
CS 4102: Algorithms
Lecture 10: Linear Time Sorting

David Wu
Fall 2019



2

Spring 2019 Warm Up

Show that finding the minimum of an unordered list 
requires Ω(𝑛) comparisons



Lower Bound Proof for Finding the Minimum

Show that finding the minimum of an unordered list 
requires Ω(𝑛) comparisons

3

Suppose (toward contradiction) that there is an algorithm for that does 
fewer than ⁄𝑛 2 = Ω(𝑛) comparisons. 

This means there is at least one element that was not looked at
We have no information on whether this element is the minimum or not!

2 8 19 20 3 9 -4

0 1 2 3 4 5 6 7



Today’s Keywords

Sorting algorithms
Linear-time sorting algorithms
Counting sort
Radix sort
Maximum sum continuous subarray

4

CLRS Readings: Chapter 8



Homework

• HW3 due Tuesday, October 1, 11pm
• Divide and conquer algorithms
• Written (use LaTeX!) – Submit both zip and pdf!

• Regrade office hours:
• Thursday 11am-12pm (Rice 210)
• Thursday 4pm-5pm (Rice 501)

5



Review: Heap Sort

Idea: Build a heap, repeatedly extract max element 
from the heap to build a sorted list (form right-to-left)

6

10

9 6

8 7 5 2

4 1 3

Max heap property:
Each node is larger 

than its children

10 9 6 8 7 5 2 4 1 3

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



Review: Heap Sort

7

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

Max heap property:
Each node is larger 

than its children



Review: Heap Sort

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

8

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Max heap property:
Each node is larger 

than its children



Review: Heap Sort

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9
Heapify(node): if node satisfies max heap property, then we are done. 
Otherwise, swap with the larger child and recurse on that subtree

Max heap property:
Each node is larger 

than its children



Review: Heap Sort

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9
Heapify(node): if node satisfies max heap property, then we are done. 
Otherwise, swap with the larger child and recurse on that subtree

Max heap property:
Each node is larger 

than its children



Review: Heap Sort

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9
Heapify(node): if node satisfies max heap property, then we are done. 
Otherwise, swap with the larger child and recurse on that subtree

Max heap property:
Each node is larger 

than its children



Review: Heap Sort

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9
Heapify(node): if node satisfies max heap property, then we are done. 
Otherwise, swap with the larger child and recurse on that subtree

Max heap property:
Each node is larger 

than its children



Review: Heap Sort

Remove the max element (i.e. the root) from the heap, and the root 
with the last element, restore heap property by calling Heapify(root)

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9
Heapify(node): if node satisfies max heap property, then we are done. 
Otherwise, swap with the larger child and recurse on that subtree

Max heap property:
Each node is larger 

than its children
Running time: 
𝑂 log 𝑛



Review: Heap Sort

Idea: Build a heap, repeatedly extract max element 
from the heap to build sorted list (from right to left)

Run Time?
𝑂(𝑛 log 𝑛)

(constants worse than quicksort)

Running time:
• Constructing heap by calling Heapify on each node in tree 

(bottom up): 𝑂 𝑛 log 𝑛
• Extracting maximum element to sort list: 𝑂(𝑛 log 𝑛)



Review: Heap Sort

In Place?
Yes

Idea: Build a heap, repeatedly extract max element 
from the heap to build sorted list (from right to left)

When removing an element 
from the heap, move it to the 

(now unoccupied) end of the list

Run Time?
𝑂(𝑛 log 𝑛)

(constants worse than quicksort)

Constructing heap is also in-place
(just requires calling Heapify)



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

16

In-Place Heap Sort

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10

Max heap property:
Each node is larger 

than its children



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

17

In-Place Heap Sort

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Max heap property:
Each node is larger 

than its children



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

18

In-Place Heap Sort

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Max heap property:
Each node is larger 

than its children



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

19

In-Place Heap Sort

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Max heap property:
Each node is larger 

than its children



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

20

In-Place Heap Sort

1

8 6

4 7 5 2

3

1 8 6 4 7 5 2 3 9 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8

Max heap property:
Each node is larger 

than its children



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

21

In-Place Heap Sort

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8

Max heap property:
Each node is larger 

than its children



Idea: When removing an element from the heap, move 
it to the (now unoccupied) end of the list

22

In-Place Heap Sort

7

4 6

3 1 5 2

7 4 6 3 1 5 2 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

Max heap property:
Each node is larger 

than its children



Heap Sort

In Place?
Yes

Idea: Build a heap, repeatedly extract max element 
from the heap to build sorted list (from right to left)

Run Time?
𝑂(𝑛 log 𝑛)

(constants worse than quicksort)

Adaptive? Stable?
No No

Parallelizable?
No



Sorting Algorithms

Sorting algorithms we have discussed:
• Mergesort
• Quicksort

Other sorting algorithms (will discuss):
• Bubble sort
• Insertion sort
• Heapsort

24

𝑂(𝑛 log 𝑛)
𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛,)
𝑂(𝑛,)

Can we do better than 𝑂(𝑛 log 𝑛)?



