CS 4102: Algorithms Lecture 2: Recurrences

David Wu Fall 2019

Warm Up

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

https://nstarr.people.amherst.edu/trom/puzzle-8by8/

Office Hours

Friday, 1:00-2:30pm, Rice 501

Today's Keywords

Recursion

Recurrences

Asymptotic notation and proof techniques

Divide and conquer

Trominoes

Merge sort

CLRS Readings: Chapters 3 & 4

Homework

HWO due 11pm Tuesday, Sept 2

• Submit 2 attachments (zip and pdf)

HW1 released Tuesday, Sept 2

- Due 11pm Thursday, Sept 12
- Written (use LaTeX!)
- Asymptotic notation
- Recurrences
- Divide and conquer

Attendance

How many people are here today?

Naïve algorithm

- Everyone stand
- Professor walks around counting people
- When counted, sit down

Complexity?

- Class of *n* students
- *O*(*n*) "rounds"

Other suggestions?

Good Attendance

n

Better Attendance

- 1. Everyone Stand
- 2. Initialize your "count" to 1

What was the run time of this algorithm?

What are we going to count?

- 3. Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- If you are standing and have a standing neighbor, go to
 3

Attendance Algorithm Analysis

RecurrenceT(n) = 1 + 1 + T(n/2)How can we "solve" this?T(1) = 3Base case?

Do not need to be exact, asymptotic bound is fine. Why?

Let's Solve the Recurrence!

What if $n \neq 2^k$?

More people in the room \Rightarrow more time

•
$$\forall \ 0 < n < m, T(n) < T(m)$$

•
$$T(n) \le T(m) = T(2^{\lceil \log_2 n \rceil}) = 2 \lceil \log_2 n \rceil + 3$$

= $O(\log n)$
These are unimportant.
Why?

Asymptotic Notation

[CLRS Chapter 3]

O(g(n))

- At most within constant factor of g for sufficiently large n
- {functions $f : \exists$ constants $c, n_0 > 0$ such that $\forall n > n_0, f(n) \le c \cdot g(n)$ }

$\Omega(g(n))$

- At least within constant factor of g for sufficiently large n
- {functions $f : \exists$ constants $c, n_0 > 0$ such that $\forall n > n_0, f(n) \ge c \cdot g(n)$ }

$\Theta(g(n))$

- "Tightly" within constant factor of g for sufficiently large n
- $\Omega(g(n)) \cap O(g(n))$

Asymptotic Notation

Asymptotic Notation Example

Show: $n \log n \in O(n^2)$

Direct Proof

Proof Technique: Give explicit constants $c, n_0 > 0$

- Let $c = 1, n_0 = 1$
- $f(1) = (1) \log (1) = 0$, $g(1) = 1 \cdot 1^2 = 1$
- $\forall n \ge 1$, $\log(n) < n \Rightarrow \forall n \ge 1$, $n \log n \le n^2$

 \exists constants $c, n_0 > 0$ such that $\forall n > n_0, f(n) \leq c \cdot g(n)$

Asymptotic Notation Example

Show: $n^2 \notin O(n)$

Indirect Proof

Proof Technique: Proof by <u>contradiction</u>

- Assume the opposite: namely, that $n^2 \in O(n)$
- Then $\exists c, n_0 > 0$ such that $\forall n > n_0, n^2 \leq cn$
- Consider $n = \max(c, n_0) + 1$. In particular, n > c and $n > n_0$
- Then $n^2 = n \cdot n > cn$, which is a contradiction

 \exists constants $c, n_0 > 0$ such that $\forall n > n_0, f(n) \leq c \cdot g(n)$

Proof Techniques

Direct Proof

• From the assumptions and definitions, directly derive the statement Indirect Proof (Proof by Contradiction)

• Assume the statement is true, then find a contradiction

Proof by Cases

Induction

More Asymptotic Notation

o(g(n))

- Smaller than *any* constant factor of g for sufficiently large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) < c \cdot g(n)$ }

Equivalently, ratio of $\frac{f(n)}{g(n)}$ is <u>decreasing</u> and tends towards 0: $f(n) \in o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

More Asymptotic Notation

o(g(n))

- Smaller than *any* constant factor of g for sufficiently large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) < c \cdot g(n)$ }

 $\omega(g(n))$

- Greater than any constant factor of g for large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) > c \cdot g(n)$ }

Equivalently,
$$f(n) \in \omega(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

More Asymptotic Notation

o(g(n))

- Smaller than any constant factor of g for sufficiently large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) < c \cdot g(n)$ }

 $\omega(g(n))$

- Greater than any constant factor of g for large n
- {functions $f : \forall$ constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) > c \cdot g(n)$ }

 $\theta(g(n))$

• $o(g(n)) \cap \omega(g(n)) = \emptyset$

Another Asymptotic Notation Example

Show: $n \log n \in o(n^2)$

Direct Proof

Proof Technique: Show the statement directly

•
$$\lim_{n \to \infty} \frac{n \log n}{n^2} = \lim_{n \to \infty} \frac{\log n}{n} = 0$$

• Equivalently, for every constant c > 0, we can find an n_0 such that $\frac{\log n_0}{n_0} = c$. Then for all $n > n_0$, $n \log n < c n^2$ since $\frac{\log n}{n}$ is a decreasing function

 \forall constants c > 0, $\exists n_0$ such that $\forall n > n_0$, $f(n) < c \cdot g(n)$

Back to Trominoes

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

Tromino

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Place a tromino to occupy the three quadrants without the missing piece

Observe: Each quadrant is now a smaller subproblem!

Solve **Recursively**

Solve **Recursively**

Our first algorithmic technique!

Divide and Conquer

[CLRS Chapter 4]

Divide:

 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

 Merge solutions to subproblems to obtain solution for original problem

When is this an effective strategy?

