
CS 4102: Algorithms
Lecture 19: Graph Algorithms (MST)

David Wu
Fall 2019

Warm-Up

2

Show that for any graph 𝐺 = 𝑉, 𝐸 ,
∑'∈) deg(𝑣) is even

Recall: degree of a node is number
of edges incident upon that node

deg 𝐴 = 2 and deg 𝐸 = 4
A

B

C

D

E

F
G

I

H

Warm-Up

Consider any edge 𝑒 ∈ 𝐸
This edge is incident on 2 vertices (on each end)
This means ∑'∈) deg(𝑣) = 2 ⋅ 𝐸
Therefore ∑'∈) deg(𝑣) is even

3

A

B

C

D

E

F
G

I

H

Today’s Keywords

Greedy Algorithms
Choice Function
Graphs
Minimum Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm
Cut and Cycle Properties

4

CLRS Readings: Chapter 22, 23

Homework

HW6 due today (Tuesday, November 5), 11pm
• Dynamic programming and greedy algorithms
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

HW10A also due today, 11pm
• No late submissions allowed

HW7 out today, due Thursday, November 14, 11pm
• Graph algorithms
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

HW10B also out today, due Thursday, November 14, 11pm
• No late submissions allowed

5

tomorrow (Wednesday), 11pm

The ARPANET Problem

6

Problem: need to connect all of these places into a network
We have a list of possible wires to use, along with the cost of each wire

Goal: Find the cheapest set of wires to run to connect all places

10

2

6

11

9
5

8

3

7

3

1

8

12

9

Find a
minimum spanning

tree (MST)

The ARPANET Problem

7

Problem: need to connect all of these places into a network
We have a list of possible wires to use, along with the cost of each wire

Goal: Find the cheapest set of wires to run to connect all places

10

2

6

5

8

3

1

8 Find a
minimum spanning

tree (MST)

Graphs

8

10

2

6
11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: 𝐺 = (𝑉, 𝐸) 𝑉: Vertices/Nodes
𝐸: Edges

𝑤 𝑒 = weight of edge 𝑒
𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼}
𝐸 = { 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐵, 𝐶 , … }

Adjacency List Representation

9

A

B

C

D

E

F

G

H

I

B C

A C E

A B D F

C E F

B D G H

C D G

E F H I

E G I

G H

Tradeoffs
Space:
Time to list neighbors:
Time to check edge (𝐴, 𝐵):

𝑉 + 𝐸
deg(𝐴)

deg(𝐴)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Tradeoffs
Space:
Time to list neighbors:
Time to check edge (𝐴, 𝐵):

Adjacency Matrix Representation

10

𝑉 @

𝑉
𝑂(1)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H
A 10 12

B 10 9 8

C 12 9 3 1

D 3 7 3

E 8 7 5 8

F 1 3 6

G 5 6 9 11

H 8 9 8

I 11 8

A B C D E F G H I

Paths in Graphs

11

Path: A sequence of nodes (𝑣C, 𝑣@, … , 𝑣D)
where ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣J, 𝑣JKC ∈ 𝐸

Simple Path: A path in
which each node appears
at most once

Cycle: A path of length > 2
where 𝑣C = 𝑣D

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Connected Graphs

12

A graph 𝐺 = (𝑉, 𝐸) is connected if there is a path from 𝑣C
to 𝑣@ for every pair of distinct nodes 𝑣C ≠ 𝑣@ ∈ 𝑉

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Trees

13

Tree: A connected graph 𝑇 with no cycles
(i.e., there is a unique path from every node

to every other node)

10

11

9
5

3

7

312

A

B

C

D

E

F
G

I

H How many edges does 𝑇 have?
𝑉 − 1

Proof by induction: removing
an edge from a tree produces

two smaller trees

Spanning Tree

14

A tree 𝑇 = (𝑉O, 𝐸O) is a spanning tree for an undirected
graph 𝐺 = (𝑉, 𝐸) if 𝑉O = 𝑉, 𝐸O ⊆ 𝐸

