
CS 4102: Algorithms
Lecture 14: Dynamic Programming

David Wu
Fall 2019

Today’s Keywords

Dynamic Programming
Gerrymandering
Greedy Algorithms
Choice Function
Change Making

2

CLRS Readings: Chapter 15, 16

Homework

• Midterm take-home due tonight at 11pm
• Individual work

• No office hours / regrade office hours until tomorrow (after midterm)

• HW5 released later today, due Thursday, October 24, 11pm
• Seam Carving
• Dynamic Programming (implementation)
• Java or Python

3

Dynamic Algorithms Examples

Maximum Sum Continuous Subarray
Tiling Dominoes
Log Cutting
Matrix Chaining
Longest Common Subsequence
Seam Carving

4

-4

Maximum Sum Continuous Subarray

8 3 7 -15 2 8 -20 17 8 22
0 21 3 4 5 6 7 8 9 10 11 12 13

5 -5-50

5

5 13

13

9

13

Divide

12 19 4 6 14 0 17 25 0 0 22

13 19 19 19 19 19 19 25 25 25 25

Observation: No need to recurse! Just maintain two numbers and iterate
from 1 to 𝑛: best value so far, best value ending at current position

𝐵𝐸𝐷 𝑛 = max(𝐵𝐸𝐷 𝑛 − 1 + 𝑎𝑟𝑟 𝑛 , 0)
𝐵𝑆𝐿 𝑛 = max 𝐵𝑆𝐿 𝑛 − 1 , 𝐵𝐸𝐷 𝑛

6

Tiling Dominoes

6

𝑛 − 1
Tile 𝑛 = Tile 𝑛 − 1 + Tile(𝑛 − 2)

Two ways to fill the final column:

𝑛 − 2

Tile 0 = Tile 1 = 1

Log Cutting

7

Cut(𝑛) = value of best way to cut a log of length 𝑛

ℓ=𝐶𝑢𝑡(𝑛 − ℓ=)

Cut 𝑛 = max

Cut 𝑛 − 1 + 𝑃 1
Cut 𝑛 − 2 + 𝑃 2

⋮
Cut 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖

Matrix Chaining

8

𝑀H

𝑐J
𝑀K

𝑐L

𝑀J 𝑀L

Best 1, 𝑛 = cheapest way to multiply together 𝑀H through 𝑀=

Best 1,4 = min

Best 2,4 + 𝑛H𝑛J𝑛Q

𝑛H×𝑛J 𝑛J×𝑛K 𝑛K×𝑛L 𝑛L×𝑛Q

Last product: 𝑀HK×𝑀L

𝑛H×𝑛L

Best 1,2 + Best(3,4) + 𝑛H𝑛K𝑛Q

𝑀HK

Best 1,3 + 𝑛H𝑛L𝑛Q

Longest Common Subsequence
Let LCS 𝑖, 𝑗 denote the length of the longest common subsequence

between the first 𝑖 characters of 𝑋 and first 𝑗 character of 𝑌

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = A
1

T
2

C
3

T
7

T
4

G
5

A
60𝑌 =

0
1T

3C

4A

5T

6A

2G

LCS 𝑖, 𝑗 =
0 𝑖 = 0 or 𝑗 = 0
LCS 𝑖 − 1, 𝑗 − 1 + 1 𝑋 𝑖 = 𝑌[𝑗]
max LCS 𝑖 − 1, 𝑗 , LCS 𝑖, 𝑗 − 1 𝑋 𝑖 ≠ 𝑌[𝑗]

Run Time: Θ 𝑛 ⋅ 𝑚
(for 𝑋 = 𝑛, 𝑌 = 𝑚)

Seam Carving

10

𝑝=,a

𝑆(𝑛, 𝑘)

𝑆(𝑛 − 1, 𝑘 − 1) 𝑆(𝑛 − 1, 𝑘) 𝑆(𝑛 − 1, 𝑘 + 1)

𝑆 𝑛, 𝑘 = min
𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝=,a)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝=,a)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝=,a)

Suppose we know the least energy seams for all rows up to 𝑛 − 1
(i.e., we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

Gerrymandering

Manipulating electoral district
boundaries to favor one political
party over others

Coined in an 1812 political cartoon
after Governor Gerry signed a bill
that redistricted Massachusetts to
benefit his Democratic-Republican
Party

11

The Gerrymander

Gerrymandering

12

Gerrymandering

13

According to the Supreme Court…

Gerrymandering cannot be used to:
• Disadvantage racial/ethnic/religious groups

It can be used to:
• Disadvantage political parties

14

VA 5th District

15

VA 5th District

16

2018 Election

Gerrymandering Today

17

Gerrymandering Today

Computers make it very effective

18

Is this even
contiguous?

Gerrymandering Today

19

How Does it Work?

• States are broken into precincts
• All precincts have the same number of people
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts

won by my party

20

vs.
R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183

100 voters
per precinct

(R) (D)

Each district should
have roughly the same

number of people

How Does it Work?

