CS 4102: Algorithms Lecture 19: Graph Algorithms (MST)

David Wu Fall 2019

Warm-Up

Show that for any graph G = (V, E), $\sum_{v \in V} \deg(v)$ is even

Recall: degree of a node is number of edges incident upon that node

$$deg(A) = 2$$
 and $deg(E) = 4$

Warm-Up

Consider any edge $e \in E$

This edge is incident on 2 vertices (on each end) This means $\sum_{v \in V} \deg(v) = 2 \cdot |E|$ Therefore $\sum_{v \in V} \deg(v)$ is even

Today's Keywords

- **Greedy Algorithms**
- **Choice Function**
- Graphs
- Minimum Spanning Tree
- Kruskal's Algorithm
- Prim's Algorithm
- **Cut and Cycle Properties**

CLRS Readings: Chapter 22, 23

Homework

tomorrow (Wednesday), 11pm

HW6 due today (Tuesday, November 5), 11pm

- Dynamic programming and greedy algorithms
- Written (use LaTeX!) Submit <u>both</u> **zip** and **pdf** (two <u>separate</u> attachments)!

HW10A also due today, 11pm

• No late submissions allowed

HW7 out today, due Thursday, November 14, 11pm

- Graph algorithms
- Written (use LaTeX!) Submit <u>both</u> **zip** and **pdf** (two <u>separate</u> attachments)!

HW10B also out today, due Thursday, November 14, 11pm

• No late submissions allowed

The ARPANET Problem

Problem: need to connect all of these places into a network
We have a list of possible wires to use, along with the cost of each wire
Goal: Find the <u>cheapest</u> set of wires to run to connect <u>all</u> places

The ARPANET Problem

Problem: need to connect all of these places into a networkWe have a list of possible wires to use, along with the cost of each wireGoal: Find the <u>cheapest</u> set of wires to run to connect <u>all</u> places

Graphs

Definition:
$$G = (V, E)$$
 V: Vertices/Nodes
 $w(e) =$ weight of edge e

 $V = \{A, B, C, D, E, F, G, H, I\}$ $E = \{ (A, B), (A, C), (B, C), \dots \}$

Adjacency List Representation

TradeoffsSpace: |V| + |E|Time to list neighbors: deg(A)Time to check edge (A, B): deg(A)

А	В	С		
В	А	С	E	
С	А	В	D	F
D	С	E	F	
E	В	D	G	н
F	С	D	G	
G	E	F	Н	I
Н	E	G	I	
I	G	Н		

9

Adjacency Matrix Representation

<u>Tradeoffs</u>

Space: $|V|^2$ Time to list neighbors: |V|Time to check edge (A, B): O(1)

	А	В	С	D	Ε	F	G	Н	I
А		10	12						
В	10		9		8				
С	12	9		3		1			
D			3		7	3			
Е		8		7			5	8	
F			1	3			6		
G					5	6		9	11
н					8		9		8
1							11	8	

Paths in Graphs

Path: A sequence of nodes $(v_1, v_2, ..., v_k)$ where $\forall 1 \le i \le k - 1$, $(v_i, v_{i+1}) \in E$

Simple Path: A path in which each node appears at most once

Cycle: A path of length > 2 where $v_1 = v_k$

Connected Graphs

A graph G = (V, E) is **connected** if there is a path from v_1 to v_2 for every pair of distinct nodes $v_1 \neq v_2 \in V$

Trees

Tree: A connected graph *T* with no cycles (i.e., there is a <u>unique</u> path from every node to every other node)

Spanning Tree

A tree $T = (V_T, E_T)$ is a **spanning tree** for an <u>undirected</u> graph G = (V, E) if $V_T = V, E_T \subseteq E$ (namely, T connects or "spans" all the nodes in G)

Minimum Spanning Tree

A tree $T = (V_T, E_T)$ is a **minimum spanning tree** for an <u>undirected</u> graph G = (V, E) if T is a spanning tree of minimal cost

Greedy Algorithms

Requires optimal substructure

- Solution to larger problem contains the solution to a smaller one
- Only a single subproblem to consider

General Blueprint:

- 1. Identify a greedy choice property
 - Show that this choice is guaranteed to be included in <u>some</u> optimal solution
- 2. Repeatedly apply the choice property until no subproblems remain

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

Edge forms a cycle, so discard

- 1. Start with an empty tree *T*
- 2. Add to *T* the lowest-weight edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Add to *T* the lowest-weight edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

Edge forms a cycle, so discard

- 1. Start with an empty tree *T*
- 2. Repeatedly add to *T* the <u>lowest-weight</u> edge that does not create a cycle