Sorting in Linear Time

Cannot be a comparison sort

Implication: Need to make additional assumption about list contents
• Small number of unique values
• Small range of values

25



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

2 0 2 1 0 3
1 2 3 4 5 6

𝐶 =

Value 1 appears 
2 times

Value 4 appears 
1 time



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

2 0 2 1 0 3
1 2 3 4 5 6

𝐶 =

• Compute “running sum” of the number of 
values less than each value

2
1 2 3 4 5 6

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

2 0 2 1 0 3
1 2 3 4 5 6

𝐶 =

• Compute “running sum” of the number of 
values less than each value

2 2
1 2 3 4 5 6

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

2 0 2 1 0 3
1 2 3 4 5 6

𝐶 =

• Compute “running sum” of the number of 
values less than each value

2 2 4
1 2 3 4 5 6

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

2 0 2 1 0 3
1 2 3 4 5 6

𝐶 =

• Compute “running sum” of the number of 
values less than each value

2 2 4 5 5 8
1 2 3 4 5 6

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

• Compute “running sum” of the number of 
values less than each value

2 2 4 5 5 8
1 2 3 4 5 6

Indices 1-2 
has value 1

Index 5 has 
value 4

Indices 6-8 
has value 6

Observation: Value at index 𝑖 is index of the 
last value of 𝑖 (if there is one)

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 4 5 5 8
1 2 3 4 5 6

1 2 3 4 5 6 7 8
𝐵 =

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 4 5 5 8
1 2 3 4 5 6

1 2 3 4 5 6 7 8
𝐵 =

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 4 5 5 8
1 2 3 4 5 6

3
1 2 3 4 5 6 7 8

𝐵 =

Last index of value 3 is 4

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 3 5 5 8
1 2 3 4 5 6

3
1 2 3 4 5 6 7 8

𝐵 =

Last index of value 3 is 4

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 3 5 5 8
1 2 3 4 5 6

3 6
1 2 3 4 5 6 7 8

𝐵 =

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 3 5 5 7
1 2 3 4 5 6

3 6
1 2 3 4 5 6 7 8

𝐵 =

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

2 2 3 5 5 7
1 2 3 4 5 6

3 6 6
1 2 3 4 5 6 7 8

𝐵 =

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C

0 2 2 4 5 5
1 2 3 4 5 6

1 1 3 3 4 6 6 6
1 2 3 4 5 6 7 8

𝐵 =

𝐶 =



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

• Compute “running sum” of the number of 
values less than each value

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C
Θ 𝑛 + 𝑘

Θ 𝑘
Θ 𝑛



Counting Sort

Assumption: Small number of unique values

Idea: Count how many values are less than each element

3 6 6 1 3 4 1 6
1 2 3 4 5 6 7 8

𝐿 =

• Range is [1, 𝑘] (here, 𝑘 = 6)
• Initialize an array 𝐶 of size 𝑘
• Count number of times each value occurs

• Compute “running sum” of the number of 
values less than each value

For each element of 𝐿:
Use 𝐶 to find its proper place in 𝐵

Decrement that position of C
Θ 𝑛 + 𝑘

Θ 𝑘
Θ 𝑛

Runtime: Θ 𝑛 + 𝑘
Space: Θ 𝑛 + 𝑘



Counting Sort

Why not always use counting sort?
For 64-bit numbers, requires an array of length 29: > 10=>
• 5 GHz CPU will require > 116 years to initialize the array
• 18 Exabytes of data
• Total amount of data that Google has 

42



Somewhere Between 3 and 12 Exabytes

43

Bluffdale, Utah



Radix Sort

Idea: Stable sort each digit, from least 
significant to most significant

44

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

999018
255
555
245

103
323
823
113

512

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

Assumption: Values are numeric

800 801 401 101 901 121 512 103

0 1 2 3 4 5 6 7

323 823 113 255 555 245 018 999

8 9 10 11 12 13 14 15

Sort each element based 
on their 1’s place



800 801 401 101 901 121 512 103

0 1 2 3 4 5 6 7

323 823 113 255 555 245 018 999

8 9 10 11 12 13 14 15

Radix Sort

Idea: Stable sort each digit, from least 
significant to most significant

45

Sort each element based 
on their 10’s place 999255

555245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

Assumption: Values are numeric

Observe: digits in the 1’s place are correctly 
sorted (because we are using a stable sort)!



