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Today’s Keywords

Dynamic Programming
Gerrymandering
Greedy Algorithms
Choice Function
Change Making
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CLRS Readings: Chapter 15, 16



Homework

• Midterm take-home due tonight at 11pm
• Individual work

• No office hours / regrade office hours until tomorrow (after midterm)

• HW5 released later today, due Thursday, October 24, 11pm
• Seam Carving
• Dynamic Programming (implementation)
• Java or Python
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Dynamic Algorithms Examples

Maximum Sum Continuous Subarray
Tiling Dominoes
Log Cutting
Matrix Chaining
Longest Common Subsequence
Seam Carving
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Maximum Sum Continuous Subarray

8 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

5 -5-50

5

5 13

13

9

13

Divide

12 19 4 6 14 0 17 25 0 0 22

13 19 19 19 19 19 19 25 25 25 25

Observation: No need to recurse! Just maintain two numbers and iterate 
from 1 to 𝑛: best value so far, best value ending at current position

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛
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Tiling Dominoes
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𝑛 − 1
Tile 𝑛 = Tile 𝑛 − 1 + Tile(𝑛 − 2)

Two ways to fill the final column:

𝑛 − 2

Tile 0 = Tile 1 = 1



Log Cutting
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Cut(𝑛) = value of best way to cut a log of length 𝑛

ℓ=𝐶𝑢𝑡(𝑛 − ℓ=)

Cut 𝑛 = max

Cut 𝑛 − 1 + 𝑃 1
Cut 𝑛 − 2 + 𝑃 2

⋮
Cut 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖



Matrix Chaining
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𝑀H

𝑐J
𝑀K

𝑐L

𝑀J 𝑀L

Best 1, 𝑛 = cheapest way to multiply together 𝑀H through 𝑀=

Best 1,4 = min

Best 2,4 + 𝑛H𝑛J𝑛Q

𝑛H×𝑛J 𝑛J×𝑛K 𝑛K×𝑛L 𝑛L×𝑛Q

Last product: 𝑀HK×𝑀L

𝑛H×𝑛L

Best 1,2 + Best(3,4) + 𝑛H𝑛K𝑛Q

𝑀HK

Best 1,3 + 𝑛H𝑛L𝑛Q



Longest Common Subsequence
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence 

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]

Run Time: Θ 𝑛 ⋅ 𝑚
(for 𝑋 = 𝑛, 𝑌 = 𝑚)



Seam Carving
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𝑝=,a

𝑆(𝑛, 𝑘)

𝑆(𝑛 − 1, 𝑘 − 1) 𝑆(𝑛 − 1, 𝑘) 𝑆(𝑛 − 1, 𝑘 + 1)

𝑆 𝑛, 𝑘 = min
𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝=,a)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝=,a)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝=,a)

Suppose we know the least energy seams for all rows up to 𝑛 − 1
(i.e., we know 𝑆(𝑛 − 1, ℓ) for all ℓ)



Gerrymandering

Manipulating electoral district 
boundaries to favor one political 
party over others

Coined in an 1812 political cartoon 
after Governor Gerry signed a bill 
that redistricted Massachusetts to 
benefit his Democratic-Republican 
Party
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The Gerrymander



Gerrymandering
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Gerrymandering
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According to the Supreme Court…

Gerrymandering cannot be used to:
• Disadvantage racial/ethnic/religious groups

It can be used to:
• Disadvantage political parties
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VA 5th District
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VA 5th District
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2018 Election



Gerrymandering Today
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Gerrymandering Today

Computers make it very effective
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Is this even 
contiguous?



Gerrymandering Today
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How Does it Work?

• States are broken into precincts
• All precincts have the same number of people
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts 

won by my party
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vs.
R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183

100 voters 
per precinct

(R) (D)

Each district should 
have roughly the same 

number of people



How Does it Work?
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R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:125     R:92

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:112   R:105

• States are broken into precincts
• All precincts have the same number of people
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts 

won by my party

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183

Each district should 
have roughly the same 

number of people

100 voters 
per precinct



Gerrymandering Problem Statement

Given:
• A list of precincts: 𝑝H, 𝑝J, … , 𝑝=
• Each precinct contains exactly 𝑚 voters

Output districts 𝐷H, 𝐷J ⊂ 𝑝H, 𝑝J, … , 𝑝= where:
• 𝐷H = |𝐷J|
• 𝑅 𝐷H , 𝑅 𝐷J > i=

L
where

𝑅(𝐷j) is the number of “Regular Party” voters in 𝐷j

If no such assignment is possible, output impossible
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Assign precincts to districts

