CS 4102: Algorithms

Lecture 11: Dynamic Programming

David Wu
Fall 2019

How many ways are there to tile a 2Xn
board with dominoes?

How many ways to

i P
tile a 2X7 board With these:

Tiling Dominoes

Two ways to fill the final column:

. g — Tile(n) = Tile(n — 1) + Tile(n — 2)

n-1 Tile(0) = Tile(1) = 1
‘ | i 11123]|]5]|8 13|21
S~ —_— — O 1 2 3 4 5 6 7

n—2 3

Today’s Keywords

Dynamic programming

Maximum sum contiguous subarray
Tiling dominoes

Log cutting

Matrix chaining

CLRS Readings: Chapter 14

* HWS3 due FuesdayOctoberl,-1lpm Wednesday, October 2, 11pm

* Divide and conquer algorithms
e Written (use LaTeX!) — Submit both zip and pdf!

* Regrade office hours:
* Thursday 11am-12pm (Rice 210)
* Thursday 4pm-5pm (Rice 501)

Maximum Sum Subarray Problem

Maximum sum contiguous subarray (MSCS) problem:
find the largest contiguous subarray that

maximizes the sum of the values

Maximum Sum Subarray Problem

Maximum sum contiguous subarray (MSCS) problem:
find the largest contiguous subarray that

maximizes the sum of the values

Divide and Conquer O(n logn)

2 | 8 -20--50 -5 | 22

6 7 3 9 10 11 12 13

Recursively

Recursively
solve on left solve on right

19 25

Divide in half

Divide and Conquer O(n logn)

Largest sum N Largest sum
that ends here that starts here

1

6 1 -7 -3 -6 -13 238 -12 5 13 -37 -42 -20

0 1 2 3 4 5 6 7 3 9 10 11 12 13

Recursively Divide in half Recurswc::'ly
solve on left solve on right
19 25

Combine: Find largest sum that spans the cut

Divide and Conquer O(n logn)

Largest sum N Largest sum
that ends here that starts here

-3 -6 13 -37 -42 -20

-5 | 22

7 3 9 10 11 12 13

Recursively Divide in half Recurswc::'ly
solve on left solve on right
19 25

Combine: Find largest sum that spans the cut

19
T(n) =2T(n/2) +0(n) € O(nlogn) 0

Divide

* Make a subproblem of all but the last element

Unbalanced Divide and Conquer

-15

-20

17

-50

-5 122

11

12 § 13

Unbalanced Divide and Conquer

Divide
* Make a subproblem of all but the last element

Conquer
* Find best subarray on the left (BSL(n — 1))
* Find the best subarray ending at the divide (BED(n — 1))

58|43 |7 |-15] 2 | 8 -20--50 -5) 22

0 1 2 3 4 5 6 7 3 9 10 11 12 § 13

Best subarray ending at

the divide is empty

Unbalanced Divide and Conquer

Divide
* Make a subproblem of all but the last element

Conquer
* Find best subarray on the left (BSL(n — 1))
* Find the best subarray ending at the divide (BED(n — 1))

58|43 |7 |-15] 2 | 8 -20--50 -5) 22

0 1 2 3 4 5 6 7 3 9 10 11 12 § 13

Combine
* Find the best subarray that “spans the divide” and output best among all
candidates

Unbalanced Divide and Conquer

Best subarray that spans divide must include last element: BED (n)
« BED(n) =max(BED(n—1) + arr[n],0)

Best subarray must either include or exclude the last element
* BSL(n) = max(BSL(n — 1), BED(n))

58|43 |7 |-15] 2 | 8 -20--50 -5) 22

0 1 2 3 4 5 6 7 3 9 10 11 12 § 13

Combine
* Find the best subarray that “spans the divide” and output best among all
candidates

Unbalanced Divide and Conquer

Divide
* Make a subproblem of all but the last element
Conquer

* Find best subarray on the left (BSL(n — 1))
* Find the best subarray ending at the divide (BED(n — 1))

Combine

* New best subarray ending at the divide:
* BED(n) = max(BED(n — 1) + arr[n],0)
* New best on the left:

If we compute BED(n — 1) and

BSL(n — 1), then Combine is
+ BSL(n) = max(BSL(n — 1), BED(n)) constant-time!