21

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:125 R:92

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

R:112 R:105

• States are broken into precincts
• All precincts have the same number of people
• We know voting preferences of each precinct
• Group precincts into districts to maximize the number of districts

won by my party

R:65
D:35

R:45
D:55

R:47
D:53

R:60
D:40

Overall: R:217 D:183

Each district should
have roughly the same

number of people

100 voters
per precinct

Gerrymandering Problem Statement

Given:
• A list of precincts: 𝑝H, 𝑝J, … , 𝑝=
• Each precinct contains exactly 𝑚 voters

Output districts 𝐷H, 𝐷J ⊂ 𝑝H, 𝑝J, … , 𝑝= where:
• 𝐷H = |𝐷J|
• 𝑅 𝐷H , 𝑅 𝐷J > i=

L
where

𝑅(𝐷j) is the number of “Regular Party” voters in 𝐷j

If no such assignment is possible, output impossible

22

Assign precincts to districts

𝑚𝑛 voters in total

Districts have the same size

Party has majority of voters
in the district (at least
𝑚𝑛/4 voters since each
district has ⁄𝑚𝑛 2 voters)

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

23

Consider the Last Precinct

24

𝑝=

assign 𝑝H to 𝐷H

After assigning the
first 𝑛 − 1 precincts

𝑝H,… , 𝑝=mH

Valid gerrymandering if:
𝑘 + 1 = ⁄𝑛 2,
𝑥 + 𝑅 𝑝= , 𝑦 > ⁄𝑚𝑛 4

Valid gerrymandering if:
𝑛 − 𝑘 = ⁄𝑛 2,
𝑥, 𝑦 + 𝑅 𝑝= > ⁄𝑚𝑛 4

𝑛 − 𝑘 − 1 precincts
𝑦 voters for 𝑅

𝑘 precincts
𝑥 voters for 𝑅

𝑘 + 1 precincts
𝑥 + 𝑅(𝑝=) voters for 𝑅

𝑛 − 𝑘 precincts
𝑦 + 𝑅(𝑝=) voters for 𝑅

District 𝐷H

District 𝐷J

District 𝐷H

District 𝐷J

assign 𝑝J to 𝐷J

Observation: succeed if there is a way to assign 𝑘 precincts from 𝑝H, … , 𝑝=mH
to 𝐷H with 𝑥 voters in 𝐷H and 𝑦 voters in 𝐷J such that either

• 𝑘 + 1 = 𝑛/2 and 𝑥 + 𝑅 𝑝= > 𝑚𝑛/4 and 𝑦 > 𝑚𝑛/4; or
• 𝑘 = 𝑛/2 and 𝑥 > 𝑚𝑛/4 and 𝑦 + 𝑅 𝑝= > 𝑚𝑛/4

Define Recursive Structure

25

Observation: succeed if there is a way to assign 𝑘 precincts from 𝑝H, … , 𝑝=mH
to 𝐷H with 𝑥 voters in 𝐷H and 𝑦 voters in 𝐷J such that either

• 𝑘 + 1 = 𝑛/2 and 𝑥 + 𝑅 𝑝= > 𝑚𝑛/4 and 𝑦 > 𝑚𝑛/4; or
• 𝑘 = 𝑛/2 and 𝑥 > 𝑚𝑛/4 and 𝑦 + 𝑅 𝑝= > 𝑚𝑛/4

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:
𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Goal: see if there exists 𝑥, 𝑦 > 𝑚𝑛/4 such that 𝑆(𝑛, 𝑛/2, 𝑥, 𝑦) is true

Recursive substructure:
can we achieve a specific

split of the precincts?

Define Recursive Structure

26

Observation: succeed if there is a way to assign 𝑘 precincts from 𝑝H, … , 𝑝=mH
to 𝐷H with 𝑥 voters in 𝐷H and 𝑦 voters in 𝐷J such that either

• 𝑘 + 1 = 𝑛/2 and 𝑥 + 𝑅 𝑝= > 𝑚𝑛/4 and 𝑦 > 𝑚𝑛/4; or
• 𝑘 = 𝑛/2 and 𝑥 > 𝑚𝑛/4 and 𝑦 + 𝑅 𝑝= > 𝑚𝑛/4

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:
𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Recursive substructure:
can we achieve a specific

split of the precincts?

4-dimensional dynamic programming!

𝑛 × 𝑛 ×𝑚𝑛 ×𝑚𝑛
Size of the memory?