𝑚𝑛 voters in total

Districts have the same size

Party has majority of voters 
in the district (at least 
𝑚𝑛/4 voters since each 
district has ⁄𝑚𝑛 2 voters)



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory
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Consider the Last Precinct
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𝑝=

assign 𝑝H to 𝐷H

After assigning the 
first 𝑛 − 1 precincts 

𝑝H,… , 𝑝=mH

Valid gerrymandering if: 
𝑘 + 1 = ⁄𝑛 2,
𝑥 + 𝑅 𝑝= , 𝑦 > ⁄𝑚𝑛 4

Valid gerrymandering if:
𝑛 − 𝑘 = ⁄𝑛 2,
𝑥, 𝑦 + 𝑅 𝑝= > ⁄𝑚𝑛 4

𝑛 − 𝑘 − 1 precincts
𝑦 voters for 𝑅

𝑘 precincts
𝑥 voters for 𝑅

𝑘 + 1 precincts
𝑥 + 𝑅(𝑝=) voters for 𝑅

𝑛 − 𝑘 precincts
𝑦 + 𝑅(𝑝=) voters for 𝑅

District 𝐷H

District 𝐷J

District 𝐷H

District 𝐷J

assign 𝑝J to 𝐷J

Observation: succeed if there is a way to assign 𝑘 precincts from 𝑝H, … , 𝑝=mH
to 𝐷H with 𝑥 voters in 𝐷H and 𝑦 voters in 𝐷J such that either

• 𝑘 + 1 = 𝑛/2 and 𝑥 + 𝑅 𝑝= > 𝑚𝑛/4 and 𝑦 > 𝑚𝑛/4; or
• 𝑘 = 𝑛/2 and 𝑥 > 𝑚𝑛/4 and 𝑦 + 𝑅 𝑝= > 𝑚𝑛/4



Define Recursive Structure
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Observation: succeed if there is a way to assign 𝑘 precincts from 𝑝H, … , 𝑝=mH
to 𝐷H with 𝑥 voters in 𝐷H and 𝑦 voters in 𝐷J such that either

• 𝑘 + 1 = 𝑛/2 and 𝑥 + 𝑅 𝑝= > 𝑚𝑛/4 and 𝑦 > 𝑚𝑛/4; or
• 𝑘 = 𝑛/2 and 𝑥 > 𝑚𝑛/4 and 𝑦 + 𝑅 𝑝= > 𝑚𝑛/4

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:
𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Goal: see if there exists 𝑥, 𝑦 > 𝑚𝑛/4 such that 𝑆(𝑛, 𝑛/2, 𝑥, 𝑦) is true

Recursive substructure:
can we achieve a specific

split of the precincts?



Define Recursive Structure
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Observation: succeed if there is a way to assign 𝑘 precincts from 𝑝H, … , 𝑝=mH
to 𝐷H with 𝑥 voters in 𝐷H and 𝑦 voters in 𝐷J such that either

• 𝑘 + 1 = 𝑛/2 and 𝑥 + 𝑅 𝑝= > 𝑚𝑛/4 and 𝑦 > 𝑚𝑛/4; or
• 𝑘 = 𝑛/2 and 𝑥 > 𝑚𝑛/4 and 𝑦 + 𝑅 𝑝= > 𝑚𝑛/4

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:
𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Recursive substructure:
can we achieve a specific

split of the precincts?

4-dimensional dynamic programming!

𝑛 × 𝑛 ×𝑚𝑛 ×𝑚𝑛
Size of the memory?



Identify Recursive Structure
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:

𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Two possibilities: assign 𝑝t to 𝐷H or assign 𝑝t to 𝐷J
Case 1: assign 𝑝t to 𝐷H

𝑆(𝑗, 𝑘, 𝑥, 𝑦) is true if we can assign 𝑘 − 1 out of the first 𝑗 − 1 precincts to 𝐷H such that:
• exactly 𝑥 − 𝑅 𝑝t vote for 𝑅 in 𝐷H
• exactly 𝑦 vote for 𝑅 in 𝐷J 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦

Case 2: assign 𝑝t to 𝐷J
𝑆(𝑗, 𝑘, 𝑥, 𝑦) is true if we can assign 𝑘 out of the first 𝑗 − 1 precincts to 𝐷H such that:
• exactly 𝑥 vote for 𝑅 in 𝐷H
• exactly 𝑦 − 𝑅 𝑝t vote for 𝑅 in 𝐷J 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t