Unbalanced Divide and Conquer

518|433 |7 |-15] 2 8-20178-50-5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Divide

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

5 (8|43 |7 |-15] 2 8-20178-50
11 12 | 13

Divide

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

5 (8|43 |7 |-15] 2 8-20178
10 11 | 12

0 1 2 3 4 5 6 7 8 9 13

Divide

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

5|18 |4 3|7 |-15] 2 8-2017
9 10 11

Divide

12 13

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

Divide
Find largest sum Recursively
ending at the cut solve on left

5 5

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

5 13
5 13

Divide
Find largest sum Recursively
ending at the cut solve on left
13 13

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

Divide
Find largest sum Recursively
ending at the cut solve on left
9 13

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Unbalanced Divide and Conquer

5 13 9 12 19 4
5 13 13 13 19 19

6 14 0 17 25 0 0 22
19 19 19 19 25 25 25 25

518|437 |-15

0 1 2 3 4 5

Find largest sum
ending at the cut

22

Tn)=Tn—-1)+06(1) € 6(n)

6 7 8 9 10 11 12 13
Divide

Recursively

solve on left

25

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Was Unbalanced Better?

old: T(n) =2T(n/2) +0(n) € O(nlogn)

* We split into 2 problems of size n/2
* Linear time combine (to find arrays that span the cut)

New: T(n) = T(n— 1)+ T(1) + 0(1) € O(n)

* We splitinto 2 problems of sizen —1and 1
* Constant time combine

Another Look at the Recursion

Divide
Find largest sum Recursively
ending at the cut solve on left

5 5

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Another Look at the Recursion

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Divide
Find largest sum Recursively
ending at the cut solve on left
13 13

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Another Look at the Recursion

Divide
Find largest sum Recursively
ending at the cut solve on left
9 13

BED(n) = max(BED(n — 1) + arr|n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

Another Look at the Recursion

5 13 9 12 19 4 6 14 0 17 25 0 0 22
5 13 13 13 19 19 19 19 19 19 25 25 25 25

s | glal3|7 |15 28 -20--50 -5

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Divide

Observation: No need to recurse! Just maintain two numbers and iterate
from 1 to n: best value so far, best value ending at current position

BED(n) = max(BED(n — 1) + arr|[n], 0)
BSL(n) = max(BSL(n — 1), BED(n))

End of Midterm Exam Materials!

“Mr. Osborne, may | be excused? My brain is full.” .

Tiling Dominoes

How many ways are there to tile a 2Xn
board with dominoes?

How many ways to

i P
tile a 2X7 board With these:

30

Tiling Dominoes

Two ways to fill the final column:

. g — Tile(n) = Tile(n — 1) + Tile(n — 2)

n-1 Tile(0) = Tile(1) = 1
‘ | i 11123]|]5]|8 13|21
S~ —_— — O 1 2 3 4 5 6 7

n—2 31

How to compute Tile(n)?

def tile(n) :
1f n < 2:
return 1
return tile(n-1) + tile (n-2)

Problem?

32

Recursion Tree

I Tile(5) |

e
—
[Tile(3) } Tile(2) [Tile(2) } [Tile(1) }
| Tile(2) || Tile(1) }[Tile(1) || Tile(0) }[Tile(1) || Tile(0) |

>\

| Tile(1) | | Tile(0)]

Runtime: Q(2")

33

Recursion Tree

I Tile(5) |

i Tile(3) |
| Tile(3) | Tile(2) [Tile(2) |

i G

Runtime: Q(2")

But lots of redundant calls...

We only computed
n distinct values

34

Computing Tile(n) with Memory

(“Top Down”)

initialize array M of size n
tile (n) :
1f n < 2:
return 1
1f M[n] 1s filled:
return M[n]
M[n] = tile(n-1) + tile(n-2)
return M[n]

o Ui b W N = O

35

Computing Tile(n) with Memory

(“Top Down”)

initialize array M of size n

tile(n) :
1f n < 2:
return 1
1f M[n] 1s filled:

return M[n]
M[n] = tile(n-1)
return M[n]

+ tile (n-2)

Runtime: O(n)

oluU|w | I N|IRFR|kFRI|IXZ

13

Bottom-Up:
Fill in entries from
small instances to

large instances

o Ui b W N = O

Bottom-Up: Can also iterate through M and fill in entries sequentially 3

Dynamic Programming

Requires optimal substructure

 Solution to larger problem contains the solutions to smaller ones
(“overlapping subproblems”)

General idea: Identify recursive structure of the problem and express
solution to larger instances in terms of solutions to smaller instances

- m

n-—1 n—2

37

Generic Divide and Conquer

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem:
subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution

38

Generic Top-Down Dynamic Programming

mem = {}
def myDPalgo(problem):
if mem[problem] not empty:
return mem|problem]
if baseCase(problem):
solution = solve(problem)
mem|[problem] = solution
return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem|[problem] = solution
return solution

Also called

“memoization”

39

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem
 What is the “last thing” done?

2. Select a good order for solving subproblems
 “Top Down:” Solve each problem recursively
 “Bottom Up:” Iteratively solve each problem from smallest to largest

40

Log Cutting

Given: a log of length n, a list (of length n) of prices P

Problem: Find the best way to cut the log Pli] s the price

of a cut of size i

Price: 115189 10|17|17|20|24]30
length: 1 2 3 4 5 6 7 8 9 10

Problem formulation: Find lengths £, ..., £}, that maximizes
Yier P[€:] and such that Y, £ = 1

Brute Force: 0(2") “

A “Greedy” Approach

Greedy algorithms (next unit) build a solution by picking the best option
“right now”

* Possible strategy: choose the most profitable cut first

Price: 1 (18|24 |36 (50|50 Greedy; Lengths: 51

length: 1 2 3 4 5 6 Profit: 51

Better: Lengths: 2,4
Profit: 54

42

A “Greedy” Approach

Greedy algorithms (next unit) build a solution by picking the best option
“right now”

* Possible strategy: select the “most bang for your buck” (best price/length ratio)

Ratio: 1 9 8 9 10 8.3

Price: 1 (1824 |36|50|50 Greedy: Lengths: 5, 1
length: 1 2 3 4 5 6 Profit: 51

Better: Lengths: 2,4
Profit: 54

Greedy solution is suboptimal .

