
CS 4102: Algorithms
Lecture 18: Greedy Algorithms

David Wu
Fall 2019

Warm-Up

2

Why is an algorithm’s space complexity important?

Why might a memory-intensive
algorithm be undesirable?

Disadvantages of Large Memory Complexity

Using too much memory forces you to use slow memory
Memory is expensive
May have too little memory for the algorithm to even run
Lots of memory hinders parallelism
Contention for the memory
Memory ≤ time

3

Today’s Keywords

Greedy Algorithms
Choice Function
Cache Replacement
Hardware & Algorithms

4

CLRS Readings: Chapter 16

Homework

HW6 due Tuesday, November 5, 11pm
• Dynamic programming and greedy algorithms
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

HW10A also due Tuesday, November 5, 11pm
• No late submissions allowed

5

Review: Huffman Encoding

Choose the least frequent pair, combine into a subtree

6

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1 Q:1 U:1

Letter frequencies

Review: Huffman Encoding

7

G:14 E:13 L:9 I:8 W:6 N:3 S:3 A:2 D:2 R:2 Y:2 K:1 P:1

Q:1 U:1

2
0 1

Subproblem of size 𝑛 − 1!

Choose the least frequent pair, combine into a subtree

Letter frequencies

Review: Huffman Encoding

8

G:14 E:13

27
0 1

L:9 I:8

17
0 1

Q:1 U:1

2
0 1

K:1 P:1

2
0 1

4
0 1

N:3 S:3

6
0 1

10

0 1

W:6

R:2 Y:2

4
0 1

A:2 D:2

4
0 1

8
0 1

14

0 1

240 1

410 1

680 1

Review: Optimality of Huffman Encoding

Proof Idea:
• Show that there is an optimal tree where the least frequent

characters are siblings
• Exchange argument

• Show that making them siblings and solving the new smaller sub-
problem results in an optimal solution
• Proof by contradiction

9

Greedy choice property

Optimal substructure

Huffman Analysis: Exchange Argument
Claim: if 𝑐&, 𝑐(are the least-frequent characters, then there is an
optimal prefix-free code where 𝑐&, 𝑐(are siblings

• Equivalently: encodings of 𝑐&, 𝑐(have the same length and differ only in
their last bit

10𝑐&

𝑇*+,

𝑐(

Case 1: Suppose 𝑐&, 𝑐(are siblings in 𝑇*+,.
Proof. Consider some optimal tree 𝑇*+,

Then claim holds

Huffman Analysis: Exchange Argument
Claim: if 𝑐&, 𝑐(are the least-frequent characters, then there is an
optimal prefix-free code where 𝑐&, 𝑐(are siblings

• Equivalently: encodings of 𝑐&, 𝑐(have the same length and differ only in
their last bit

11

Case 2: Suppose 𝑐&, 𝑐(are not siblings in 𝑇*+,

Proof. Consider some optimal tree 𝑇*+,

𝑐(

𝑎

𝑐&

𝑇*+,

𝑏

Let 𝑎, 𝑏 be sibling leaves of maximum depth

Optimal tree must be full (every non-
leaf node has two children);

otherwise, can move a leaf node up
and reduce the encoding size

Why must this exist?

Exchange argument: Since 𝑓01 ≤ 𝑓2 and
𝑓03 ≤ 𝑓4, swapping 𝑐& with 𝑎 (and 𝑐(with
𝑏) cannot increase the cost of the tree

Huffman Analysis: Optimal Substructure

Claim: An optimal solution for 𝐹 involves finding an optimal solution for
𝐹′, then adding 𝑐&, 𝑐(as children to 𝜎

12

𝑐& 𝑐(

𝑐& 𝑐(

𝜎

𝐹′

𝐹

Proof by contradiction: If there is a better solution for 𝐹, then can use that to
obtain a better solution for 𝐹8, which contradicts optimality of solution for 𝐹8

Caching Problem

13

Why is an algorithm’s space complexity important?