Edge forms a cycle, so discard

Proof of Correctness: Exchange Argument

Common technique to show correctness of a greedy algorithm

<u>General idea:</u> argue that at every step, the greedy choice is part of <u>some</u> optimal solution

<u>Approach</u>: Start with an arbitrary optimal solution and show that <u>exchanging</u> an item from the optimal solution with your greedy choice makes the new solution no worse (i.e., the greedy choice is as good as the optimal choice)

Graph Cuts

Cut Property of MSTs

Suppose A is a subset of edges of some minimum spanning tree T Let (S, V - S) be any cut which A respects Let e be the minimum-weight edge which crosses (S, V - S)**Claim:** $A \cup \{e\}$ is also a subset of <u>some</u> minimum spanning tree

Case 2: *e* ∉ *T*

Suppose A is a subset of edges of some minimum spanning tree T Let (S, V - S) be any cut which A respects Let e be the minimum-weight edge which crosses (S, V - S)**Claim:** $A \cup \{e\}$ is also a subset of <u>some</u> minimum spanning tree

Case 2: $e \notin T$ Let $e = (v_1, v_2)$

Since T is a spanning tree, there is a path from v_1 to v_2 in T

Let e' be an edge that crosses the cut

Replace e' with e in T

Let T' be the tree obtained by replacing e' with e in T

- T' is still a spanning tree (all nodes in S and V S are connected, and there is an edge between S and V S)
- $\operatorname{Cost}(T') = \operatorname{Cost}(T) w(e') + w(e) \le \operatorname{Cost}(T)$ since $w(e') \ge w(e)$

Conclusion: if T is a MST, then so is T'

Case 2: $e \notin T$ Let $e = (v_1, v_2)$

Since T is a spanning tree, there is a path from v_1 to v_2 in T

Let e' be an edge that crosses the cut

Replace e' with e in T

- 1. Start with an empty tree *T*
- 2. Repeatedly add to T the <u>lowest-weight</u> edge that does not create a cycle

Let T_0 be the initial (empty) tree, and T_i be the tree after adding *i* edges (using the greedy strategy above).

Claim: If T_i is consistent with some MST, then T_{i+1} is also consistent with some MST

Proof of Kruskal's Theorem: Follows by induction on the number of nodes in G:

- T_0 : an empty tree is (trivially) consistent with an MST
- By the above claim, if T_i is consistent with some MST, so is T_{i+1} **Conclusion:** $T_{|V|-1}$ is consistent with some MST, which is the output of the algorithm

Let T_0 be the initial (empty) tree, and T_i be the tree after adding *i* edges (according to the specification of Kruskal's algorithm)

Claim: If T_i is consistent with some MST, then T_{i+1} is also consistent with some MST

Tree T_i after adding i nodes

Let T_0 be the initial (empty) tree, and T_i be the tree after adding *i* edges (according to the specification of Kruskal's algorithm)

Claim: If T_i is consistent with some MST, then T_{i+1} is also consistent with some MST

Consider edge *e* chosen by Kruskal's algorithm

Tree T_i after adding i nodes

Let T_0 be the initial (empty) tree, and T_i be the tree after adding *i* edges (according to the specification of Kruskal's algorithm)

Claim: If T_i is consistent with some MST, then T_{i+1} is also consistent with some MST

Consider edge *e* chosen by Kruskal's algorithm

Choose one of the endpoints v of earbitrarily and let S be the set of nodes reachable from v in T_i

By assumption, T_i is consistent with some MST and respects the cut (S, V - S)

S is the set of nodes reachable from v: cannot have an edge between node reachable from V and one not reachable from V

Let T_0 be the initial (empty) tree, and T_i be the tree after adding *i* edges (according to the specification of Kruskal's algorithm)

Claim: If T_i is consistent with some MST, then T_{i+1} is also consistent with some MST

Consider edge *e* chosen by Kruskal's algorithm

Choose one of the endpoints v of earbitrarily and let S be the set of nodes reachable from v in T_i

By assumption, T_i is consistent with some MST and respects the cut (S, V - S)

Cut property: $T_i \cup \{e\} = T_{i+1}$ is also consistent with some MST

Let T_0 be the initial (empty) tree, and T_i be the tree after adding *i* edges (according to the specification of Kruskal's algorithm)

Claim: If T_i is consistent with some MST, then T_{i+1} is also consistent with some MST

Consider edge *e* chosen by Kruskal's algorithm

Choose one of the endpoints v of earbitrarily and let S be the set of nodes reachable from v in T_i

By assumption, T_i is consistent with some MST and respects the cut (S, V - S)

