
CS 4102: Algorithms
Lecture 12: Dynamic Programming

David Wu
Fall 2019



Warm-Up

How many arithmetic operations are required to 
multiply a 𝑛×𝑚 matrix with a 𝑚×𝑝 matrix? 



Warm-Up

𝑚 multiplications and additions per element of output matrix
𝑛 ⋅ 𝑝 elements to compute (in output matrix)

Total cost: 𝑚 ⋅ 𝑛 ⋅ 𝑝

3

𝑛

𝑚

𝑚

𝑝

𝑛

𝑝

× =



Today’s Keywords

Dynamic Programming
Matrix Chaining
Seam Carving
Longest Common Subsequence

4

CLRS Readings: Chapter 14



Homework

• HW4 due Saturday, October 12, 11pm
• Divide and conquer, sorting, and dynamic programming
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

• Midterm Exam: Tuesday October 15 (in class)

• Regrade office hours
• Thursdays 11am-12pm @ Rice 210
• Thursdays 4pm-5pm @ Rice 501

5



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

6



Log Cutting (Review)

7

Given: a log of length 𝑛, a list (of length 𝑛) of prices 𝑃
Problem: Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Problem formulation: Find lengths ℓ), … , ℓ, that maximizes 
∑.∈ , 𝑃[ℓ.] and such that ∑.∈ , ℓ. = 𝑛

Brute Force: 𝑂(25)

𝑃[𝑖] is the price 
of a cut of size 𝑖



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

8



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

9



Step 1: Identify Recursive Structure

10

Cut(𝑛) = value of best way to cut a log of length 𝑛

ℓ5𝐶𝑢𝑡(𝑛 − ℓ5)

Cut 𝑛 = max

Cut 𝑛 − 1 + 𝑃 1
Cut 𝑛 − 2 + 𝑃 2

⋮
Cut 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

11



2. Select a Good Order for Solving Subproblems

12

654321Length:

Cut(𝑖): 0

0

Solve smallest subproblem first

Cut 0 = 0

1 18 24 36 50Price: 50

54321Length: 6
0



2. Select a Good Order for Solving Subproblems

13

Solve smallest subproblem first

Cut 1 = Cut 0 + 𝑃[1]

1Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6
1



2. Select a Good Order for Solving Subproblems

14

Solve smallest subproblem first

1 18Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6

Cut 2 = max GCut 1 + 𝑃 1
Cut 0 + 𝑃 2

2



2. Select a Good Order for Solving Subproblems

15

Solve smallest subproblem first

1 18 24Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6

Cut 3 = maxI
Cut 2 + 𝑃 1
Cut 1 + 𝑃 2
Cut 0 + 𝑃 3

3



2. Select a Good Order for Solving Subproblems

16

Solve smallest subproblem first

1 18 24 36 50 54Cut(𝑖): 0

654321Length: 0

1 18 24 36 50Price: 50

54321Length: 6
6

Cut 𝑛 = max

Cut 𝑛 − 1 + 𝑃 1
Cut 𝑛 − 2 + 𝑃 2

⋮
Cut 0 + 𝑃[𝑛]



Log Cutting Pseudocode

17

initialize memory C
cut(n):

C[0] = 0
for i = 1 to n:

best = 0
for j = 1 to i:

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]

Run Time: 𝑂(𝑛J)



Finding the Cuts

This procedure told us the profit, but not the cuts themselves
Idea: remember the choice that you made, then backtrack

18



Remembering the Choices

19

initialize memory C, choices
cut(n):

C[0] = 0
for i = 1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
choices[i] = j

C[i] = best
return C[n], choices

size of the last cut



Reconstruct the Cuts

20

1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

Backtrack through the choices:

7621

Optimal cut for log of 
length 10 is to first cut 

segment of length 3

Note: this choices array is an example (does not correspond to previous cost array!)



Backtracking Pseudocode

i = n

while i > 0:

print choices[i]
i = i – choices[i]

21



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

22



Matrix Chaining

23

𝑀) × 𝑀L× ×

Problem: Given a sequence of matrices 𝑀),… ,𝑀5, 
what is the most efficient way to multiply them?

𝑀J 𝑀M

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M 𝑛M×𝑛N

Remember: matrix multiplication is associative



Order Matters!

𝑀)×𝑀J ×𝑀L
• requires 𝑛)𝑛J𝑛L + 𝑛)𝑛L𝑛M operations

24

𝑀) × 𝑀L×𝑀J

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M

𝑛)×𝑛L

𝑛) = 7 𝑛J = 10
𝑛L = 20 𝑛M = 8

Total operations:
2520



Order Matters!