Why might a memory-intensive
algorithm be undesirable?

von Neumann Bottleneck

Reading from memory is slow
Big memory = slow memory
Solution: hierarchical memory
Takeaway for algorithms: More memory accesses means bigger runtime

14

CPU,
registers L1 Cache

If not look hereHopefully your
data in here

0.2 ns
1 ns

L2 Cache

If not look here

4 ns

L3 Cache

If not look here

20 ns

Main Memory

If not look here

100 nsDisk seek: 10 ms

Caching Problem

Cache misses are very expensive
When we load something new into cache, we must eliminate
something already there
We want the best cache “schedule” to minimize the number of misses

15

Caching Problem Definition

Input:
• 𝑘 = size of the cache
• 𝑀 = 𝑚&,𝑚(,…𝑚> = memory access pattern

Output:
• “Schedule” for the cache (list of items in the cache at each time) which

minimizes cache misses

16

Caching Example

17

Sequence of cache accesses

Cache
contents

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

C

Must evict something to
make room for D

Caching Example

18

Sequence of cache accesses

Cache
contents

Suppose we evict A

Must evict something to
make room for D

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

D

B

C

A

B

C

Caching Example

19

Sequence of cache accesses

Cache
contents

Suppose we evict C

Must evict something to
make room for D

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

A

B

D

A

B

C

Objective: Devise cache eviction strategy to minimize number of cache misses
Simplifying assumption: We know the entire sequence of accesses ahead of time

(valid assumption for data-oblivious computations)

Greedy Algorithms

Requires optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only a single subproblem to consider

General Blueprint:
1. Identify a greedy choice property

• Show that this choice is guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

20

Greedy Strategy

21

Sequence of cache accesses

Cache
contents

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

A

B

C

Belady eviction policy: Evict the item accessed farthest in the future

Greedy Strategy

22

Sequence of cache accesses

Cache
contents

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

A

B

C

Belady eviction policy: Evict the item accessed farthest in the future

Greedy choice: Evict C

Greedy Strategy

23

Sequence of cache accesses

Cache
contents

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

B

C

A

B

D

Belady eviction policy: Evict the item accessed farthest in the future

Greedy Strategy

24

Sequence of cache accesses

Cache
contents

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

B

C

A

B

D

Belady eviction policy: Evict the item accessed farthest in the future

Greedy choice: Evict B

Greedy Strategy

25

Sequence of cache accesses

Cache
contents

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

B

C

A

B

D

Belady eviction policy: Evict the item accessed farthest in the future

Greedy Strategy

26

Sequence of cache accesses

Cache
contents

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

B

C

A

B

D

Belady eviction policy: Evict the item accessed farthest in the future

Greedy choice: Evict D

Greedy Strategy

27

Sequence of cache accesses

Cache
contents

Belady eviction policy: Evict the item accessed farthest in the future

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

D

A

B

C

A

B

D

A

E

B

Greedy Strategy

28

Sequence of cache accesses

Cache
contents

Belady eviction policy: Evict the item accessed farthest in the future

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

D

A

B

C

A

B

D

A

E

B

Greedy choice: Evict B

Greedy Strategy

29

Sequence of cache accesses

Cache
contents

Belady eviction policy: Evict the item accessed farthest in the future

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

D

A

B

C

A

B

D

A

E

C

A

E

C

A

E

B

Total number of cache misses: 4

Greedy Algorithm

init cache = first k accesses

for each i = 1,...,n:

if m[i] in cache:
print cache

else:

z = furthest-in-future from cache
evict z, add m[i] to cache

print cache

30

m[i]: element accessed on 𝑖@A step

Running Time of Greedy Algorithm

init cache = first k accesses

for each i = 1,...,n:

if m[i] in cache:
print cache

else:

z = furthest-in-future from cache
evict z, add m[i] to cache

print cache

31

𝑂(𝑘)
𝑛 times
𝑂(𝑘)
𝑂(𝑘)

𝑂(𝑘𝑛)

𝑂(1)
𝑂(𝑘)

Overall runtime: 𝑂(𝑘𝑛()

Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

General idea: argue that at every step, the greedy choice is part of
some optimal solution

Approach: Start with an arbitrary optimal solution and show that
exchanging an item from the optimal solution with your greedy choice
makes the new solution no worse (i.e., the greedy choice is as good as
the optimal choice)

32

Exchange Argument for Belady Caching Algorithm

Let 𝑆 be the schedule chosen by the greedy algorithm
Let 𝑆∗ be any optimal schedule (that minimizes the number of cache misses)
Lemma: If 𝑆G and 𝑆 agree on the first 𝑖 accesses, then there is a schedule
𝑆GH& that agrees with 𝑆 on the first 𝑖 + 1 accesses such that

misses 𝑆GH& ≤ misses 𝑆G
Correctness then follows by induction:

33

𝑆∗
Agrees with 𝑆

on first 0
accesses

𝑆& 𝑆(
Agrees with 𝑆

on first
access

Agrees with 𝑆
on first 2
accesses

… 𝑆
Lemma Lemma Lemma Lemma

Optimal Greedy

misses 𝑆 = misses 𝑆> ≤ misses 𝑆>N& ≤ ⋯ ≤ misses 𝑆P = misses(𝑆∗)

