
CS 4102: Algorithms
Lecture 12: Dynamic Programming

David Wu
Fall 2019



Warm-Up

Problem: Can you fill a 8×8 board with two corners 
missing using 2×1 dominoes?

Dominoes:



Warm-Up

Problem: Can you fill a 8×8 board with two corners 
missing using 2×1 dominoes?

Dominoes:

32 black squares
30 white squares



Today’s Keywords

Dynamic Programming
Matrix Chaining (Review)
Longest Common Subsequence
Seam Carving

4

CLRS Readings: Chapter 14



Homework

• HW4 due Saturday, October 12, 11pm
• Divide and conquer, sorting, and dynamic programming
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

• HW5 released next week (after exam)
• Seam Carving
• Dynamic Programming (implementation)
• Java or Python

5



Midterm

• Tuesday, October 15 (in class)
• SDAC: Please schedule with SDAC for Tuesday
• Mostly in-class with a take-home portion

• Practice Midterm (Last Semester’s Midterm) available on Collab today

• Optional Review Session: Sunday, October 13 at 3pm, Olsson 120

6



Review: Matrix Chaining

7

𝑀& × 𝑀'× ×

Problem: Given a sequence of matrices 𝑀&,… ,𝑀*, 
what is the most efficient way to multiply them?

𝑀+ 𝑀,

𝑛&×𝑛+ 𝑛+×𝑛' 𝑛'×𝑛, 𝑛,×𝑛.

Remember: matrix multiplication is associative



Identify Recursive Structure

More generally:

8

Best 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

Possible ways to compute 𝑀6×𝑀68&×⋯×𝑀7

Position of the 
“split” changes

𝑀6×𝑀68&,7 = 𝑀6× 𝑀68&×⋯×𝑀7

𝑀6,68&×𝑀68+,7 = 𝑀6×𝑀68& × 𝑀68+×⋯×𝑀7

𝑀6,68+×𝑀68',7 = 𝑀6×𝑀68&×𝑀68+ × 𝑀68'×⋯×𝑀7

𝑀6,7:&×𝑀7 = 𝑀6×⋯×𝑀7:& ×𝑀7

⋮ ⋮ ⋮



Identify Recursive Structure

More generally:

9

Best 𝑖, 𝑗 = cheapest way to multiply together 𝑀6 through 𝑀7

Possible ways to compute 𝑀6×𝑀68&×⋯×𝑀7
Best 𝑖, 𝑖 + Best 𝑖 + 1, 𝑗 + 𝑛6𝑛68&𝑛78&

Best 𝑖, 𝑖 + 1 + Best 𝑖 + 2, 𝑗 + 𝑛6𝑛68+𝑛78&

Best 𝑖, 𝑖 + 2 + Best 𝑖 + 3, 𝑗 + 𝑛6𝑛68'𝑛78&

Best 𝑖, 𝑗 − 1 + Best 𝑗, 𝑗 + 𝑛6𝑛7𝑛78&

Best 𝑖, 𝑗 = min

Best 𝑖, 𝑖 = 0

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&



Select a Good Order for Solving Subproblems

10

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&



Select a Good Order for Solving Subproblems

11

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑘 = 0

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&



Select a Good Order for Solving Subproblems

12

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&

𝑘 = 1



Select a Good Order for Solving Subproblems

13

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&

𝑘 = 2



Select a Good Order for Solving Subproblems

14

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

𝑗
1 2 3 4

1

2

3

4

𝑖

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&

Observation: Value 
depends on values to its 

left and below



Select a Good Order for Solving Subproblems

15

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

1 5 8 10

𝑗

9
7
4

1 2 3 4

1

2

3

4

𝑖
62
3

𝑖 = 1, 𝑗 = 4

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&

Observation: Value 
depends on values to its 

left and below

Order: Fill values 
along diagonal



Select a Good Order for Solving Subproblems

16

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

0 1000 1800 2040

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&



Run Time

1. Initialize Best[𝑖, 𝑖] to be all 0s
2. Starting at the main diagonal, working to the upper-right, fill in each 

cell using:
• Best 𝑖, 𝑖 = 0
• Best 𝑖, 𝑗 = min

CDE,…,7:6:&
Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&

17

Θ(𝑛+) cells in the array

Θ(𝑛) options per cell

Θ(𝑛') overall run time



Backtrack to Find the Best Order

18

Best 𝑖, 𝑖 = 0

𝑛& = 5 𝑛+ = 10
𝑛' = 20 𝑛, = 8 𝑀& × 𝑀'×𝑀+𝑛. = 6

𝑀,×

0 1000 1800 2040

𝑗

2080

960

0

1 2 3 4

1

2

3

4

𝑖
16000

0

Best 𝑖, 𝑗 = min
CDE,…,7:6:&

Best 𝑖, 𝑖 + 𝑘 + Best 𝑖 + 𝑘 + 1, 𝑗 + 𝑛6𝑛68C8&𝑛78&

“remember” which 
choice of 𝑘 was the 

minimum at each cell

2

1

0

0 1

0



19

Given two sequences 𝑋 and 𝑌, 
find the length of their longest 

common subsequence

Example:
𝑋 = ATCTGAT
𝑌 = TGCATA

Longest Common Subsequence



20

Given two sequences 𝑋 and 𝑌, 
find the length of their longest 

common subsequence

Example:
𝑋 = ATCTGAT
𝑌 = TGCATA
LCS = TCTA

Brute force: Compare every 
subsequence of 𝑋 with 𝑌

Running Time: Ω(2*)

Longest Common Subsequence



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

21



Identify Recursive Structure
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

𝑖 = 2 and 𝑗 = 2



Identify Recursive Structure
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