𝑀)× 𝑀J×𝑀L
• requires 𝑛)𝑛J𝑛M + 𝑛J𝑛L𝑛M operations

25

𝑀) × 𝑀L×𝑀J

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M

𝑛J×𝑛M

𝑛) = 7 𝑛J = 10
𝑛L = 20 𝑛M = 8

Total operations:
2160

Much better than 
2520 from before



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

26



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

27



1. Identify Recursive Structure

28

𝑀)

𝑐J
𝑀L

𝑐M

𝑀J 𝑀M

Best 1, 𝑛 = cheapest way to multiply together 𝑀) through 𝑀5

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M 𝑛M×𝑛N



1. Identify Recursive Structure

29

𝑀)

𝑐J
𝑀L

𝑐M

𝑀J 𝑀M

Best 1, 𝑛 = cheapest way to multiply together 𝑀) through 𝑀5

𝑀JM

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M 𝑛M×𝑛N

𝑛J×𝑛N

Last product: 𝑀)×𝑀JM

Operations to compute 
𝑀JM and then multiply 

𝑀) with 𝑀JM

Best 1,4 = min

Best 2,4 + 𝑛)𝑛J𝑛N



1. Identify Recursive Structure

30

𝑀)

𝑐J
𝑀L

𝑐M

𝑀J 𝑀M

Best 1, 𝑛 = cheapest way to multiply together 𝑀) through 𝑀5

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M 𝑛M×𝑛N

𝑀)J
𝑀LM

Last product: 𝑀)J×𝑀LM

𝑛L×𝑛N𝑛)×𝑛L

Best 1,4 = min

Best 2,4 + 𝑛)𝑛J𝑛N
Best 1,2 + Best(3,4) + 𝑛)𝑛L𝑛N



1. Identify Recursive Structure

31

𝑀)

𝑐J
𝑀L

𝑐M

𝑀J 𝑀M

Best 1, 𝑛 = cheapest way to multiply together 𝑀) through 𝑀5

Best 1,4 = min

Best 2,4 + 𝑛)𝑛J𝑛N

𝑛)×𝑛J 𝑛J×𝑛L 𝑛L×𝑛M 𝑛M×𝑛N

Last product: 𝑀)L×𝑀M

𝑛)×𝑛M

Best 1,2 + Best(3,4) + 𝑛)𝑛L𝑛N

𝑀)L

Best 1,3 + 𝑛)𝑛M𝑛N



1. Identify Recursive Structure

More generally:

32

Best 𝑖, 𝑗 = cheapest way to multiply together 𝑀. through 𝑀Y

Possible ways to compute 𝑀.×𝑀.Z)×⋯×𝑀Y

Position of the 
“split” changes

𝑀.×𝑀.Z),Y = 𝑀.× 𝑀.Z)×⋯×𝑀Y

𝑀.,.Z)×𝑀.ZJ,Y = 𝑀.×𝑀.Z) × 𝑀.ZJ×⋯×𝑀Y

𝑀.,.ZJ×𝑀.ZL,Y = 𝑀.×𝑀.Z)×𝑀.ZJ × 𝑀.ZL×⋯×𝑀Y

𝑀.,Y\)×𝑀Y = 𝑀.×⋯×𝑀Y\) ×𝑀Y

⋮ ⋮ ⋮



1. Identify Recursive Structure

More generally:

33

Best 𝑖, 𝑗 = cheapest way to multiply together 𝑀. through 𝑀Y

Possible ways to compute 𝑀.×𝑀.Z)×⋯×𝑀Y
Best 𝑖, 𝑖 + Best 𝑖 + 1, 𝑗 + 𝑛.𝑛.Z)𝑛YZ)

Best 𝑖, 𝑖 + 1 + Best 𝑖 + 2, 𝑗 + 𝑛.𝑛.ZJ𝑛YZ)

Best 𝑖, 𝑖 + 2 + Best 𝑖 + 3, 𝑗 + 𝑛.𝑛.ZL𝑛YZ)

Best 𝑖, 𝑗 − 1 + Best 𝑗, 𝑗 + 𝑛.𝑛Y𝑛YZ)