(namely, 𝑇 connects or “spans” all the nodes in 𝐺)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Minimum Spanning Tree

15

A tree 𝑇 = (𝑉O, 𝐸O) is a minimum spanning tree for an
undirected graph 𝐺 = (𝑉, 𝐸) if 𝑇 is a spanning tree of

minimal cost

Cost 𝑇 = U
V∈WX

𝑤(𝑒)

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Greedy Algorithms

Requires optimal substructure
• Solution to larger problem contains the solution to a smaller one
• Only a single subproblem to consider

General Blueprint:
1. Identify a greedy choice property

• Show that this choice is guaranteed to be included in some optimal solution
2. Repeatedly apply the choice property until no subproblems remain

16

Kruskal’s Algorithm

17

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

18

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

19

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

20

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

21

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so discard

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

22

1. Start with an empty tree 𝑇
2. Add to 𝑇 the lowest-weight edge that does not create a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

23

1. Start with an empty tree 𝑇
2. Add to 𝑇 the lowest-weight edge that does not create a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

24

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so discard

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

25

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

26

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

27

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so discard

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

28

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so discard

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

29

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

30

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so discard

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Kruskal’s Algorithm

31

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Edge forms a cycle, so discard

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not

create a cycle

Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

General idea: argue that at every step, the greedy choice is part of
some optimal solution

Approach: Start with an arbitrary optimal solution and show that
exchanging an item from the optimal solution with your greedy choice
makes the new solution no worse (i.e., the greedy choice is as good as
the optimal choice)

32

Graph Cuts

33

A cut of a graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

𝑆

An edge 𝑣C, 𝑣@ ∈ 𝐸 crosses a
cut if 𝑣C ∈ 𝑆 and 𝑣@ ∈ 𝑉 − 𝑆

An edge 𝑣C, 𝑣@ ∈ 𝐸 respects a cut
if 𝑣C, 𝑣@ ∈ 𝑆 or if 𝑣C, 𝑣@ ∈ 𝑉 − 𝑆

10

2

6 11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Notion extends naturally
to a set of edges

Cut Property of MSTs

Suppose 𝐴 is a subset of edges of some minimum spanning tree 𝑇
Let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects
Let 𝑒 be the minimum-weight edge which crosses 𝑆, 𝑉 − 𝑆
Claim: 𝐴 ∪ {𝑒} is also a subset of some minimum spanning tree

34

𝑆

Proof of Cut Property

Suppose 𝐴 is a subset of edges of some minimum spanning tree 𝑇
Let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects
Let 𝑒 be the minimum-weight edge which crosses 𝑆, 𝑉 − 𝑆
Claim: 𝐴 ∪ {𝑒} is also a subset of some minimum spanning tree

35

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑉 − 𝑆

Proof of Cut Property

Suppose 𝐴 is a subset of edges of some minimum spanning tree 𝑇
Let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects
Let 𝑒 be the minimum-weight edge which crosses 𝑆, 𝑉 − 𝑆
Claim: 𝐴 ∪ {𝑒} is also a subset of some minimum spanning tree

36

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑉 − 𝑆

Case 1: 𝑒 ∈ 𝑇

𝑒

Claim holds

Proof of Cut Property

37

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑉 − 𝑆

Case 2: 𝑒 ∉ 𝑇

𝑒

Suppose 𝐴 is a subset of edges of some minimum spanning tree 𝑇
Let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects
Let 𝑒 be the minimum-weight edge which crosses 𝑆, 𝑉 − 𝑆
Claim: 𝐴 ∪ {𝑒} is also a subset of some minimum spanning tree

Proof of Cut Property

38

𝑣@

𝑣C

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑉 − 𝑆

Case 2: 𝑒 ∉ 𝑇

𝑒

Suppose 𝐴 is a subset of edges of some minimum spanning tree 𝑇
Let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects
Let 𝑒 be the minimum-weight edge which crosses 𝑆, 𝑉 − 𝑆
Claim: 𝐴 ∪ {𝑒} is also a subset of some minimum spanning tree