Optimal Optimal

Exchange Argument for Belady Caching Algorithm

34

𝑆G

𝑆

𝑆GH& ? ? ? ?

first 𝑖 accesses

must agree with 𝑆

Goal: Need to fill in the
rest of 𝑆GH& to have no

more cache misses than 𝑆G

Exchange Argument for Belady Caching Algorithm

35

=

Consider access 𝑚GH& = 𝑑
Case 1: 𝑑 is in the cache. Then, neither 𝑆G nor 𝑆 need to evict an element so we
can use the same cache for 𝑆GH&

Cache after 𝑖 accesses with policy 𝑆G

𝑓𝑒

Cache after 𝑖 accesses with policy 𝑆

𝑓𝑒

Lemma: If 𝑆G and 𝑆 agree on the first 𝑖 accesses, then there is a schedule 𝑆GH& that
agrees with 𝑆 on the first 𝑖 + 1 accesses such that misses 𝑆GH& ≤ misses 𝑆G

Since 𝑆G agrees with 𝑆 for the first 𝑖 accesses, the state of the cache at access 𝑖 + 1
will be identical

Cache after 𝑖 accesses with policy 𝑆GH&

𝑓𝑒
Remaining evictions will follow 𝑆G:

misses 𝑆GH& = misses 𝑆G

Cache after 𝑖 accesses with policy 𝑆G

Exchange Argument for Belady Caching Algorithm

36

=

Consider access 𝑚GH& = 𝑑
Case 2: 𝑑 is not in the cache and both 𝑆G and 𝑆 evict the same element (e.g., 𝑓)
from the cache. In this case, we can use the same cache for 𝑆GH&

𝑓𝑒

Cache after 𝑖 accesses with policy 𝑆

𝑓𝑒

Lemma: If 𝑆G and 𝑆 agree on the first 𝑖 accesses, then there is a schedule 𝑆GH& that
agrees with 𝑆 on the first 𝑖 + 1 accesses such that misses 𝑆GH& ≤ misses 𝑆G

Since 𝑆G agrees with 𝑆 for the first 𝑖 accesses, the state of the cache at access 𝑖 + 1
will be identical

Cache after 𝑖 accesses with policy 𝑆GH&

𝑑𝑒
Remaining evictions will follow 𝑆G:

misses 𝑆GH& = misses 𝑆G

Exchange Argument for Belady Caching Algorithm

37

=

Consider access 𝑚GH& = 𝑑
Case 3: 𝑑 is not in the cache and 𝑆G and 𝑆 evict different elements (e.g., 𝑆G evicts 𝑒
and 𝑆 evicts 𝑓)

Cache after 𝑖 accesses with policy 𝑆G

𝑓𝑒

Cache after 𝑖 accesses with policy 𝑆

𝑓𝑒

Lemma: If 𝑆G and 𝑆 agree on the first 𝑖 accesses, then there is a schedule 𝑆GH& that
agrees with 𝑆 on the first 𝑖 + 1 accesses such that misses 𝑆GH& ≤ misses 𝑆G

Since 𝑆G agrees with 𝑆 for the first 𝑖 accesses, the state of the cache at access 𝑖 + 1
will be identical

≠
Cache after 𝑖 + 1 accesses with policy 𝑆

𝑑𝑒

Cache after 𝑖 + 1 accesses with policy 𝑆G

𝑓𝑑

Exchange Argument for Belady Caching Algorithm

38

=

Consider access 𝑚GH& = 𝑑
Case 3: 𝑑 is not in the cache and 𝑆G and 𝑆 evict different elements (e.g., 𝑆G evicts 𝑒
and 𝑆 evicts 𝑓)

Cache after 𝑖 accesses with policy 𝑆G

𝑓𝑒

Cache after 𝑖 accesses with policy 𝑆

𝑓𝑒

Lemma: If 𝑆G and 𝑆 agree on the first 𝑖 accesses, then there is a schedule 𝑆GH& that
agrees with 𝑆 on the first 𝑖 + 1 accesses such that misses 𝑆GH& ≤ misses 𝑆G

Since 𝑆G agrees with 𝑆 for the first 𝑖 accesses, the state of the cache at access 𝑖 + 1
will be identical

≠
Cache after 𝑖 + 1 accesses with policy 𝑆

𝑑𝑒

Cache after 𝑖 + 1 accesses with policy 𝑆G

𝑓𝑑

Key observation: caches only
differ in a single element

Exchange Argument for Belady Caching Algorithm

39

𝑆G

𝑆

𝑆GH& ? ? ? ?