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem
 What is the “last thing” done?

2. Select a good order for solving subproblems
 “Top Down:” Solve each problem recursively
 “Bottom Up:” Iteratively solve each problem from smallest to largest

44

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:

45

Step 1: Identify

Recursive Structure

Pli| = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

Cut(n) = max{

(Cut(n — 1) + P[1]
Cut(n — 2) + P|2]

k Cut(0) + P[n]

Cut(n —¥,,) A

“

46

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:

2. Select a good order for solving subproblems
« “Top Down:” Solve each problem recursively
 “Bottom Up:” Iteratively solve each problem from smallest to largest

47

2. Select a Good Order for Solving Subproblems

Solve smallest subproblem first

Cut(0) =0

Price: 1 (18 (2436|5050

Cut(i):
Length:

co| O

1 2 3 4 5 6 length: 1 2 3 4 5 6

48

2. Select a Good Order for Solving Subproblems

Solve smallest subproblem first

Cut(1) = Cut(0) + P[1]

Price: 1 {18|24|36|50]|50
2 3 4 5 6 length: 1 2 3 4 5 6

Cut(i):
Length:

49

2. Select a Good Order for Solving Subproblems

Solve smallest subproblem first

Cut(1) + P|1]

Cut(2) = max {Cut(O) + P[2)

Cut(i): |0 | 1 |18 Price: 1118|124 |36|50|50
length: 0 1 2 3 4 5 6 length: 1 2 3 4 5 6

50

2. Select a Good Order for Solving Subproblems

Solve smallest subproblem first

Cut(2) + P[1
Cut(3) = max< Cut(1) + P|2]
Cut(0) + P|3]
Cut(i): |0 | 1 |18|24 Price: 1 (18|24|36|50]|50
length: 0 1 2 3 4 5 6 length: 1 2 3 4 5 6

3

P

51

2. Select a Good Order for Solving Subproblems

Solve smallest subproblem first

(Cut(n — 1) + P[1]
Cut(n) = max Cut(n — :2) +Pl2]
| Cut(0) + P[n]

Cut(i): | 0| 1 [18|24|36|50|54 Price: | 1 |18|24|36(50]50

length: 0 1 2 3 4 5 6 length: 1 2 3 4 5 6
6

S

52

Log Cutting Pseudocode

initialize memory C RunThne:O(nz)
cut (n) :
cio] =0
for 1 = 1 to n:
best = 0
for 7 = 1 to 1i:
best = max(best, C[1-7] + P[J])
Cl[1] = best
return C|[n|

53

Finding the Cuts

This procedure told us the profit, but not the cuts themselves
Idea: remember the choice that you made, then backtrack

54

Remembering the Choices

initialize memory C, choilces
cut (n) :
clo0] =0
for 1 = 1 to n:
best = 0
for J =1 to 1:
1f best < C[1-37] + P[7]:
best = C[i-7] + P[7J]
cholces[1] =] <« sjze of the last cut
Cl1] = best
return C[n|, choilces

55

Reconstruct the Cuts

Backtrack through the choices: Optimal cut for log of
length 10 is to first cut

segment of length 3

56

Backtracking Pseudocode

1 = n
while 1 > 0O:
print choilces|[1]

1 = 1 — choices|[1i]

57

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem
 What is the “last thing” done?

2. Select a good order for solving subproblems
 “Top Down:” Solve each problem recursively
 “Bottom Up:” Iteratively solve each problem from smallest to largest

58

Matrix Chaining

Problem: Given a sequence of matrices My, ..., M,
what is the most efficient way to multiply them?

Ny Xn, Ny XMNg N3 XNy Ny XNk

Remember: matrix multiplication is associative

59

Order Matters!

ng =7 n, = 10
n,=20 n,=8 -

Total operations:
2520

(M1 XM;)XM;

* requires nin,n3 + nynzny operations
60

Order Matters!

ng =7 n, = 10

n, =20 n, =28

Total operations: RV Saurt]

2160 2520 from before N, XNy

M X (M, XM5)

* requires nyn,ny + Nyn3zny operations
61

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem
 What is the “last thing” done?

2. Select a good order for solving subproblems
 “Top Down:” Solve each problem recursively
 “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

62

Dynamic Programming

Requires optimal substructure
 Solution to larger problem contains the solutions to smaller ones

General Blueprint:

63

