CS 4102: Algorithms Lecture 18: Greedy Algorithms

David Wu Fall 2019

Why is an algorithm's space complexity important?

Why might a memory-intensive algorithm be undesirable?

Disadvantages of Large Memory Complexity

- Using too much memory forces you to use <u>slow</u> memory
- Memory is expensive
- May have too little memory for the algorithm to even run
- Lots of memory hinders parallelism
- Contention for the memory
- Memory \leq time

Today's Keywords

- Greedy Algorithms
- **Choice Function**
- Cache Replacement
- Hardware & Algorithms

CLRS Readings: Chapter 16

Homework

HW6 due Tuesday, November 5, 11pm

- Dynamic programming and greedy algorithms
- Written (use LaTeX!) Submit <u>both</u> **zip** and **pdf** (two <u>separate</u> attachments)!

HW10A also due Tuesday, November 5, 11pm

• No late submissions allowed

Review: Huffman Encoding

Choose the least frequent pair, combine into a subtree

Letter frequencies

Review: Huffman Encoding

Choose the least frequent pair, combine into a subtree

Subproblem of size n - 1!

Review: Huffman Encoding

Review: Optimality of Huffman Encoding

Proof Idea:

- Show that there is an optimal tree where the least frequent characters are siblings
 - Exchange argument
- Show that making them siblings and solving the new smaller subproblem results in an optimal solution
 - Proof by contradiction

Greedy choice property

Optimal substructure

Huffman Analysis: Exchange Argument

Claim: if c_1 , c_2 are the least-frequent characters, then there is an <u>optimal</u> prefix-free code where c_1 , c_2 are siblings

• Equivalently: encodings of c_1, c_2 have the same length and differ only in their last bit

Proof. Consider <u>some</u> optimal tree T_{opt}

Case 1: Suppose c_1, c_2 are siblings in T_{opt} . Then claim holds

Huffman Analysis: Exchange Argument

Claim: if c_1 , c_2 are the least-frequent characters, then there is an <u>optimal</u> prefix-free code where c_1 , c_2 are siblings

 Equivalently: encodings of c₁, c₂ have the same length and differ only in their last bit

Proof. Consider <u>some</u> optimal tree T_{opt}

Case 2: Suppose c_1, c_2 are not siblings in T_{opt}

Optimal tree must be full (every nonleaf node has two children); otherwise, can move a leaf node up and reduce the encoding size

Let *a*, *b* be sibling leaves of maximum depth Why must this exist?

Exchange argument: Since $f_{c_1} \leq f_a$ and $f_{c_2} \leq f_b$, swapping c_1 with a (and c_2 with b) cannot increase the cost of the tree

Huffman Analysis: Optimal Substructure

Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Proof by contradiction: If there is a better solution for F, then can use that to obtain a better solution for F', which contradicts optimality of solution for F'

Caching Problem

Why is an algorithm's space complexity important?

Why might a memory-intensive algorithm be undesirable?

von Neumann Bottleneck

Reading from memory is <u>slow</u>

Big memory = slow memory

Solution: hierarchical memory

Takeaway for algorithms: More memory accesses means bigger runtime

Caching Problem

Cache misses are very expensive

When we load something new into cache, we must eliminate something already there

We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

Input:

- k = size of the cache
- $M = [m_1, m_2, ..., m_n] = memory access pattern$

Output:

• "Schedule" for the cache (list of items in the cache at each time) which minimizes cache misses

Caching Example

Sequence of cache accesses

Caching Example

Suppose we evict A

Sequence of cache accesses

Caching Example

Sequence of cache accesses

Objective: Devise cache eviction strategy to <u>minimize</u> number of cache misses **Simplifying assumption:** We know the entire sequence of accesses ahead of time (valid assumption for <u>data-oblivious</u> computations)

Greedy Algorithms

Requires optimal substructure

- Solution to larger problem contains the solution to a smaller one
- Only a single subproblem to consider

General Blueprint:

- 1. Identify a greedy choice property
 - Show that this choice is guaranteed to be included in <u>some</u> optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

Belady eviction policy: Evict the item accessed farthest in the future

Sequence of cache accesses

Belady eviction policy: Evict the item accessed farthest in the future

Sequence of cache accesses

Greedy choice: Evict C

Belady eviction policy: Evict the item accessed farthest in the future

Cache contents

Sequence of cache accesses

Belady eviction policy: Evict the item accessed farthest in the future

Sequence of cache accesses

Greedy choice: Evict B

Belady eviction policy: Evict the item accessed farthest in the future

Cache contents

Sequence of cache accesses

Belady eviction policy: Evict the item accessed farthest in the future

Cache contents

Sequence of cache accesses

Greedy choice: Evict D

Belady eviction policy: Evict the item accessed farthest in the future

Cache contents

Sequence of cache accesses

Belady eviction policy: Evict the item accessed farthest in the future

Cache contents

Sequence of cache accesses

Greedy choice: Evict B

Belady eviction policy: Evict the item accessed farthest in the future

Cache contents

Sequence of cache accesses

Total number of cache misses: 4

Greedy Algorithm

```
init cache = first k accesses
for each i = 1, \ldots, n:
    if m[i] in cache: m[i]:element accessed on i<sup>th</sup> step
         print cache
    else:
          z = furthest-in-future from cache
         evict z, add m[i] to cache
         print cache
```

Running Time of Greedy Algorithm

init cache = first k accesses	O(k)
<pre>for each i = 1,, n:</pre>	n times
if m[i] in cache:	O(k)
print cache	O(k)
else:	
z = furthest-in-future from cache	0(kn)
evict z, add m[i] to cache	0(1)
print cache	O(k)