Cut property: $T_i \cup \{e\} = T_{i+1}$ is also consistent with some MST

- 1. Start with an empty tree *T*
- 2. Repeatedly add to T the <u>lowest-weight</u> edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and maintain nodes in a <u>union-find</u> (also called <u>disjoint-set</u>) data structure:

- Data structure that tracks elements partitioned into different sets
- Union: Merges two sets into one
- Find: Given an element, return the index of the set it belongs to
- Both "union" and "find" operations are <u>very</u> fast

Time complexity: $O(\alpha(n))$, where α is the "inverse Ackermann function" (<u>extremely</u> slow-growing function) for all "practical" n, $\alpha(n) < 5$ (e.g., for all $n < 2^{2^{2^{65536}}} - 3$)

- 1. Start with an empty tree *T*
- 2. Repeatedly add to T the <u>lowest-weight</u> edge that does not create a cycle

Implementation: iterate over each of the edges in the graph (sorted by weight), and maintain nodes in a <u>union-find</u> (also called <u>disjoint-set</u>) data structure:

- Data structure that tracks elements partitioned into different sets
- Union: Merges two sets into one
- Find: Given an element, return the index of the set it belongs to
- Both "union" and "find" operations are <u>very</u> fast
- Overall running time: $O(|E| \log |E|) = O(|E| \log |V|)$

 $|E| \le |V|^2 \Rightarrow \log|E| = O(\log|V|)$

General MST Algorithm

- 1. Start with an empty tree *T*
- 2. Repeat |V| 1 times:
 - Pick a cut (S, V S) which T respects
 - Add the min-weight edge which crosses (S, V S)

Correctness analysis follows by repeated application of Cut Property⁴⁹

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree *T* and pick a start node and add it to *T*
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree *T* and pick a start node and add it to *T*
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree *T* and pick a start node and add it to *T*
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree *T* and pick a start node and add it to *T*
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree *T* and pick a start node and add it to *T*
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

- 1. Start with an empty tree T and pick a start node and add it to T
- 2. Repeat |V| 1 times:
 - Add the min-weight edge which connects a node in T with a node not in T

Implementation:

- Maintain edges incident on *T* in a min-heap (priority queue)
- Maintain a (sorted) list of nodes that have already been added to the tree
- Each time node v is added to the tree, add all edges incident on v to heap
- To find the next edge to add, repeatedly extract from heap until finding an edge incident on node that is not currently contained in the tree

Overall running time: $O(|E| \log |V|)$

• If we use <u>Fibonacci heaps</u> instead of binary heaps: $O(|E| + |V| \log |V|)$

MST Algorithms

Kruskal '56; Prim '57: Fredman-Tarjan '84: Gabow-Galil-Spencer-Tarjan '86: Chazelle '00: Pettie-Ramachandran '02: Karger-Klein-Tarjan '95: $O(|E| \log|V|)$ $O(|E| + |V| \log|V|)$ $O(|E| \log (\log^*|V|))$ $O(|E| \cdot \alpha(|V|))$ O(?) (optimal, but unknown running time)O(|E|) (in expectation)

Extra Credit: Read + summarize any of these algorithms (other than Kruskal/Prim)

Take any cycle in a graph G = (V, E)

Then, there exists some MST of G that does not contain the maximumweight edge on that cycle

Take any cycle in a graph G = (V, E)

Then, there exists some MST of G that does not contain the maximumweight edge on that cycle

Proof. Take any cycle $(v_1, v_2, ..., v_t, v_1)$ in G and take any MST T of G

Let *e* be the maximum-weight edge in the cycle

Case 1: *e* ∉ *T*

Claim follows

Take any cycle in a graph G = (V, E)

Then, there exists some MST of G that does not contain the maximumweight edge on that cycle

Proof. Take any cycle $(v_1, v_2, ..., v_t, v_1)$ in G and take any MST T of G

Let *e* be the maximum-weight edge in the cycle

Case 2: *e* ∈ *T*

- Take any cut (S, V S) that *e* crosses
- There is another edge e' that crosses the cut (since we have a cycle)
- Exchange *e* with *e'*

Take any cycle in a graph G = (V, E)

Then, there exists some MST of G that does not contain the maximumweight edge on that cycle

Proof. Take any cycle $(v_1, v_2, ..., v_t, v_1)$ in G and take any MST T of G

- Resulting tree is still spanning (since S and V S still spanned and e' connects S with V S)
- Cost of new tree is $cost(T) - w(e) + w(e') \le cost(T)$ since $w(e') \le w(e)$
- Resulting tree must also be a MST
 - the concernence we have a cycle)
 - Exchange *e* with *e'*