CS 4102: Algorithms

Lecture 12: Dynamic Programming

David Wu Fall 2019

How many <u>arithmetic</u> operations are required to multiply a $n \times m$ matrix with a $m \times p$ matrix?

Warm-Up

m multiplications and additions per element of output matrix $n \cdot p$ elements to compute (in output matrix) **Total cost:** $m \cdot n \cdot p$

Today's Keywords

Dynamic Programming Matrix Chaining Seam Carving Longest Common Subsequence

CLRS Readings: Chapter 14

Homework

- HW4 due Saturday, October 12, 11pm
 - Divide and conquer, sorting, and dynamic programming
 - Written (use LaTeX!) Submit <u>both</u> **zip** and **pdf** (two <u>separate</u> attachments)!
- Midterm Exam: Tuesday October 15 (in class)
- Regrade office hours
 - Thursdays 11am-12pm @ Rice 210
 - Thursdays 4pm-5pm @ Rice 501

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest

Log Cutting (Review)

Given: a log of length *n*, a list (of length *n*) of prices *P* **Problem:** Find the best way to cut the log

P[i] is the price of a cut of size i

Price:	1	5	8	9	10	17	17	20	24	30
Length:	1	2	3	4	5	6	7	8	9	10

Problem formulation: Find lengths ℓ_1, \dots, ℓ_k that maximizes $\sum_{i \in [k]} P[\ell_i]$ and such that $\sum_{i \in [k]} \ell_i = n$

Brute Force: $O(2^n)$

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest

Step 1: Identify Recursive Structure

P[i] = value of a cut of length i Cut(n) = value of best way to cut a log of length n $\operatorname{Cut}(n) = \max \begin{cases} \operatorname{Cut}(n-1) + P[1] \\ \operatorname{Cut}(n-2) + P[2] \\ \vdots \\ \operatorname{Cut}(0) + P[n] \end{cases}$ $Cut(n-\ell_n)$ best way to cut a log of length $n-\ell_n$ Last Cut

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest

Solve smallest subproblem first

 $\operatorname{Cut}(0)=0$

Solve smallest subproblem first

 $\operatorname{Cut}(1) = \operatorname{Cut}(0) + P[1]$

Solve smallest subproblem first

Cut(2) = max $\begin{cases} Cut(1) + P[1] \\ Cut(0) + P[2] \end{cases}$

Solve smallest subproblem first

Cut(3) = max $\begin{cases} Cut(2) + P[1] \\ Cut(1) + P[2] \\ Cut(0) + P[3] \end{cases}$

Price:	1	18	24	36	50	50
Length:	1	2	3	4	5	6

Log Cutting Pseudocode

```
initialize memory C
                                 Run Time: O(n^2)
cut(n):
   C[0] = 0
    for i = 1 to n:
       best = 0
        for j = 1 to i:
            best = max(best, C[i-j] + P[j])
       C[i] = best
    return C[n]
```

Finding the Cuts

This procedure told us the profit, but not the cuts themselves Idea: remember the choice that you made, then backtrack

Remembering the Choices

```
initialize memory C, choices
cut(n):
   C[0] = 0
   for i = 1 to n:
       best = 0
       for j = 1 to i:
           if best < C[i-j] + P[j]:
              best = C[i-j] + P[j]
              C[i] = best
   return C[n], choices
```

Reconstruct the Cuts

Note: this choices array is an example (does not correspond to previous cost array!)

Backtracking Pseudocode

```
while i > 0:
```

```
print choices[i]
```

$$i = i - choices[i]$$

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest
- 3. Save solution to each subproblem in memory

Matrix Chaining

Problem: Given a sequence of matrices M_1, \ldots, M_n , what is the most efficient way to multiply them?

Remember: matrix multiplication is associative

Order Matters!

$$n_{1} \times n_{2} \qquad n_{2} \times n_{3} \qquad n_{3} \times n_{4}$$

$$n_{1} = 7 \qquad n_{2} = 10$$

$$n_{3} = 20 \qquad n_{4} = 8$$
Total operations:
$$n_{1} \times n_{3}$$

$$n_{1} \times n_{3}$$

 $(M_1 \times M_2) \times M_3$

• requires $n_1n_2n_3 + n_1n_3n_4$ operations

Order Matters!

