Computer Systems and Organization 1

Warm up!

Can I make an *n*-input AND from 2-input AND gates?

Warm up!

What about XOR gates?

-

More bits, circuits, adders

CS 2130: Computer Systems and Organization 1 February 1, 2023

- TA Office Hours start tonight!
 - Wednesdays, Rice 011
 - Thurs-Sun, Olsson 001
- Please join our Discord server
- Homework 1 due Monday

Quiz Review

$$D_{x}_{b} = 6$$

 $D_{x}_{16} = 16$
 1
 16
 16
 $10'$
 22

$$a - a = 0$$

$$a + -a = 0$$

$$a + Na + 1 = 0$$

$$a + na = -1$$

$$\begin{array}{rcl}
0 \times CA & 100 1016 \\
>> 3 & 1111001 = -7 \\
<< 3 & 1001000 \\
& 0 \times CA & 1001000 \\
& 0 \times CA & 0000000
\end{array}$$

So far, we have discussed:

- Addition: x + y
 - Can get multiplication
- Subtraction: x y
 - $\cdot\,$ Can get division, but more difficult
- Unary minus (negative): **-x**
 - Flip the bits and add 1

Bit vector: fixed-length sequence of bits (ex: bits in an integer)

• Manipulated by bitwise operations

Bitwise operations: operate over the bits in a bit vector

- Bitwise not: ~x flips all bits (unary)
- Bitwise and: $\mathbf{x} \cdot \mathbf{\delta} \mathbf{y}$ set bit to 1 if x, y have 1 in same bit
- Bitwise or: x | y set bit to 1 if either x or y have 1
- Bitwise xor: $x \wedge y$ set bit to 1 if x, y bit differs

Operations (on Integers)

- Logical not: **!x**
 - $!0 = 1 \text{ and } !x = 0, \forall x \neq 0$
 - Useful in C, no booleans
 - \cdot Some languages name this one differently
- Left shift: x << y move bits to the left
 - Effectively multiply by powers of 2
- Right shift: x >> y move bits to the right
 - Effectively divide by powers of 2
 - Signed (extend sign bit) vs unsigned (extend 0)

Four cases:

• Normalized: What we saw last time

s eeee ffff = $\pm 1.ffff \times 2^{eeee-bias}$

• **Denormalized**: Exponent bits all 0

s eeee ffff = $\pm 0.ffff \times 2^{1-bias}$

- Infinity: Exponent bits all 1, fraction bits all 0 (i.e., $\pm \infty$)
- Not a Number (NaN): Exponent bits all 1, fraction bits not all 0

Our story so far

- Transistors
- Information modeled by voltage through wires (1 vs 0)

- Multi-bit values: representing integers
 - Signed and unsigned
 - \cdot Bitwise operators on bit vectors
- Floating point

How to do the *work* of multi-bit?

Our first multi-bit example: mux

Adder

 $|+|=|0_{L}$

Add 2 1-bit numbers: *a*, *b*

Can we use this in parallel to add multi-bit numbers?

Can we use this in parallel to add multi-bit numbers? What is missing? Consider:

11 +(•)

3-input Adder

 $|+|+| = ||_2$

Ripple-Carry Adder

+3 ×2×1×0 + 1/3 /2/1 ×0 23222120

Ripple-Carry Adder: Lowest-order Bit

Ripple-Carry Adder: In General

Ripple-Carry Adder: In General

What does this circuit do?

What does this circuit do?

Increment Circuit

What happens when I change my input?

Building a Counter

Building a Counter

Building a Counter - Waiting

Building a Counter