Identify Recursive Structure
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:

𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Two possibilities: assign 𝑝t to 𝐷H or assign 𝑝t to 𝐷J
Case 1: assign 𝑝t to 𝐷H

𝑆(𝑗, 𝑘, 𝑥, 𝑦) is true if we can assign 𝑘 − 1 out of the first 𝑗 − 1 precincts to 𝐷H such that:
• exactly 𝑥 − 𝑅 𝑝t vote for 𝑅 in 𝐷H
• exactly 𝑦 vote for 𝑅 in 𝐷J 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦

Case 2: assign 𝑝t to 𝐷J
𝑆(𝑗, 𝑘, 𝑥, 𝑦) is true if we can assign 𝑘 out of the first 𝑗 − 1 precincts to 𝐷H such that:
• exactly 𝑥 vote for 𝑅 in 𝐷H
• exactly 𝑦 − 𝑅 𝑝t vote for 𝑅 in 𝐷J 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Identify Recursive Structure
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:

𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Two possibilities: assign 𝑝t to 𝐷H or assign 𝑝t to 𝐷J

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 OR 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Base Case: 𝑆 0,0,0,0 = True
𝑆 0, 𝑘, 𝑥, 𝑦 = False for all 𝑘, 𝑥, 𝑦

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

29

Find a Good Ordering
𝑆 𝑗, 𝑘, 𝑥, 𝑦 = True if from among the first 𝒋 precincts:

𝒌 are assigned to 𝐷H
exactly 𝒙 vote for 𝑅 in 𝐷H
exactly 𝒚 vote for 𝑅 in 𝐷J

Two possibilities: assign 𝑝t to 𝐷H or assign 𝑝t to 𝐷J

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 OR 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Base Case: 𝑆 0,0,0,0 = True
𝑆 0, 𝑘, 𝑥, 𝑦 = False for all 𝑘, 𝑥, 𝑦

Observation: Values with 𝑗 only depend on values with 𝑗 − 1 (start with first
component and fill in rest in order)

Final Algorithm

initialize S[0, 0, 0, 0] = True and False elsewhere

for j = 1,...,n:
for k = 1,...,n:

for x = 0,...,mn:
for y = 0,...,mn:

S[j, k, x, y] =
S[j – 1, k - 1, x – R[j], y] |
S[j - 1, k, x, y – R[j]]

return True if exists x > mn/4, y > mn/4 where
S[n, n/2, x, y] = True

31

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

Value of 𝑅 𝑝t

Can early terminate some of these
loops, but same asymptotics

Running Time

initialize S[0, 0, 0, 0] = True and False elsewhere

for j = 1,...,n:
for k = 1,...,n:

for x = 0,...,mn:
for y = 0,...,mn:

S[j, k, x, y] =
S[j – 1, k - 1, x – R[j], y] |
S[j - 1, k, x, y – R[j]]

return True if exists x > mn/4, y > mn/4 where
S[n, n/2, x, y] = True

32

𝑆 𝑗, 𝑘, 𝑥, 𝑦 = 𝑆 𝑗 − 1, 𝑘 − 1, 𝑥 − 𝑅 𝑝t , 𝑦 ∨ 𝑆 𝑗 − 1, 𝑘, 𝑥, 𝑦 − 𝑅 𝑝t

𝑂(𝑚J𝑛L)
𝑂(𝑛)
𝑂(𝑛)
𝑂(𝑚𝑛)
𝑂(𝑚𝑛)

𝑂(𝑚J𝑛J)

Overall Running Time: 𝑂 𝑚J𝑛L

Running Time

Running time is exponential in length of input
In fact: Gerrymandering is NP-complete

33

Inputs to algorithm: 𝑅 𝑝H , … , 𝑅 𝑝= ,𝑚

Is this an efficient algorithm?

efficient = “polynomial time”

Overall Running Time: 𝑂 𝑚J𝑛L

Length of inputs: 𝑂 𝑛 log𝑚

To be efficient, running time would have to be
of the form 𝑛{ log𝑚 | for constants 𝑠, 𝑡. But

𝑚J = log𝑚
~ ��� �
��� ��� �. We call this a

“pseudo-polynomial” time algorithm.

Mental Stretch

34

Given access to an unlimited number of pennies, nickels
dimes, and quarters, give an algorithm which gives change

for a target value 𝑥 using the fewest number of coins.

Change Making Algorithm

Given: target value 𝑥, list of coins 𝐶 = [𝑐H, … , 𝑐=]
(in this case 𝐶 = [1, 5, 10, 25])

Repeatedly select the largest coin less than the remaining target value:

35

while 𝑥 > 0:
let 𝑐 = max(𝑐j ∈ {𝑐H , … , 𝑐=} | 𝑐j ≤ 𝑥)
add 𝑐 to list 𝐿
𝑥 = 𝑥 − 𝑐

output 𝐿 Example of a greedy algorithm:
always choose the “optimal” choice

Mental Stretch

36

Suppose we added a new coin worth 11 cents. In conjunction
with pennies, nickels, dimes, and quarters, find the minimum

number of coins needed to give 90 cents of change.

11
cents

Greedy Solution

90 cents

37

11
cents

Optimal Solution

90 cents

38

When can we use the
greedy solution?

Greedy Algorithms

Requires optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only a single subproblem to consider

General Blueprint:
1. Identify a greedy choice property

• Show that this choice is guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

39

Greedy vs Dynamic Programming

Dynamic Programming:
• Require optimal substructure
• Optimal choice can be one of multiple smaller subproblems

Greedy:
• Require optimal substructure
• Only a single choice and a single subproblem

40

Change Making Choice Property

Largest coin less than or equal to target value must be part of some
optimal solution (for standard U.S. coins)

41

To be continued…