$$n_{1} \times n_{2} \qquad n_{2} \times n_{3} \qquad n_{3} \times n_{4}$$

$$m_{1} = 7 \qquad n_{2} = 10$$

$$n_{3} = 20 \qquad n_{4} = 8$$
Total operations:
$$n_{2} \times M_{2} \times M_{3}$$

$$m_{2} \times M_{3}$$

$$m_{3} = n_{4} = 8$$

$$m_{2} \times n_{4} = n_{2} \times n_{4}$$

 $M_1 \times (M_2 \times M_3)$

• requires $n_1n_2n_4 + n_2n_3n_4$ operations

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest
- 3. Save solution to each subproblem in memory

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest
- 3. Save solution to each subproblem in memory

Best(1, n) = cheapest way to multiply together M_1 through M_n

More generally:

Best(i, j) = cheapest way to multiply together M_i through M_j Possible ways to compute $M_i \times M_{i+1} \times \cdots \times M_j$

 $M_{i} \times M_{i+1,j} = M_{i} \times (M_{i+1} \times \dots \times M_{j})$ $M_{i,i+1} \times M_{i+2,j} = (M_{i} \times M_{i+1}) \times (M_{i+2} \times \dots \times M_{j})$ $M_{i,i+2} \times M_{i+3,j} = (M_{i} \times M_{i+1} \times M_{i+2}) \times (M_{i+3} \times \dots \times M_{j})$ $\vdots \qquad \vdots \qquad \vdots$ $M_{i,j-1} \times M_{j} = (M_{i} \times \dots \times M_{j-1}) \times M_{j}$

Position of the "split" changes

More generally:

Best(i, j) = cheapest way to multiply together M_i through M_j

Possible ways to compute $M_i \times M_{i+1} \times \cdots \times M_i$

 $i \times i^{m}i+1 \wedge \cdots \wedge \cdots j$ Best(*i*, *i*) + Best(*i* + 1, *j*) + n_in_{*i*+1}n_{*j*+1} Best(*i*, *i* + 1) + Best(*i* + 2, *j*) + n_in_{*i*+2}n_{*j*+1} Best(*i*, *i*) = min Best(*i*, *i*) = 0 Best(*i*, *j*) + Best(*i* + 3, *j*) + n_in_{*i*+3}n_{*j*+1} Best(*i*, *j*) + Best(*j*) + n_in_{*j*+1} Best(*i*, *j*) + n_in_{*j*+1} Best(*i*, *j*) = 0 Best(*i*, *j*) + Best(*j*) + n_in_{*j*+1} Best(*i*, *j*) = 0 Best(*i*, *j*) + Best(*j*) + n_in_{*j*+1} Best(*i*, *j*) = 0 Best(*i*, *j*) + Best(*j*) + n_in_{*j*+1} Best(*j*) = 0 Best(*i*, *j*) = 0 Best(*i*, *j*) + Best(*j*) + n_in_{*j*+1} Best(*j*) = 0 Best(*i*, *j*) = 0 Best(*j*) =}} $Best(i,j) = \min_{k=0,...,j-i-1} Best(i,i+k) + Best(i+k+1,j) + n_i n_{i+k+1} n_{j+1}$ 33

 $Best(i,i) = 0 \quad Best(i,j) = \min_{k=0,\dots,i-i-1} Best(i,i+k) + Best(i+k+1,j) + n_i n_{i+k+1} n_{j+1}$ 1 2 3 4 1 2 3 4 $n_1 = 5$ $n_2 = 10$ $n_3 = 20$ $n_4 = 8$ $n_5 = 6$ M_1 \times M_2 \times M_3 \times M_4 34

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest
- 3. Save solution to each subproblem in memory

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$

$$1 \quad 2 \quad 3 \quad 4$$

$$n_1 = 5 \quad n_2 = 10 \quad M_1 \quad \times M_2 \quad \times M_3 \quad \times M_4$$
 $n_3 = 20 \quad n_4 = 8 \quad n_5 = 6$

$$M_1 \quad \times M_2 \quad \times M_3 \quad \times M_4$$

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$
 $k = 0$
 1
 2
 3
 4
 $n_1 = 5$
 $n_2 = 10$
 $n_3 = 20$
 $n_4 = 8$
 $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
₃₇

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$
 $k = 1$
 1
 2
 3
 4
 $n_1 = 5$
 $n_2 = 10$
 $n_3 = 20$
 $n_4 = 8$
 $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
₃₈

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$
 $k = 2$
 1
 2
 3
 4
 $n_1 = 5$
 $n_2 = 10$
 $n_3 = 20$
 $n_4 = 8$
 $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
₃₉

