CS 4102: Algorithms Lecture 15: Greedy Algorithms

David Wu Fall 2019

Today's Keywords

- Greedy Algorithms
- **Choice Function**
- Change Making
- Interval Scheduling
- Exchange Argument

CLRS Readings: Chapter 16

Homework

HW5 due Thursday, October 24, 11pm

- Seam Carving
- Dynamic Programming (implementation)
- Java or Python

HW6 released Thursday

- Dynamic programming and greedy algorithms
- Written (use LaTeX!) Submit <u>both</u> **zip** and **pdf** (two <u>separate</u> attachments)!

Previously...

Given access to an unlimited number of pennies, nickels dimes, and quarters, give an algorithm which gives change for a target value x using the <u>fewest</u> number of coins

Previously...

Given: target value
$$x$$
, list of coins $C = [c_1, ..., c_n]$
(in this case $C = [1, 5, 10, 25]$)

Repeatedly select the largest coin less than the remaining target value:

while
$$x > 0$$
:
let $c = \max(c_i \in \{c_1, \dots, c_n\} \mid c_i \le x)$
add c to list L
 $x = x - c$
output L

Warm-Up

Suppose we added a new coin worth 11 cents

Give an efficient algorithm to find the <u>minimum</u> number of coins needed to give change for *n* cents

Greedy Algorithm Does Not Work

Greedy Algorithm Does Not Work

90 cents

Dynamic Programming

Requires optimal substructure

• Solution to larger problem contains the solutions to smaller ones

General Blueprint:

- 1. Identify recursive structure of the problem
 - What is the "last thing" done?
- 2. Select a good order for solving subproblems
 - "Top Down:" Solve each problem recursively
 - "Bottom Up:" Iteratively solve each problem from smallest to largest
- 3. Save solution to each subproblem in memory

Identify Recursive Structure

Min(n): minimum number of coins needed to give change for n cents

Identify Recursive Structure

Min(n): minimum number of coins needed to give change for n cents

$$Min(n) = \begin{cases} Min(n-25) + 1 & \text{if } n \ge 25 \\ Min(n-11) + 1 & \text{if } n \ge 11 \\ Min(n-10) + 1 & \text{if } n \ge 10 \\ Min(n-5) + 1 & \text{if } n \ge 5 \\ Min(n-1) + 1 & \text{if } n \ge 1 \end{cases}$$

Correctness: The optimal solution must be contained in one of these configurations

Base Case: Min(0) = 0

Running time: O(kn)

k is number of possible coins

Is this <u>efficient</u>?

No, this is <u>pseudo-polynomial</u> time

Input size is $O(k \log n)$

11

The Greedy Approach

Given: target value
$$x$$
, list of coins $C = [c_1, ..., c_n]$
(in this case $C = [1, 5, 10, 25]$)

Repeatedly select the largest coin less than the remaining target value:

while
$$x > 0$$
:
let $c = \max(c_i \in \{c_1, \dots, c_n\} \mid c_i \le x)$
add c to list L
 $x = x - c$
output L

Observation: We can rewrite this to take $\lfloor n/c \rfloor$ copies of the largest coin at each step **Running time:** $O(k \log n)$ **Polynomial-time!** 12

The Greedy Approach

Given: target value
$$x$$
, list of coins $C = [c_1, ..., c_n]$
(in this case $C = [1, 5, 10, 25]$)

Repeatedly select the largest coin less than the remaining target value:

while
$$x > 0$$
:
let $c = \max(c_i \in \{c_1, ..., c_n\} \mid c_i \leq x)$
add c to list L
 $x = x - c$
output L
Observation: We can rewrite
Greedy approach: Only consider a single
case/subproblem, which gives an asymptotically-better
algorithm. When can we use the greedy approach?

Running time: $O(k \log n)$

Polynomial-time!

Greedy Algorithms

Requires optimal substructure

- Solution to larger problem contains the solution to a smaller one
- Only a single subproblem to consider

General Blueprint:

- 1. Identify a greedy choice property
 - Show that this choice is guaranteed to be included in <u>some</u> optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Greedy vs. Dynamic Programming

Dynamic Programming:

- Require optimal substructure
- Optimal choice can be one of <u>multiple</u> smaller subproblems

Greedy:

- Require optimal substructure
- Only a <u>single</u> choice and a single subproblem

Greedy Algorithms

Require optimal substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

- 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Optimal solution must satisfy following properties:

- At most 4 pennies
- At most 1 nickel
- At most 2 dimes
- Cannot contain 2 dimes and 1 nickel