Best 𝑖, 𝑗 = min

Best 𝑖, 𝑖 = 0

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



1. Identify Recursive Structure

34

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

𝑗
1 2 3 4

1

2

3

4

𝑖

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

35



2. Select a Good Order for Solving Subproblems

36

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

37

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑘 = 0

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

38

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑘 = 1



2. Select a Good Order for Solving Subproblems

39

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑘 = 2



2. Select a Good Order for Solving Subproblems

40

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

Observation: Value 
depends on values to its 

left and below



2. Select a Good Order for Solving Subproblems

41

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

1 5 8 10

𝑗

9
7
4

1 2 3 4

1

2

3

4

𝑖
62
3

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

Observation: Value 
depends on values to its 

left and below

Order: Fill values 
along diagonal



2. Select a Good Order for Solving Subproblems

42

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0

𝑗

0

1 2 3 4

1

2

3

4

𝑖
0

0

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

43

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0

𝑗

0

1 2 3 4

1

2

3

4

𝑖
0

0

𝑛)𝑛J𝑛L = 1000
𝑘 = 0

𝑖 = 1, 𝑗 = 2

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

44

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000

𝑗

0

1 2 3 4

1

2

3

4

𝑖
0

0

𝑛)𝑛J𝑛L = 1000
𝑘 = 0

𝑖 = 1, 𝑗 = 2

Cost = 1000

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

45

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000

𝑗

0

1 2 3 4

1

2

3

4

𝑖
0

0

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑛J𝑛L𝑛M = 1600
𝑘 = 0

𝑖 = 2, 𝑗 = 3



2. Select a Good Order for Solving Subproblems

46

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000

𝑗

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛J𝑛L𝑛M = 1600
𝑘 = 0

𝑖 = 2, 𝑗 = 3

Cost = 1600

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

47

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000

𝑗

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛L𝑛M𝑛N = 960
𝑘 = 0

𝑖 = 2, 𝑗 = 3

Cost = 960

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

48

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000

𝑗

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑖 = 1, 𝑗 = 3

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

49

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000

𝑗

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛)𝑛J𝑛M = 400
𝑘 = 0

𝑖 = 1, 𝑗 = 3

Cost = 2000

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

50

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛)𝑛J𝑛M = 400
𝑘 = 0

𝑖 = 1, 𝑗 = 3

Cost = 2000

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑛)𝑛L𝑛M = 800
𝑘 = 1

Cost = 1800



2. Select a Good Order for Solving Subproblems

51

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑖 = 2, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

52

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛J𝑛L𝑛N = 1200
𝑘 = 0

𝑖 = 2, 𝑗 = 4

Cost = 2160

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

53

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛J𝑛L𝑛N = 1200
𝑘 = 0

𝑖 = 2, 𝑗 = 4

Cost = 2160

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑛J𝑛M𝑛N = 480
𝑘 = 1

Cost = 2080



2. Select a Good Order for Solving Subproblems

54

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

55

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛)𝑛J𝑛N = 300
𝑘 = 0

𝑖 = 1, 𝑗 = 4

Cost = 2380

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)



2. Select a Good Order for Solving Subproblems

56

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛)𝑛J𝑛N = 300
𝑘 = 0

𝑖 = 1, 𝑗 = 4

Cost = 2380

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑛)𝑛L𝑛N = 600
𝑘 = 1

Cost = 2560



2. Select a Good Order for Solving Subproblems

57

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800 2040

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

𝑛)𝑛J𝑛N = 300
𝑘 = 0

𝑖 = 1, 𝑗 = 4

Cost = 2380

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

𝑛)𝑛L𝑛N = 600
𝑘 = 1

Cost = 2560

𝑛)𝑛M𝑛N = 240
𝑘 = 2

Cost = 2040



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

58



Run Time

1. Initialize Best[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right, fill in each 

cell using:
• Best 𝑖, 𝑖 = 0
• Best 𝑖, 𝑗 = min

,]^,…,Y\.\)
Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

59

Θ(𝑛J) cells in the array

Θ(𝑛) options per cell

Θ(𝑛L) overall run time



Backtrack to Find the Best Order

60

Best 𝑖, 𝑖 = 0

𝑛) = 5 𝑛J = 10
𝑛L = 20 𝑛M = 8 𝑀) × 𝑀L×𝑀J𝑛N = 6

𝑀M×

0 1000 1800 2040

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

Best 𝑖, 𝑗 = min
,]^,…,Y\.\)

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛.𝑛.Z,Z)𝑛YZ)

“remember” which 
choice of 𝑘 was the 

minimum at each cell

2

1

0

0 1

0


