
CS 4102: Algorithms
Lecture 11: Dynamic Programming

David Wu
Fall 2019

2

Spring 2019 Warm Up

How many ways are there to tile a 2×𝑛
board with dominoes?

How many ways to
tile a 2×7 board With these?

3

Tiling Dominoes

3

𝑛 − 1
Tile 𝑛 = Tile 𝑛 − 1 + Tile(𝑛 − 2)

Two ways to fill the final column:

𝑛 − 2

Tile 0 = Tile 1 = 1

1 1 2 3 5 8 13 21

0 1 2 3 4 5 6 7

Today’s Keywords

Dynamic programming
Maximum sum contiguous subarray
Tiling dominoes
Log cutting
Matrix chaining

4

CLRS Readings: Chapter 14

Homework

• HW3 due Tuesday, October 1, 11pm Wednesday, October 2, 11pm
• Divide and conquer algorithms
• Written (use LaTeX!) – Submit both zip and pdf!

• Regrade office hours:
• Thursday 11am-12pm (Rice 210)
• Thursday 4pm-5pm (Rice 501)

5

Maximum Sum Subarray Problem

Maximum sum contiguous subarray (MSCS) problem:
find the largest contiguous subarray that

maximizes the sum of the values

6

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Maximum Sum Subarray Problem

Maximum sum contiguous subarray (MSCS) problem:
find the largest contiguous subarray that

maximizes the sum of the values

7

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

8

Divide in halfRecursively
solve on left

Recursively
solve on right

19 25

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

9

Divide in halfRecursively
solve on left

Recursively
solve on right

Combine: Find largest sum that spans the cut

Largest sum
that ends here

+ Largest sum
that starts here

2-13-6-3-716 -20-42-37135-128

19 25

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Divide and Conquer Θ(𝑛 log 𝑛)

10

Divide in halfRecursively
solve on left

Recursively
solve on right

Combine: Find largest sum that spans the cut

Largest sum
that ends here

+ Largest sum
that starts here

2-13-6-3-716 -20-42-37135-128

19 25

19
𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + Θ 𝑛 ∈ Θ 𝑛 log 𝑛

Unbalanced Divide and Conquer

Divide
• Make a subproblem of all but the last element

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Unbalanced Divide and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Best subarray ending at
the divide is empty

Unbalanced Divide and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Combine
• Find the best subarray that “spans the divide” and output best among all

candidates

Unbalanced Divide and Conquer

Best subarray that spans divide must include last element: 𝐵𝐸𝐷 𝑛
• 𝐵𝐸𝐷 𝑛 = max 𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0

Best subarray must either include or exclude the last element
• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

5

0

-4

2

8

1

3

3

7

4

-15

5

2

6

8

7

-20

8

17

9

8

10

-50

11

-5

12

22

13

Combine
• Find the best subarray that “spans the divide” and output best among all

candidates

Unbalanced Divide and Conquer

Divide
• Make a subproblem of all but the last element

Conquer
• Find best subarray on the left (𝐵𝑆𝐿(𝑛 − 1))
• Find the best subarray ending at the divide (𝐵𝐸𝐷(𝑛 − 1))

Combine
• New best subarray ending at the divide:

• 𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
• New best on the left:

• 𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

If we compute 𝐵𝐸𝐷(𝑛 − 1) and
𝐵𝑆𝐿(𝑛 − 1), then Combine is

constant-time!

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 -50 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

5
5

Recursively
solve on left

5

Find largest sum
ending at the cut

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

5

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

13

13

Recursively
solve on left

13

Find largest sum
ending at the cut

13

Unbalanced Divide and Conquer

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

5

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

13

13

9

13

Recursively
solve on left

13

Find largest sum
ending at the cut

9

-4

Unbalanced Divide and Conquer

8 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

5 -5-50

5

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

13

13

9

13

Divide

12 19 4 6 14 0 17 25 0 0 22

13 19 19 19 19 19 19 25 25 25 25

𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ 1 ∈ Θ 𝑛

Recursively
solve on left

25

Find largest sum
ending at the cut

22

Was Unbalanced Better?

Old:
• We split into 2 problems of size 𝑛/2
• Linear time combine (to find arrays that span the cut)

New:
• We split into 2 problems of size 𝑛 − 1 and 1
• Constant time combine

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + Θ(𝑛) ∈ Θ 𝑛 log 𝑛

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑇 1 + Θ 1 ∈ Θ(𝑛)

Θ 1

Another Look at the Recursion

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

5
5

Recursively
solve on left

5

Find largest sum
ending at the cut

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

Another Look at the Recursion

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

5

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

13

13

Recursively
solve on left

13

Find largest sum
ending at the cut

13

Another Look at the Recursion

8 -4 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide

5 -5-50

5

5

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

13

13

9

13

Recursively
solve on left

13

Find largest sum
ending at the cut

9

-4

Another Look at the Recursion

8 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

5 -5-50

5

5 13

13

9

13

Divide

12 19 4 6 14 0 17 25 0 0 22

13 19 19 19 19 19 19 25 25 25 25

Observation: No need to recurse! Just maintain two numbers and iterate
from 1 to 𝑛: best value so far, best value ending at current position

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

End of Midterm Exam Materials!

29

30

Spring 2019 Tiling Dominoes

How many ways are there to tile a 2×𝑛
board with dominoes?

How many ways to
tile a 2×7 board With these?

31

Tiling Dominoes

31

𝑛 − 1
Tile 𝑛 = Tile 𝑛 − 1 + Tile(𝑛 − 2)

Two ways to fill the final column:

𝑛 − 2

Tile 0 = Tile 1 = 1

1 1 2 3 5 8 13 21

0 1 2 3 4 5 6 7

How to compute Tile(𝑛)?