800 801 401 101 901 121 512 103

0 1 2 3 4 5 6 7

323 823 113 255 555 245 018 999

8 9 10 11 12 13 14 15

Radix Sort

Idea: Stable sort each digit, from least 
significant to most significant

46

Sort each element based 
on their 10’s place 999255

555245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

Assumption: Values are numeric

800 801 401 101 901 103 512 113

0 1 2 3 4 5 6 7

018 121 323 823 245 255 555 999

8 9 10 11 12 13 14 15



800 801 401 101 901 103 512 113

0 1 2 3 4 5 6 7

018 121 323 823 245 255 555 999

8 9 10 11 12 13 14 15

Radix Sort

Idea: Stable sort each digit, from least 
significant to most significant

47

Sort each element based 
on their 100’s place

901
999

800
801
823

512
555401323245

255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

Assumption: Values are numeric

Observe: digits in the 1’s and 10’s places are correctly 
sorted (because we are using a stable sort)!



800 801 401 101 901 103 512 113

0 1 2 3 4 5 6 7

018 121 323 823 245 255 555 999

8 9 10 11 12 13 14 15

Radix Sort

Idea: Stable sort each digit, from least 
significant to most significant

48

Sort each element based 
on their 100’s place

901
999

800
801
823

512
555401323245

255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

Assumption: Values are numeric

018 101 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15



018 101 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15

Radix Sort

Idea: Stable sort each digit, from least 
significant to most significant

49

Assumption: Values are numeric

Runtime: Θ 𝑑 𝑛 + 𝑏
Space: Θ 𝑛 + 𝑏

𝑑: number of digits
𝑏: base (“radix”)
𝑛: number of values



Maximum Sum Subarray Problem

Maximum sum contiguous subarray (MSCS) problem:
find the largest contiguous subarray that

maximizes the sum of the values

50

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13



Maximum Sum Subarray Problem

Maximum sum contiguous subarray (MSCS) problem:
find the largest contiguous subarray that

maximizes the sum of the values

51

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13



5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

52

Divide in half Recursively 
solve on right

Recursively 
solve on left



5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

53

Divide in halfRecursively 
solve on left

Recursively 
solve on right

19 25



5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

54

Divide in halfRecursively 
solve on left

Recursively 
solve on right

Combine: Find largest sum that spans the cut

Largest sum 
that ends here

+ Largest sum 
that starts here

2-13-6-3-716 -20-42-37135-128

19 25



5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

55

Divide in halfRecursively 
solve on left

Recursively 
solve on right

Combine: Find largest sum that spans the cut

Largest sum 
that ends here

+ Largest sum 
that starts here

2-13-6-3-716 -20-42-37135-128

19 25

19
𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + Θ 𝑛 ∈ Θ 𝑛 log 𝑛



Divide and Conquer Summary

Divide
• Break the list in half

Conquer
• Find the best subarrays on the left and right

Combine
• Find the best subarray that “spans the divide”
• Output best subarray among the three possible subarrays

Typically multiple subproblems
Typically all roughly the same size



Generic Divide and Conquer Template
def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem) # brute force if necessary
return solution

subproblems = divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = combine(subsolutions)
return solution

57



MSCS Divide and Conquer Θ(𝑛 log 𝑛)
def MSCS(list):

if list.length < 2:
return list[0] # list of size 1 the sum is maximal

{listL, listR} = divide(list)
for list in {listL, listR}:

subsolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution

58



Types of “Divide and Conquer”

Divide and Conquer
• Break the problem up into multiple subproblems of similar size and 

recursively solve
• Examples: Karatsuba, closest pair of points, Mergesort, Quicksort

Decrease and Conquer
• Break the problem into a single smaller subproblem and recursively solve
• Examples: Mission Impossible, Quickselect, binary search



Pattern So Far

Typically looking to divide the problem by some fraction (½, ¼ the size)

Not necessarily always the best!
• Sometimes, we can write faster algorithms by finding unbalanced splits