Let 𝑒 = (𝑣C, 𝑣@)

Proof of Cut Property

39

𝑣@

𝑣C

𝑆

𝑇

𝐴 ⊆ 𝑇

𝑉 − 𝑆

Case 2: 𝑒 ∉ 𝑇
Let 𝑒 = (𝑣C, 𝑣@)
Since 𝑇 is a spanning tree, there is a
path from 𝑣C to 𝑣@ in 𝑇𝑒\

Let 𝑒\ be an edge that crosses the cut

Replace 𝑒′ with 𝑒 in 𝑇

Suppose 𝐴 is a subset of edges of some minimum spanning tree 𝑇
Let (𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects
Let 𝑒 be the minimum-weight edge which crosses 𝑆, 𝑉 − 𝑆
Claim: 𝐴 ∪ {𝑒} is also a subset of some minimum spanning tree

𝑒

Proof of Cut Property

Let 𝑇\ be the tree obtained by replacing 𝑒′ with 𝑒 in 𝑇
• 𝑇′ is still a spanning tree (all nodes in 𝑆 and 𝑉 − 𝑆 are connected, and

there is an edge between 𝑆 and 𝑉 − 𝑆)
• Cost 𝑇\ = Cost 𝑇 − 𝑤 𝑒\ + 𝑤 𝑒 ≤ Cost(𝑇) since 𝑤 𝑒\ ≥ 𝑤(𝑒)

Conclusion: if 𝑇 is a MST, then so is 𝑇\

40

𝑇

𝐴 ⊆ 𝑇

Case 2: 𝑒 ∉ 𝑇
Let 𝑒 = (𝑣C, 𝑣@)
Since 𝑇 is a spanning tree, there is a
path from 𝑣C to 𝑣@ in 𝑇

Let 𝑒\ be an edge that crosses the cut

Replace 𝑒′ with 𝑒 in 𝑇

𝑣@

𝑣C

𝑆

𝑉 − 𝑆

𝑒\
𝑒

Correctness of Kruskal’s Algorithm

41

Let 𝑇_ be the initial (empty) tree, and 𝑇J be the tree after adding 𝑖 edges (using the
greedy strategy above).

Claim: If 𝑇J is consistent with some MST, then 𝑇JKC is also consistent with some MST

Proof of Kruskal’s Theorem: Follows by induction on the number of nodes in 𝐺:
• 𝑇_: an empty tree is (trivially) consistent with an MST
• By the above claim, if 𝑇J is consistent with some MST, so is 𝑇JKC

Conclusion: 𝑇) aC is consistent with some MST, which is the output of the
algorithm

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

Correctness of Kruskal’s Algorithm

42

Let 𝑇_ be the initial (empty) tree, and 𝑇J be the tree after adding 𝑖 edges (according to
the specification of Kruskal’s algorithm)

Claim: If 𝑇J is consistent with some MST, then 𝑇JKC is also consistent with some MST

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Tree 𝑇J after adding 𝑖 nodes

Correctness of Kruskal’s Algorithm

43

Let 𝑇_ be the initial (empty) tree, and 𝑇J be the tree after adding 𝑖 edges (according to
the specification of Kruskal’s algorithm)

Claim: If 𝑇J is consistent with some MST, then 𝑇JKC is also consistent with some MST

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Tree 𝑇J after adding 𝑖 nodes

Consider edge 𝑒 chosen by Kruskal’s algorithm

𝑒

Correctness of Kruskal’s Algorithm

44

Let 𝑇_ be the initial (empty) tree, and 𝑇J be the tree after adding 𝑖 edges (according to
the specification of Kruskal’s algorithm)

Claim: If 𝑇J is consistent with some MST, then 𝑇JKC is also consistent with some MST