Identify Recursive Structure
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:

𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Two possibilities: assign 𝑝t to 𝐷H or assign 𝑝t to 𝐷J

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 OR 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Base Case: 𝑆 0,0,0,0 = True
𝑆 0, 𝑘, 𝑥, 𝑦 = False for all 𝑘, 𝑥, 𝑦



Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory
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Find a Good Ordering
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:

𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Two possibilities: assign 𝑝t to 𝐷H or assign 𝑝t to 𝐷J

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 OR 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Base Case: 𝑆 0,0,0,0 = True
𝑆 0, 𝑘, 𝑥, 𝑦 = False for all 𝑘, 𝑥, 𝑦

Observation: Values with 𝑗 only depend on values with 𝑗 − 1 (start with first 
component and fill in rest in order)



Final Algorithm

initialize S[0, 0, 0, 0] = True and False elsewhere

for j = 1,...,n:
for k = 1,...,n:

for x = 0,...,mn:
for y = 0,...,mn:

S[j, k, x, y] = 
S[j – 1, k - 1, x – R[j], y] |
S[j - 1, k, x, y – R[j]]

return True if exists x > mn/4, y > mn/4 where
S[n, n/2, x, y] = True
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𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Value of 𝑅 𝑝t

Can early terminate some of these 
loops, but same asymptotics



Running Time

initialize S[0, 0, 0, 0] = True and False elsewhere

for j = 1,...,n:
for k = 1,...,n:

for x = 0,...,mn:
for y = 0,...,mn:

S[j, k, x, y] = 
S[j – 1, k - 1, x – R[j], y] |
S[j - 1, k, x, y – R[j]]

return True if exists x > mn/4, y > mn/4 where
S[n, n/2, x, y] = True
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𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

𝑂(𝑚J𝑛L)
𝑂(𝑛)
𝑂(𝑛)
𝑂(𝑚𝑛)
𝑂(𝑚𝑛)

𝑂(𝑚J𝑛J)

Overall Running Time: 𝑂 𝑚J𝑛L



Running Time

Running time is exponential in length of input
In fact: Gerrymandering is NP-complete
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Inputs to algorithm: 𝑅 𝑝H , … , 𝑅 𝑝= ,𝑚

Is this an efficient algorithm?

efficient = “polynomial time”

Overall Running Time: 𝑂 𝑚J𝑛L

Length of inputs: 𝑂 𝑛 log𝑚

To be efficient, running time would have to be 
of the form 𝑛{ log𝑚 | for constants 𝑠, 𝑡. But 

𝑚J = log𝑚
~ ��� �
��� ��� �. We call this a

“pseudo-polynomial” time algorithm.



Mental Stretch
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Given access to an unlimited number of pennies, nickels 
dimes, and quarters, give an algorithm which gives change 

for a target value 𝑥 using the fewest number of coins.



Change Making Algorithm

Given: target value 𝑥, list of coins 𝐶 = [𝑐H, … , 𝑐=]
(in this case 𝐶 = [1, 5, 10, 25])

Repeatedly select the largest coin less than the remaining target value:
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while 𝑥 > 0:
let 𝑐 = max(𝑐j ∈ {𝑐H , … , 𝑐=} | 𝑐j ≤ 𝑥)
add 𝑐 to list 𝐿
𝑥 = 𝑥 − 𝑐

output 𝐿 Example of a greedy algorithm:
always choose the “optimal” choice



Mental Stretch
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Suppose we added a new coin worth 11 cents. In conjunction 
with pennies, nickels, dimes, and quarters, find the minimum 

number of coins needed to give 90 cents of change.

11
cents



Greedy Solution

90 cents
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11
cents



Optimal Solution

90 cents
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When can we use the 
greedy solution?



Greedy Algorithms

Requires optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only a single subproblem to consider

General Blueprint:
1. Identify a greedy choice property

• Show that this choice is guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain
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Greedy vs Dynamic Programming

Dynamic Programming:
• Require optimal substructure
• Optimal choice can be one of multiple smaller subproblems

Greedy:
• Require optimal substructure
• Only a single choice and a single subproblem

40



Change Making Choice Property

Largest coin less than or equal to target value must be part of some 
optimal solution (for standard U.S. coins)
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To be continued…