𝑖 = 2 and 𝑗 = 5



Identify Recursive Structure

24

𝑋 = ATCTGAT
𝑌 = TGCATA

Suppose 𝑋 𝑖 = 𝑌[𝑗]

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

𝑖 = 2 and 𝑗 = 1

Observation: We can always include 
the last character (T) in the LCS

Why is this the case? (Argument for optimality)

• If last character in LCS is not T, then can extend it to include T
• If the last character in LCS is T, then it does not matter whether 

we use an earlier T or the last T



Identify Recursive Structure

25

𝑋 = ATCTGAT
𝑌 = TGCATA

Suppose 𝑋 𝑖 = 𝑌[𝑗]

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

𝑖 = 2 and 𝑗 = 1

Observation: We can always include 
the last character (T) in the LCS

Optimal choice: always take the last character (add it to the LCS), and 
recursively solve LCS on remainder

LCS 𝑖, 𝑗 = LCS 𝑖 − 1, 𝑗 − 1 + 1



Identify Recursive Structure

26

𝑋 = ATCTGAT
𝑌 = TGCATA

Suppose 𝑋 𝑖 ≠ 𝑌[𝑗]

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

𝑖 = 2 and 𝑗 = 2

Observation: At least one of the 
characters will not be in the LCS

Why is this the case? (Argument for optimality)

• Cannot take both, since otherwise, the last character of the two 
subsequences are different



Identify Recursive Structure

27

𝑋 = ATCTGAT
𝑌 = TGCATA

Suppose 𝑋 𝑖 ≠ 𝑌[𝑗]

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

𝑖 = 2 and 𝑗 = 2

Observation: At least one of the 
characters will not be in the LCS

LCS 𝑖, 𝑗 = LCS 𝑖 − 1, 𝑗

LCS 𝑖, 𝑗 = LCS 𝑖, 𝑗 − 1
or

Drop T

Drop G



Identify Recursive Structure

28

𝑋 = ATCTGAT
𝑌 = TGCATA

Suppose 𝑋 𝑖 ≠ 𝑌[𝑗]

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

𝑖 = 2 and 𝑗 = 2

Observation: At least one of the 
characters will not be in the LCS

LCS 𝑖, 𝑗 = max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1



Identify Recursive Structure

29

Suppose 𝑋 𝑖 = 𝑌[𝑗]

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

Suppose 𝑋 𝑖 = 𝑌[𝑗]

Suppose 𝑋 𝑖 ≠ 𝑌[𝑗]

LCS 𝑖, 𝑗 = LCS 𝑖 − 1, 𝑗 − 1 + 1

LCS 𝑖, 𝑗 = max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1

Base case:

LCS 𝑖, 0 = 0 = LCS 0, 𝑗



Identify Recursive Structure

30

Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 
between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

31



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]

Value depends on values to the left and above

Fill rows top to bottom, left to right



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1

0

0

0

0

0

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]



Select a Good Order for Solving Subproblems
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]

Run Time: Θ 𝑛 ⋅ 𝑚
(for 𝑋 = 𝑛, 𝑌 = 𝑚)



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]

Length of LCS is 4
How did we get here?



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left

Length of LCS is 4
How did we get here?



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left



Backtrack to Find the LCS
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

Take the character and move diagonally up if characters match
Otherwise, move to the larger of the value above or to the left Not necessarily unique!



Seam Carving

Method for image resizing that does
not scale/crop the image

49



Seam Carving

50

Method for image resizing that does
not scale/crop the image



Cropping

51

Removes a “block” of pixels

Cropped



Scaling

52

Scaled

Removes “stripes” of pixels



Seam Carving

53

Carved

Removes “least energy seam” of pixels
Demo: http://nparashuram.com/seamcarving/

http://nparashuram.com/seamcarving/


Seam Carving

54

Cropped Scaled Carved

Method for image resizing that does
not scale/crop the image



Seattle Skyline

55

Demo: http://nparashuram.com/seamcarving/

http://nparashuram.com/seamcarving/


Energy of a Seam

Sum of the energies of each pixel
• 𝑒 𝑝 = energy of pixel 𝑝

Many choices
• Example: Gradient (how much the color of this pixel differs from its neighbors)
• Particular choice doesn’t matter, we use it as a “black box”

56



Seam Carving

𝑆 𝑖, 𝑗 = seam with minimal energy from the bottom of the image to pixel 𝑝6,7

57

𝑝6,7

Seam extends from one pixel to 
(diagonally) adjacent pixel on next row



Seam Carving

58

𝑝*,C

Goal: find the least energy seam going from bottom to top, so delete:
min

CD&,…,`
𝑆(𝑛, 𝑘)

𝑛

𝑚



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

59



Computing 𝑆(𝑛, 𝑘)

Suppose we know the least energy seams for all rows up to 𝑛 − 1
(i.e., we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

60

𝑝*,C

𝑛

𝑚



Computing 𝑆(𝑛, 𝑘)

61

𝑝*,C

𝑆(𝑛, 𝑘)

𝑆(𝑛 − 1, 𝑘 − 1) 𝑆(𝑛 − 1, 𝑘) 𝑆(𝑛 − 1, 𝑘 + 1)

𝑆 𝑛, 𝑘 = min
𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝*,C)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝*,C)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝*,C)

Suppose we know the least energy seams for all rows up to 𝑛 − 1
(i.e., we know 𝑆(𝑛 − 1, ℓ) for all ℓ)



Repeated Seam Removal

62

Only need to update pixels that depend on the removed seam
At most 2𝑛 pixels change Θ(𝑛) time to update pixels

Θ(𝑛 +𝑚) time to find minimum + backtrack

𝑛

𝑚Full details: HW5 (next Thursday)