10

2

6 11

9
5

8

3

7

3

1

8

12

9

𝑣

Tree 𝑇J after adding 𝑖 nodes

Consider edge 𝑒 chosen by Kruskal’s algorithm

𝑒

Choose one of the endpoints 𝑣 of 𝑒
arbitrarily and let 𝑆 be the set of nodes
reachable from 𝑣 in 𝑇J

𝑆
By assumption, 𝑇J is consistent with some
MST and respects the cut 𝑆, 𝑉 − 𝑆

𝑆 is the set of nodes reachable from 𝑣: cannot
have an edge between node reachable from 𝑉

and one not reachable from 𝑉

Correctness of Kruskal’s Algorithm

45

Let 𝑇_ be the initial (empty) tree, and 𝑇J be the tree after adding 𝑖 edges (according to
the specification of Kruskal’s algorithm)

Claim: If 𝑇J is consistent with some MST, then 𝑇JKC is also consistent with some MST

10

2

6 11

9
5

8

3

7

3

1

8

12

9

𝑣

Tree 𝑇J after adding 𝑖 nodes

Consider edge 𝑒 chosen by Kruskal’s algorithm

𝑒

Choose one of the endpoints 𝑣 of 𝑒
arbitrarily and let 𝑆 be the set of nodes
reachable from 𝑣 in 𝑇J

𝑆
By assumption, 𝑇J is consistent with some
MST and respects the cut 𝑆, 𝑉 − 𝑆

Cut property: 𝑇J ∪ 𝑒 = 𝑇JKC is also
consistent with some MST

Correctness of Kruskal’s Algorithm

46

Let 𝑇_ be the initial (empty) tree, and 𝑇J be the tree after adding 𝑖 edges (according to
the specification of Kruskal’s algorithm)

Claim: If 𝑇J is consistent with some MST, then 𝑇JKC is also consistent with some MST

10

2

6 11

9
5

8

3

7

3

1

8

12

9

𝑣

𝑇JKC = 𝑇J ∪ 𝑒

Consider edge 𝑒 chosen by Kruskal’s algorithm

𝑒

Choose one of the endpoints 𝑣 of 𝑒
arbitrarily and let 𝑆 be the set of nodes
reachable from 𝑣 in 𝑇J

𝑆
By assumption, 𝑇J is consistent with some
MST and respects the cut 𝑆, 𝑉 − 𝑆

Cut property: 𝑇J ∪ 𝑒 = 𝑇JKC is also
consistent with some MST

Kruskal’s Algorithm

47

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

Time complexity: 𝑂 𝛼 𝑛 ,
where 𝛼 is the “inverse Ackermann function” (extremely slow-growing function)

for all “practical” 𝑛, 𝛼 𝑛 < 5 (e.g., for all 𝑛 < 2@f
ghhig

− 3)

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

Kruskal’s Algorithm

48

Implementation: iterate over each of the edges in the graph (sorted by weight), and
maintain nodes in a union-find (also called disjoint-set) data structure:

• Data structure that tracks elements partitioned into different sets
• Union: Merges two sets into one
• Find: Given an element, return the index of the set it belongs to
• Both “union” and “find” operations are very fast

• Overall running time: 𝑂 𝐸 log 𝐸 = 𝑂 𝐸 log 𝑉
𝐸 ≤ 𝑉 @ ⇒ log 𝐸 = 𝑂 log 𝑉

1. Start with an empty tree 𝑇
2. Repeatedly add to 𝑇 the lowest-weight edge that does not create a cycle

General MST Algorithm

49

1. Start with an empty tree 𝑇
2. Repeat 𝑉 − 1 times:
• Pick a cut (𝑆, 𝑉 − 𝑆) which 𝑇 respects
• Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