first 𝑖 accesses

must agree with 𝑆

Objective: Need to fill in the rest of 𝑆GH& to have no more cache misses than 𝑆G

evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Exchange Argument for Belady Caching Algorithm

40

𝑆G

𝑆

𝑆GH& 𝑚,

first 𝑖 accesses

must agree with 𝑆

Objective: Need to fill in the rest of 𝑆GH& to have no more cache misses than 𝑆G

evict 𝑒, add 𝑑

evict 𝑓, add 𝑑 Strategy: Copy 𝑆G until first access
in 𝑆G that involves adding or

removing 𝑒 or 𝑓 from the cache

first access that adds/removes 𝑒 or 𝑓 in 𝑆G

Exchange Argument for Belady Caching Algorithm

41

𝑆G

𝑆

𝑆GH& 𝑚,

first 𝑖 accesses

must agree with 𝑆

Objective: Need to fill in the rest of 𝑆GH& to have no more cache misses than 𝑆G

evict 𝑒, add 𝑑

evict 𝑓, add 𝑑 Strategy: Copy 𝑆G until first access
in 𝑆G that involves adding or

removing 𝑒 or 𝑓 from the cache

first access that adds/removes 𝑒 or 𝑓 in 𝑆G

Three cases: 𝑚, = 𝑒;
𝑚, = 𝑓; 𝑚, ≠ 𝑒, 𝑓

Exchange Argument for Belady Caching Algorithm

42

𝑆G

𝑆GH&

𝑒

𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 1:
𝑚, = 𝑒

evict some element 𝑥 and add 𝑒 to cache

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Two possibilities:
• 𝑥 = 𝑓. Then, cache after 𝑡 accesses with policy 𝑆G is identical to that with policy 𝑆GH&:

Cache after 𝑡 accesses with policy 𝑆G

𝑒
Remaining evictions will follow 𝑆G:
misses 𝑆GH& < misses 𝑆G

Exchange Argument for Belady Caching Algorithm

43

𝑆G

𝑆GH&

𝑒

𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 1:
𝑚, = 𝑒

evict some element 𝑥 and add 𝑒 to cache

Two possibilities:
• 𝑥 ≠ 𝑓.

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓𝑥

Cache after 𝑡 accesses with policy 𝑆G

𝑓𝑒

?

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Exchange Argument for Belady Caching Algorithm

44

𝑆G

𝑆GH&

𝑒

𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 1:
𝑚, = 𝑒

evict some element 𝑥 and add 𝑒 to cache

Two possibilities:
• 𝑥 ≠ 𝑓. 𝑆GH& will also evict 𝑥 from the cache and load 𝑓, so caches now match.

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒𝑥

Cache after 𝑡 accesses with policy 𝑆GH&

𝑒𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Exchange Argument for Belady Caching Algorithm

45

𝑆G

𝑆GH&

𝑒

𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 1:
𝑚, = 𝑒

evict some element 𝑥 and add 𝑒 to cache

Two possibilities:
• 𝑥 ≠ 𝑓. 𝑆GH& will also evict 𝑥 from the cache and load 𝑓, so caches now match.

Remaining evictions will follow 𝑆G:
misses 𝑆GH& = misses 𝑆G

Cache after 𝑡 accesses with policy 𝑆GH&

𝑒𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Exchange Argument for Belady Caching Algorithm

46

𝑆G

𝑆

𝑆GH& 𝑚,

first 𝑖 accesses

must agree with 𝑆

Objective: Need to fill in the rest of 𝑆GH& to have no more cache misses than 𝑆G

evict 𝑒, add 𝑑

evict 𝑓, add 𝑑 Strategy: Copy 𝑆G until first access
in 𝑆G that involves adding or

removing 𝑒 or 𝑓 from the cache

first access that adds/removes 𝑒 or 𝑓 in 𝑆G

Three cases: 𝑚, = 𝑒;
𝑚, = 𝑓; 𝑚, ≠ 𝑒, 𝑓

Exchange Argument for Belady Caching Algorithm

47

𝑆G

𝑆GH& 𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 2:
𝑚, = 𝑓

element 𝑒 was not accessed here (by definition of 𝑚,)

Contradiction: greedy choice is to evict element that is furthest in future, but element 𝑓 is used
before element 𝑒