Overall runtime: $O(kn^2)$

Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

<u>General idea:</u> argue that at every step, the greedy choice is part of <u>some</u> optimal solution

<u>Approach</u>: Start with an arbitrary optimal solution and show that <u>exchanging</u> an item from the optimal solution with your greedy choice makes the new solution no worse (i.e., the greedy choice is as good as the optimal choice)

Let *S* be the schedule chosen by the greedy algorithm

Let S^* be any optimal schedule (that minimizes the number of cache misses) Lemma: If S_i and S agree on the first i accesses, then there is a schedule S_{i+1} that agrees with S on the first i + 1 accesses such that misses $(S_{i+1}) \leq misses(S_i)$

Correctness then follows by induction:

 $\operatorname{misses}(S) = \operatorname{misses}(S_n) \le \operatorname{misses}(S_{n-1}) \le \dots \le \operatorname{misses}(S_0) = \operatorname{misses}(S^*)$

Goal: Need to fill in the rest of S_{i+1} to have <u>no</u> more cache misses than S_i

Lemma: If S_i and S agree on the first i accesses, then there is a schedule S_{i+1} that agrees with S on the first i + 1 accesses such that $\frac{\text{misses}(S_{i+1}) \leq \text{misses}(S_i)}{\text{misses}(S_i)}$

Since S_i agrees with S for the first i accesses, the state of the cache at access i + 1 will be <u>identical</u>

Cache after i accesses with policy S_i

esses with policy S_i Cache a

Cache after *i* accesses with policy *S*

Consider access $m_{i+1} = d$

Case 1: *d* is in the cache. Then, neither S_i nor S need to evict an element so we can use the same cache for S_{i+1}

Cache after *i* accesses with policy S_{i+1}

Remaining evictions will follow S_i : misses $(S_{i+1}) = misses(S_i)$

Lemma: If S_i and S agree on the first i accesses, then there is a schedule S_{i+1} that agrees with S on the first i + 1 accesses such that $misses(S_{i+1}) \le misses(S_i)$

Since S_i agrees with S for the first i accesses, the state of the cache at access i + 1 will be <u>identical</u>

Cache after i accesses with policy S_i

Consider access $m_{i+1} = d$

Cache after i accesses with policy S

Case 2: *d* is not in the cache and both S_i and S evict the <u>same</u> element (e.g., *f*) from the cache. In this case, we can use the same cache for S_{i+1}

Remaining evictions will follow S_i : misses $(S_{i+1}) = misses(S_i)$

Lemma: If S_i and S agree on the first i accesses, then there is a schedule S_{i+1} that agrees with S on the first i + 1 accesses such that $misses(S_{i+1}) \le misses(S_i)$

Since S_i agrees with S for the first i accesses, the state of the cache at access i + 1 will be <u>identical</u>

 $\begin{array}{|c|c|c|c|c|}\hline e & f & = & e & f \\ \hline Cache after i accesses with policy S_i & Cache after i accesses with policy S \\ \hline Consider access m_{i+1} = d \end{array}$

Case 3: d is not in the cache and S_i and S evict different elements (e.g., S_i evicts e and S evicts f)

Lemma: If S_i and S agree on the first i accesses, then there is a schedule S_{i+1} that agrees with S on the first i + 1 accesses such that $misses(S_{i+1}) \le misses(S_i)$

Since S_i agrees with S for the first i accesses, the state of the cache at access i + 1 will be <u>identical</u>

eeCache after *i* accesses with policy *S* Cache after *i* accesses with policy S_i Consider access $m_{i+1} = d$ **Key observation:** caches only **Case 3:** d is not in the cache and S_i and S evict differ in a single element and S evicts f) # dde38 Cache after i + 1 accesses with policy S_i Cache after i + 1 accesses with policy S

first *i* accesses evict *e*, add *d*

Two possibilities:

• x = f. Then, cache after t accesses with policy S_i is identical to that with policy S_{i+1} :

eCache after *t* accesses with policy S_i Remaining evictions will follow S_i : misses $(S_{i+1}) < misses(S_i)$

Two possibilities:

• $x \neq f$. S_{i+1} will also evict x from the cache and load f, so caches now match.

Two possibilities:

• $x \neq f$. S_{i+1} will also evict x from the cache and load f, so caches now match.

Remaining evictions will follow S_i : misses (S_{i+1}) = misses (S_i)

Cache after t accesses with policy S_{i+1}

element e was not accessed here (by definition of m_t)

Contradiction: greedy choice is to evict element that is furthest in future, but element f is used <u>before</u> element e

Conclusion: this case cannot happen

Observation: not loading e, f so must be evicting either e or f

In S_i , e was already evicted and has not been loaded (by definition of m_t)

Only option is for S_i to evict f

Conclusion: In all three cases, we can construct a strategy where

 $misses(S_{i+1}) \le misses(S_i)$

Let *S* be the schedule chosen by the greedy algorithm

Let S^* be any optimal schedule (that minimizes the number of cache misses) Lemma: If S_i and S agree on the first i accesses, then there is a schedule S_{i+1} that agrees with S on the first i + 1 accesses such that misses $(S_{i+1}) \leq misses(S_i)$

Correctness then follows by induction:

 $\operatorname{misses}(S) = \operatorname{misses}(S_n) \le \operatorname{misses}(S_{n-1}) \le \dots \le \operatorname{misses}(S_0) = \operatorname{misses}(S^*)$

Belady Caching

Belady eviction policy: Evict the item accessed farthest in the future

 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 B
 B
 C

Sequence of cache accesses

In online settings, we do not know exact sequence of memory accesses, so cannot compute farthest future access Heuristic: past access pattern is a good predictor for future Strategy: evict the <u>least-recently</u> used item (LRU caching)