Claim: argue that at every step, greedy choice is part of <u>some</u> optimal solution

Case 1: Suppose *n* < 5

- Optimal solution <u>must</u> contain a penny (no other option available)
- Greedy choice: penny
- **Case 2:** Suppose $5 \le n < 10$
 - Optimal solution <u>must</u> contain a nickel
 - Suppose otherwise. Then optimal solution can only contain pennies (there are no other options), so it must contain n > 4 pennies (contradiction)
 - Greedy choice: nickel

Case 3: Suppose $10 \le n < 25$

- Optimal solution <u>must</u> contain a dime
 - Suppose otherwise. By construction, the optimal solution can contain at most 1 nickel, so there must be at least 5 pennies in the optimal solution (contradiction)
- Greedy choice: dime

Claim: argue that at every step, greedy choice is part of <u>some</u> optimal solution

Case 4: Suppose $25 \le n$

- Optimal solution <u>must</u> contain a quarter
 - Suppose otherwise. There are two possibilities for the optimal solution:
 - If it contains 2 dimes, then it can contain 0 nickels, in which case it contains at least 5 pennies (contradiction)
 - If it contains fewer than 2 dimes, then it can contain at most 1 nickel, so it must also contain at least 10 pennies (contradiction)
- Greedy choice: quarter

Conclusion: in <u>every</u> case, the greedy choice is consistent with <u>some</u> optimal solution

Where Does the Proof Break?

Suppose we added a new coin worth 11 cents

Give an efficient algorithm to find the <u>minimum</u> number of coins needed to give change for *n* cents

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 1: Suppose *n* < 5

- Optimal solution <u>must</u> contain a penny (no other option available)
- Greedy choice: penny

Case 2: Suppose $5 \le n < 10$

- Optimal solution <u>must</u> contain a nickel
 - Suppose otherwise. Then optimal so other options), so it must contain *n*
- Greedy choice: nickel

Case 3: Suppose $10 \le n < 25$

• Optimal solution <u>must</u> contain a dime

This argument no longer holds. Sometimes, it's better to take the dime; other times, it's better to take the 11-cent piece.

- Suppose otherwise. By construction, the optimal solution can contain at most 1 nickel, so there must be at least 6 pennies in the optimal solution (contradiction).
- Greedy choice: dime

Interval Scheduling

Input: List of events with their start and end times (sorted by end time)

Output: Largest set of non-conflicting events (start time of each event is after the end time of all preceding events)

[1:00,	2:15]	Alumni Lunch
[3:00,	4:00]	CHS Prom
[3:30,	4:45]	CS 4102
[4:00,	5:15]	Bingo
[4:30,	6:00]	SCUBA lessons
[5:00,	7:30]	Roller Derby Bout
[7:45,	11:00]	Football game

Dynamic Programming Interval Scheduling

Best(t) = max number of events that can be scheduled before time t

Last action: include last event or exclude last event

Greedy Algorithms

Require optimal substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

- 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Greedy Algorithms

Require optimal substructure

- Solution to larger problem contains the solution to a smaller one
- Only one subproblem to consider!

Idea:

- 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Greedy Interval Scheduling

Step 1: Identify a greedy choice property

- Shortest interval
- Fewest conflicts
- Earliest start

• Earliest end

Greedy Interval Scheduling

Step 1: Identify a greedy choice property

- Shortest interval
- Fewest conflicts
- Earliest start


```
time = 0
for each i = 1,...,n: assume list sorted by interval end time
    if start[i] < time:
        continue
    else:
        solution.add(i)
        time = end[i]
return solution</pre>
```

Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

<u>General idea:</u> argue that at every step, the greedy choice is part of <u>some</u> optimal solution

<u>Approach</u>: Start with an arbitrary optimal solution and show that <u>exchanging</u> an item from the optimal solution with your greedy choice makes the new solution no worse (i.e., the greedy choice is as good as the optimal choice)

Exchange Argument for Earliest End Time

Claim: earliest ending interval is always part of some optimal solution

Let $OPT_{i,j}$ be an optimal solution for time range [i, j]Let a^* be the first interval in [i, j] to finish overall **Case 1:** $a^* \in OPT_{i,j}$

• Then Claim holds by definition

Case 2: $a^* \notin OPT_{i,i}$

- Let a be the first interval to end in $OPT_{i,i}$
- By definition a^{*} ends before a, and therefore does not conflict with any other events in OPT_{i,j}
- Therefore $OPT_{i,j} \{a\} + \{a^*\}$ is also <u>optimal</u> solution
- Then claim holds