Conclusion: this case cannot happen

Exchange Argument for Belady Caching Algorithm

48

𝑆G

𝑆

𝑆GH& 𝑚,

first 𝑖 accesses

must agree with 𝑆

Objective: Need to fill in the rest of 𝑆GH& to have no more cache misses than 𝑆G

evict 𝑒, add 𝑑

evict 𝑓, add 𝑑 Strategy: Copy 𝑆G until first access
in 𝑆G that involves adding or

removing 𝑒 or 𝑓 from the cache

first access that adds/removes 𝑒 or 𝑓 in 𝑆G

Three cases: 𝑚, = 𝑒;
𝑚, = 𝑓; 𝑚, ≠ 𝑒, 𝑓

Exchange Argument for Belady Caching Algorithm

49

𝑆G

𝑆GH& 𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 3:
𝑚, ≠ 𝑒, 𝑓

evict 𝑓 and add 𝑚, = 𝑥 to cache

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 accesses with policy 𝑆G

𝑥

Observation: not loading 𝑒, 𝑓 so must be evicting either 𝑒 or 𝑓
In 𝑆G, 𝑒 was already evicted and has not been loaded (by definition of 𝑚,)
Only option is for 𝑆G to evict 𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Exchange Argument for Belady Caching Algorithm

50

𝑆G

𝑆GH& 𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 3:
𝑚, ≠ 𝑒, 𝑓

evict 𝑓 and add 𝑚, = 𝑥 to cache

Observation: not loading 𝑒, 𝑓 so must be evicting either 𝑒 or 𝑓
In 𝑆G, 𝑒 was already evicted and has not been loaded (by definition of 𝑚,).
Only option is for 𝑆G to evict 𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 accesses with policy 𝑆G

𝑥

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Evict 𝑒 and add 𝑥 in 𝑆GH&
will yield same cache state!

Exchange Argument for Belady Caching Algorithm

51

𝑆G

𝑆GH& 𝑚,

first 𝑖 accesses evict 𝑒, add 𝑑

evict 𝑓, add 𝑑

Case 3:
𝑚, ≠ 𝑒, 𝑓

evict 𝑓 and add 𝑚, = 𝑥 to cache

Cache after 𝑡 accesses with policy 𝑆GH&

𝑥
Remaining evictions will follow 𝑆G:
misses 𝑆GH& = misses 𝑆G

Cache after 𝑡 − 1 accesses with policy 𝑆G

𝑓

Cache after 𝑡 − 1 accesses with policy 𝑆GH&

𝑒

Evict 𝑒 and add 𝑥 in 𝑆GH&
will yield same cache state!

Exchange Argument for Belady Caching Algorithm

52

𝑆G

𝑆

𝑆GH& 𝑚,

first 𝑖 accesses

must agree with 𝑆

Conclusion: In all three cases, we can construct a strategy where
misses 𝑆GH& ≤ misses(𝑆G)

evict 𝑒, add 𝑑

evict 𝑓, add 𝑑 Strategy: Copy 𝑆G until first access
in 𝑆G that involves adding or

removing 𝑒 or 𝑓 from the cache

first access that adds/removes 𝑒 or 𝑓 in 𝑆G

Three cases: 𝑚, = 𝑒;
𝑚, = 𝑓; 𝑚, ≠ 𝑒, 𝑓

Exchange Argument for Belady Caching Algorithm

Let 𝑆 be the schedule chosen by the greedy algorithm
Let 𝑆∗ be any optimal schedule (that minimizes the number of cache misses)
Lemma: If 𝑆G and 𝑆 agree on the first 𝑖 accesses, then there is a schedule
𝑆GH& that agrees with 𝑆 on the first 𝑖 + 1 accesses such that

misses 𝑆GH& ≤ misses 𝑆G
Correctness then follows by induction:

53

𝑆∗
Agrees with 𝑆

on first 0
accesses

𝑆& 𝑆(
Agrees with 𝑆

on first
access

Agrees with 𝑆
on first 2
accesses

… 𝑆
Agrees with 𝑆

on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy

misses 𝑆 = misses 𝑆> ≤ misses 𝑆>N& ≤ ⋯ ≤ misses 𝑆P = misses(𝑆∗)

Optimal Optimal

Belady Caching

54

Sequence of cache accesses

Cache
contents

Belady eviction policy: Evict the item accessed farthest in the future

A

B

C

A

B

C

A

B

C

A B C D A D E A D B A E C E A

A

B

D

A

B

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

D

A

B

C

A

B

D

A

E

C

A

E

C

A

E

B

In online settings, we do not know exact sequence of memory accesses, so cannot compute farthest future access
Heuristic: past access pattern is a good predictor for future
Strategy: evict the least-recently used item (LRU caching)

