
CS 4102: Algorithms
Lecture 15: Greedy Algorithms

David Wu
Fall 2019

Today’s Keywords

Greedy Algorithms
Choice Function
Change Making
Interval Scheduling
Exchange Argument

2

CLRS Readings: Chapter 16

Homework

HW5 due Thursday, October 24, 11pm
• Seam Carving
• Dynamic Programming (implementation)
• Java or Python

HW6 released Thursday
• Dynamic programming and greedy algorithms
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

3

Previously…

Given access to an unlimited number of pennies, nickels
dimes, and quarters, give an algorithm which gives change

for a target value 𝑥 using the fewest number of coins

4

Previously…

Given: target value 𝑥, list of coins 𝐶 = [𝑐&, … , 𝑐)]
(in this case 𝐶 = [1, 5, 10, 25])

Repeatedly select the largest coin less than the remaining target value:

5

while 𝑥 > 0:
let 𝑐 = max(𝑐4 ∈ {𝑐& , … , 𝑐)} | 𝑐4 ≤ 𝑥)
add 𝑐 to list 𝐿
𝑥 = 𝑥 − 𝑐

output 𝐿

Warm-Up

6

Suppose we added a new coin worth 11 cents

11
cents

Give an efficient algorithm to
find the minimum number of

coins needed to give change for
𝑛 cents

Greedy Algorithm Does Not Work

90 cents

7

11
cents

Greedy Algorithm Does Not Work

90 cents

8

Dynamic Programming

Requires optimal substructure
• Solution to larger problem contains the solutions to smaller ones

General Blueprint:
1. Identify recursive structure of the problem

• What is the “last thing” done?
2. Select a good order for solving subproblems

• “Top Down:” Solve each problem recursively
• “Bottom Up:” Iteratively solve each problem from smallest to largest

3. Save solution to each subproblem in memory

9

Identify Recursive Structure

10

Possibilities for last coin

Min 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Coins needed

Min 𝑛 − 25 + 1 if 𝑛 ≥ 25

Min 𝑛 − 11 + 1

Min 𝑛 − 10 + 1

Min 𝑛 − 5 + 1

Min 𝑛 − 1 + 1

if 𝑛 ≥ 11

if 𝑛 ≥ 10

if 𝑛 ≥ 5

if 𝑛 ≥ 1

Identify Recursive Structure

11

Min 𝑛 : minimum number of coins needed to give change for 𝑛 cents

Min 𝑛 − 25 + 1 if 𝑛 ≥ 25
Min 𝑛 − 11 + 1 if 𝑛 ≥ 11
Min 𝑛 − 10 + 1 if 𝑛 ≥ 10
Min 𝑛 − 5 + 1 if 𝑛 ≥ 5
Min 𝑛 − 1 + 1 if 𝑛 ≥ 1

Min 𝑛 =

Base Case: Min 0 = 0

Correctness: The optimal
solution must be

contained in one of these
configurations

Running time: 𝑂(𝑘𝑛)
𝑘 is number of possible coins

Is this efficient?
No, this is pseudo-polynomial time

Input size is 𝑂 𝑘 log 𝑛

The Greedy Approach

Given: target value 𝑥, list of coins 𝐶 = [𝑐&, … , 𝑐)]
(in this case 𝐶 = [1, 5, 10, 25])

Repeatedly select the largest coin less than the remaining target value:

12

Observation: We can rewrite this to take ⁄𝑛 𝑐 copies of the largest coin at each step

while 𝑥 > 0:
let 𝑐 = max(𝑐4 ∈ {𝑐& , … , 𝑐)} | 𝑐4 ≤ 𝑥)
add 𝑐 to list 𝐿
𝑥 = 𝑥 − 𝑐

output 𝐿

Running time: 𝑂(𝑘 log 𝑛) Polynomial-time!

The Greedy Approach

Given: target value 𝑥, list of coins 𝐶 = [𝑐&, … , 𝑐)]
(in this case 𝐶 = [1, 5, 10, 25])

Repeatedly select the largest coin less than the remaining target value:

13

Observation: We can rewrite this to take ⁄𝑛 𝑐 copies of the largest coin at each step

while 𝑥 > 0:
let 𝑐 = max(𝑐4 ∈ {𝑐& , … , 𝑐)} | 𝑐4 ≤ 𝑥)
add 𝑐 to list 𝐿
𝑥 = 𝑥 − 𝑐

output 𝐿

Running time: 𝑂(𝑘 log 𝑛) Polynomial-time!

Greedy approach: Only consider a single
case/subproblem, which gives an asymptotically-better

algorithm. When can we use the greedy approach?

