and unsigned
- Bitwise operators on bit vectors
- Floating point

How to do the work of multi-bit?

Multi-bit Mux

Our first multi-bit example: mux

Adder

$$
1+1=10_{2}
$$

Add 2 1-bit numbers: a, b

Adder

Can we use this in parallel to add multi-bit numbers?

Adder

Can we use this in parallel to add multi-bit numbers? What is missing? Consider:

3-input Adder

$$
1+1+1=112
$$

Add 3 1-bit numbers: a, b, c

Ripple-Carry Adder

$$
\begin{array}{r}
x_{3} x_{2} x_{1} x_{0} \\
+y_{3} y_{2} y_{1} y_{0} \\
\hline z_{3} z_{2} z_{1} z_{0}
\end{array}
$$

Ripple-Carry Adder: In General

Ripple-Carry Adder: In General

What does this circuit do?

What does this circuit do?

Increment Circuit

Gate Delay

What happens when I change my input?
Do-

Building a Counter

Building a Counter

Building a Counter - Waiting

1-bit Register Circuit

1-bit Register Circuit

1-bit Register Circuit

1-bit Register Circuit

Building a Counter