10

2

6 11

9
5

8

3

7

3

1

8

12

9

𝑣
𝑆

Correctness analysis follows by repeated application of Cut Property

Prim’s Algorithm

50

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

51

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

52

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

53

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

54

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

55

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

56

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

57

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

58

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

59

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9

Prim’s Algorithm

60

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
• Maintain edges incident on 𝑇 in a min-heap (priority queue)
• Maintain a (sorted) list of nodes that have already been added to the tree
• Each time node 𝑣 is added to the tree, add all edges incident on 𝑣 to heap
• To find the next edge to add, repeatedly extract from heap until finding an

edge incident on node that is not currently contained in the tree

Overall running time: 𝑂 𝐸 log 𝑉
• If we use Fibonacci heaps instead of binary heaps: 𝑂 𝐸 + 𝑉 log 𝑉

MST Algorithms

Kruskal ’56; Prim ‘57: 𝑂(𝐸 log 𝑉)
Fredman-Tarjan ‘84: 𝑂(𝐸 + 𝑉 log 𝑉)
Gabow-Galil-Spencer-Tarjan ‘86: 𝑂 𝐸 log (log∗ 𝑉)
Chazelle ‘00: 𝑂(𝐸 ⋅ 𝛼 𝑉)
Pettie-Ramachandran ’02: 𝑂(?) (optimal, but unknown running time)

Karger-Klein-Tarjan ‘95: 𝑂(𝐸) (in expectation)

Extra Credit: Read + summarize any of these algorithms (other than Kruskal/Prim)

61

Cycle Property of MSTs

Take any cycle in a graph 𝐺 = 𝑉, 𝐸
Then, there exists some MST of 𝐺 that does not contain the maximum-
weight edge on that cycle

62

Cycle Property of MSTs

Take any cycle in a graph 𝐺 = 𝑉, 𝐸
Then, there exists some MST of 𝐺 that does not contain the maximum-
weight edge on that cycle

63

Proof. Take any cycle (𝑣C, 𝑣@, … , 𝑣o, 𝑣C) in 𝐺
and take any MST 𝑇 of 𝐺

Let 𝑒 be the maximum-weight edge in the
cycle

Case 1: 𝑒 ∉ 𝑇
• Claim follows

𝑒

Cycle Property of MSTs

Take any cycle in a graph 𝐺 = 𝑉, 𝐸
Then, there exists some MST of 𝐺 that does not contain the maximum-
weight edge on that cycle

64

Proof. Take any cycle (𝑣C, 𝑣@, … , 𝑣o, 𝑣C) in 𝐺
and take any MST 𝑇 of 𝐺

Let 𝑒 be the maximum-weight edge in the
cycle

Case 2: 𝑒 ∈ 𝑇
• Take any cut 𝑆, 𝑉 − 𝑆 that 𝑒 crosses
• There is another edge 𝑒\ that crosses

the cut (since we have a cycle)
• Exchange 𝑒 with 𝑒\

𝑒

𝑆

𝑉 − 𝑆

𝑒\

Cycle Property of MSTs

Take any cycle in a graph 𝐺 = 𝑉, 𝐸
Then, there exists some MST of 𝐺 that does not contain the maximum-
weight edge on that cycle

65

Proof. Take any cycle (𝑣C, 𝑣@, … , 𝑣o, 𝑣C) in 𝐺
and take any MST 𝑇 of 𝐺

Let 𝑒 be the maximum-weight edge in the
cycle

Case 2: 𝑒 ∈ 𝑇
• Take any cut 𝑆, 𝑉 − 𝑆 that 𝑒 crosses
• There is another edge 𝑒\ that crosses

the cut (since we have a cycle)
• Exchange 𝑒 with 𝑒\

𝑒

𝑆

𝑉 − 𝑆

𝑒\
• Resulting tree is still spanning (since 𝑆 and

𝑉 − 𝑆 still spanned and 𝑒′ connects 𝑆 with
𝑉 − 𝑆)

• Cost of new tree is
cost 𝑇 − 𝑤 𝑒 + 𝑤 𝑒\ ≤ cost 𝑇

since 𝑤 𝑒\ ≤ 𝑤(𝑒)
• Resulting tree must also be a MST