Greedy Algorithms

Requires optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only a single subproblem to consider

General Blueprint:
1. Identify a greedy choice property

• Show that this choice is guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

14

Greedy vs. Dynamic Programming

Dynamic Programming:
• Require optimal substructure
• Optimal choice can be one of multiple smaller subproblems

Greedy:
• Require optimal substructure
• Only a single choice and a single subproblem

15

Greedy Algorithms

Require optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

16

Correctness of Greedy Algorithm

17

Optimal solution must satisfy following properties:
• At most 4 pennies
• At most 1 nickel
• At most 2 dimes
• Cannot contain 2 dimes and 1 nickel

Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 1: Suppose 𝑛 < 5
• Optimal solution must contain a penny (no other option available)
• Greedy choice: penny

Case 2: Suppose 5 ≤ 𝑛 < 10
• Optimal solution must contain a nickel

• Suppose otherwise. Then optimal solution can only contain pennies (there are no
other options), so it must contain 𝑛 > 4 pennies (contradiction)

• Greedy choice: nickel

Case 3: Suppose 10 ≤ 𝑛 < 25
• Optimal solution must contain a dime

• Suppose otherwise. By construction, the optimal solution can contain at most 1
nickel, so there must be at least 5 pennies in the optimal solution (contradiction)

• Greedy choice: dime 18

Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 4: Suppose 25 ≤ 𝑛
• Optimal solution must contain a quarter

• Suppose otherwise. There are two possibilities for the optimal solution:
• If it contains 2 dimes, then it can contain 0 nickels, in which case it contains

at least 5 pennies (contradiction)
• If it contains fewer than 2 dimes, then it can contain at most 1 nickel, so it

must also contain at least 10 pennies (contradiction)
• Greedy choice: quarter

19

Conclusion: in every case, the greedy choice is
consistent with some optimal solution

Where Does the Proof Break?

20

Suppose we added a new coin worth 11 cents

11
cents

Give an efficient algorithm to
find the minimum number of

coins needed to give change for
𝑛 cents

Correctness of Greedy Algorithm

Claim: argue that at every step, greedy choice is part of some optimal solution

Case 1: Suppose 𝑛 < 5
• Optimal solution must contain a penny (no other option available)
• Greedy choice: penny

Case 2: Suppose 5 ≤ 𝑛 < 10
• Optimal solution must contain a nickel

• Suppose otherwise. Then optimal solution can only contain pennies (there are no
other options), so it must contain 𝑛 > 4 pennies (contradiction)

• Greedy choice: nickel

Case 3: Suppose 10 ≤ 𝑛 < 25
• Optimal solution must contain a dime

• Suppose otherwise. By construction, the optimal solution can contain at most 1
nickel, so there must be at least 6 pennies in the optimal solution (contradiction).

• Greedy choice: dime 21

This argument no longer holds. Sometimes,
it’s better to take the dime; other times, it’s

better to take the 11-cent piece.

Interval Scheduling

Input: List of events with their start and end times (sorted by end time)
Output: Largest set of non-conflicting events (start time of each event
is after the end time of all preceding events)

22

[1:00, 2:15] Alumni Lunch
[3:00, 4:00] CHS Prom
[3:30, 4:45] CS 4102
[4:00, 5:15] Bingo
[4:30, 6:00] SCUBA lessons
[5:00, 7:30] Roller Derby Bout
[7:45, 11:00] Football game

Dynamic Programming Interval Scheduling

23𝑠& 𝑠M 𝑠N 𝑒M 𝑒)

Best(𝑡) = max number of events that can be scheduled before time 𝑡

Best 𝑒) = max Best 𝑠) + 1

𝑒)U&𝑠)

Best 𝑒)U&

Include event 𝑛
Exclude event 𝑛

Last action: include last event or exclude last event

Base case: Best 𝑠& = 0

Greedy Algorithms

Require optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

24

Greedy Algorithms

Require optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only one subproblem to consider!

Idea:
1. Identify a greedy choice property

• How to make a choice guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

25

Greedy Interval Scheduling

Step 1: Identify a greedy choice property
• Shortest interval

• Fewest conflicts

• Earliest start

• Earliest end

26

Greedy Interval Scheduling

Step 1: Identify a greedy choice property
• Shortest interval

• Fewest conflicts

• Earliest start

• Earliest end

27

Interval Scheduling Algorithm

28

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Algorithm

29

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Algorithm

30

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Algorithm

31

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

Interval Scheduling Algorithm

32

time = 0
for each i = 1,...,n:

if start[i] < time:
continue

else:
solution.add(i)
time = end[i]

return solution

Find event ending earliest, add to solution,
Remove it and all conflicting events,
Repeat until all events removed, return solution

assume list sorted by interval end time

Running time:
𝑂(𝑛)

Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

General idea: argue that at every step, the greedy choice is part of
some optimal solution

Approach: Start with an arbitrary optimal solution and show that
exchanging an item from the optimal solution with your greedy choice
makes the new solution no worse (i.e., the greedy choice is as good as
the optimal choice)

33

Exchange Argument for Earliest End Time

Claim: earliest ending interval is always part of some optimal solution

Let 𝑂𝑃𝑇4,X be an optimal solution for time range [𝑖, 𝑗]
Let 𝑎∗ be the first interval in [𝑖, 𝑗] to finish overall
Case 1: 𝑎∗ ∈ 𝑂𝑃𝑇4,X

• Then Claim holds by definition

Case 2: 𝑎∗ ∉ 𝑂𝑃𝑇4,X
• Let 𝑎 be the first interval to end in 𝑂𝑃𝑇4,X
• By definition 𝑎∗ ends before 𝑎, and therefore does not conflict with any other

events in 𝑂𝑃𝑇4,X
• Therefore 𝑂𝑃𝑇4,X − {𝑎} + {𝑎∗} is also optimal solution
• Then claim holds

34