32

def tile(n):
if n < 2:

return 1
return tile(n-1) + tile(n-2)

Problem?

Recursion Tree

33

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Runtime: Ω(2C)

Recursion Tree

34

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

But lots of redundant calls…
Runtime: Ω(2C) We only computed

𝑛 distinct values

Computing Tile(𝑛) with Memory
(“Top Down”)

35

initialize array M of size n
tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = tile(n-1) + tile(n-2)
return M[n]

M

0

1

2

3

4

5

6

Computing Tile(𝑛) with Memory
(“Top Down”)

36

initialize array M of size n
tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = tile(n-1) + tile(n-2)
return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Bottom-Up: Can also iterate through 𝑀 and fill in entries sequentially
Runtime: Θ(𝑛)

Bottom-Up:
Fill in entries from
small instances to

large instances

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

(“overlapping subproblems”)

General idea: Identify recursive structure of the problem and express
solution to larger instances in terms of solutions to smaller instances

37
𝑛 − 1 𝑛 − 2

Generic Divide and Conquer

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem: # After dividing

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution
38

Generic Top-Down Dynamic Programming
mem = {}
def myDPalgo(problem):

if mem[problem] not empty:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution

39

Also called
“memoization”

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

40

Log Cutting

41

Given: a log of length 𝑛, a list (of length 𝑛) of prices 𝑃
Problem: Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Problem formulation: Find lengths ℓG, … , ℓI that maximizes
∑K∈ I 𝑃[ℓK] and such that ∑K∈ I ℓK = 𝑛

Brute Force: 𝑂(2C)

𝑃[𝑖] is the price
of a cut of size 𝑖

A “Greedy” Approach

Greedy algorithms (next unit) build a solution by picking the best option
“right now”
• Possible strategy: choose the most profitable cut first

42

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

A “Greedy” Approach

Greedy algorithms (next unit) build a solution by picking the best option
“right now”
• Possible strategy: select the “most bang for your buck” (best price/length ratio)

43

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6

1 9 8 9 10 8.3Ratio:

Greedy solution is suboptimal

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

44

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

45

Step 1: Identify Recursive Structure

46

Cut(𝑛) = value of best way to cut a log of length 𝑛

ℓC𝐶𝑢𝑡(𝑛 − ℓC)

Cut 𝑛 = max

Cut 𝑛 − 1 + 𝑃 1
Cut 𝑛 − 2 + 𝑃 2

⋮
Cut 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

47

2. Select a Good Order for Solving Subproblems

48

654321Length:

Cut(𝑖): 0

0

Solve smallest subproblem first

Cut 0 = 0

1 18 24 36 50Price: 50

54321Length: 6
0

2. Select a Good Order for Solving Subproblems

49

Solve smallest subproblem first

Cut 1 = Cut 0 + 𝑃[1]

1Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6
1

2. Select a Good Order for Solving Subproblems

50

Solve smallest subproblem first

1 18Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6

Cut 2 = max XCut 1 + 𝑃 1
Cut 0 + 𝑃 2

2

2. Select a Good Order for Solving Subproblems

51

Solve smallest subproblem first

1 18 24Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6

Cut 3 = maxZ
Cut 2 + 𝑃 1
Cut 1 + 𝑃 2
Cut 0 + 𝑃 3

3

2. Select a Good Order for Solving Subproblems

52

Solve smallest subproblem first

1 18 24 36 50 54Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6
6

Cut 𝑛 = max

Cut 𝑛 − 1 + 𝑃 1
Cut 𝑛 − 2 + 𝑃 2

⋮
Cut 0 + 𝑃[𝑛]

Log Cutting Pseudocode

53

initialize memory C
cut(n):

C[0] = 0
for i = 1 to n:

best = 0
for j = 1 to i:

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]

Run Time: 𝑂(𝑛[)

Finding the Cuts

This procedure told us the profit, but not the cuts themselves
Idea: remember the choice that you made, then backtrack

54

Remembering the Choices

55

initialize memory C, choices
cut(n):

C[0] = 0
for i = 1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
choices[i] = j

C[i] = best
return C[n], choices

size of the last cut

Reconstruct the Cuts

56

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

Backtrack through the choices:

7621

Optimal cut for log of
length 10 is to first cut

segment of length 3

Backtracking Pseudocode

i = n

while i > 0:

print choices[i]
i = i – choices[i]

57

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

58

Matrix Chaining

59

𝑀G × 𝑀\× ×

Problem: Given a sequence of matrices 𝑀G,… ,𝑀C,
what is the most efficient way to multiply them?

𝑀[𝑀]

𝑛G×𝑛[𝑛[×𝑛\ 𝑛\×𝑛] 𝑛]×𝑛^

Remember: matrix multiplication is associative

Order Matters!

𝑀G×𝑀[×𝑀\
• requires 𝑛G𝑛[𝑛\ + 𝑛G𝑛\𝑛] operations

60

𝑀G × 𝑀\×𝑀[

𝑛G×𝑛[𝑛[×𝑛\ 𝑛\×𝑛]

𝑛G×𝑛\

𝑛G = 7 𝑛[= 10
𝑛\ = 20 𝑛] = 8

Total operations:
2520

Order Matters!

𝑀G× 𝑀[×𝑀\
• requires 𝑛G𝑛[𝑛] + 𝑛[𝑛\𝑛] operations

61

𝑀G × 𝑀\×𝑀[

𝑛G×𝑛[𝑛[×𝑛\ 𝑛\×𝑛]

𝑛[×𝑛]

𝑛G = 7 𝑛[= 10
𝑛\ = 20 𝑛] = 8

Total operations:
2160

Much better than
2520 from before

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

62

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

63