Best
$$(i,i) = 0$$
 Best $(i,j) = \min_{k=0,...,j-i-1}$ Best $(i,i+k) + Best(i+k+1,j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$

Observation: Value
depends on values to its
left and below

 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$

 $M_1 \times M_2 \times M_3 \times M_4$

 $M_1 = 5$ $M_1 = 5$ $M_2 = 10$
 $M_2 = 10$
 $M_3 = 10$

$$Best(i, i) = 0 \quad Best(i, j) = \min_{k=0,...,j-i-1} Best(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$$

$$1 \quad 2 \quad 3 \quad 4$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3$$

$$1 \quad 2 \quad 3 \quad 4$$

$$0 \quad 0 \quad 4$$

$$n_1 = 5 \quad n_2 = 10 \quad M_1 \quad \times M_2 \quad \times M_3 \quad \times M_4$$

$$n_3 = 20 \quad n_4 = 8 \quad n_5 = 6$$

$$M_1 \quad \times M_2 \quad \times M_3 \quad \times M_4$$

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 2$
 $k = 0$
 $n_1 n_2 n_3 = 1000$
Cost = 1000
 $1 = 5$ $n_2 = 10$
 $3 = 20$ $n_4 = 8$ $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$

n

n

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 2, j = 3$
 $k = 0$
 $n_2 n_3 n_4 = 1600$
Cost = 1600
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
 45

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 2, j = 3$
 $k = 0$
 $n_3 n_4 n_5 = 960$
Cost = 960
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
 a_7

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i + k) + \text{Best}(i + k + 1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 3$
 $k = 0$
 $n_1 n_2 n_4 = 400$
Cost = 2000
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$ $M_1 \times M_2 \times M_3 \times M_4$

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1} \text{Best}(i, i+k) + \text{Best}(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 3$
 $k = 0$
 $n_1 n_2 n_4 = 400$
Cost = 2000
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$ $M_1 \times M_2 \times M_3 \times M_4$ 50

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) + \text{Best}(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 2, j = 4$
 $k = 0$
 $n_2 n_3 n_5 = 1200$
Cost = 2160
 $1 = 2$
 $1 = 2$
 $0 = 1000$
 $0 = 1600$
 $0 = 960$
 3
 $0 = 960$
 3
 $0 = 4$
 $1 = 5$
 $n_2 = 10$
 $3 = 20$
 $n_4 = 8$
 $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$

n

n

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i+k) +$ Best $(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 2, j = 4$
 $k = 0$
 $n_2 n_3 n_5 = 1200$
Cost = 2160
 0
 $1 000$
 1800
 1
 1
 $n_2 n_4 n_5 = 480$
Cost = 2080
 0
 0
 960
 3
 i
 0
 0
 4
 $N_1 = 5$
 $n_2 = 10$
 $n_3 = 20$
 $n_4 = 8$
 $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
 s_3

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,...,j-i-1}$ Best $(i, i + k) + \text{Best}(i + k + 1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$
 $k = 0$
 $n_1 n_2 n_5 = 300$
Cost = 2380
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0,\dots,j-i-1}$ Best $(i, i+k) + Best(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$
 $k = 0$
 $n_1 n_2 n_5 = 300$
Cost = 2380
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
 56

Best
$$(i, i) = 0$$
 Best $(i, j) = \min_{k=0, \dots, j-i-1}$ Best $(i, i+k) +$ Best $(i+k+1, j) + n_i n_{i+k+1} n_{j+1}$
 $i = 1, j = 4$
 $k = 0$
 $n_1 n_2 n_5 = 300$
Cost = 2380
 $n_1 = 5$ $n_2 = 10$
 $n_3 = 20$ $n_4 = 8$ $n_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$
 $m_1 = 5$ $m_2 = 10$
 $m_1 = 8$ $m_5 = 6$
 $M_1 \times M_2 \times M_3 \times M_4$

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest
- 3. Save solution to each subproblem in memory

Run Time

- 1. Initialize Best[i, i] to be all 0s
- 2. Starting at the main diagonal, working to the upper-right, fill in each cell using: $\Theta(n^2)$ cells in the array
 - Best(i, i) = 0
 - $\operatorname{Best}(i,j) = \min_{k=0,\dots,j-i-1} \operatorname{Best}(i,i+k) + \operatorname{Best}(i+k+1,j) + n_i n_{i+k+1} n_{j+1}$ $\Theta(n)$ options per cell

$\Theta(n^3)$ overall run time

Backtrack to Find the Best Order