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Show that no cycle crosses a cut exactly once

* Consider an edge e = (u, v) that
crosses the cut

 After removing the edge e from
the graph, there is still a path
fromueStovée&s

At least one edge along the path
from cross the cut




Today’s Keywords

Graphs

Shortest paths algorithms
Dijkstra’s algorithm
Breadth-first search (BFS)

CLRS Readings: Chapter 22, 23



HW?7 due Thursday, November 14, 11pm
* Graph algorithms
* Written (use LaTeX!) — Submit both zip and pdf (two separate attachments)!

HW10B also out today, due Thursday, November 14, 11pm
* No late submissions allowed (no exceptions)



Minimum Spanning Tree

Atree T = (Vr, E+) is a minimum spanning tree for an
undirected graph G = (V,E) if T is a spanning tree of
minimal cost




Minimum Spanning Tree

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle
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Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T

2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation (with nodes in the priority queue):
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifuePQandw(v,u) < d,:
PQ. decreaseKey(u, w (v, u))
u.parent = v
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Prim’s Algorithm Implementation

Implementation (with nodes in the priority queue):
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
pick a starting node s and set d. = 0
while PQ is not empty:
v = PQ. extractMin()

for each u € V such that (v,u) € E: 3
ifu € PQandw(v,u) < d,: 10
PQ. decreaseKey(u, w(v, u)) -
Uu. pal‘ent =P e 9 @ 2
5
9 o
12 3
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Prim’s Algorithm Running Time

Implementation (with nodes in the priority queue):

initialize d,, = oo for each node v Initialization:
add all nodes v € V to the priority queue PQ, using d,, as the key o(vD
pick a starting node s and set d. = 0
while PQ is not empty: |V | iterations
v = PQ. extractMin() O (log|V|)
for each u € V such that (v,u) € E: |E| iterations total
ifu € PQandw(v,u) < d,: -
PQ. decreaseKey(u, w(v,u)) O(log|V|)

u.parent = v

Overall running time: O(|V|log|V| + |E|log|V|) = O(|E|log|V]|)
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Single-Source Shortest Path

THEu

UNIVERSITY
OF UTAH

Find the shortest path from UVA to each of these other places
Given a graph G = (V, E) and a start node (i.e., source) s € V,
for each v € V find the minimum-weight path from s — v (call this weight 6 (s, v))

Assumption (for now): all edge weights are positive 26



Dijkstra’s Algorithm

1. Start with an empty tree T and add the sourceto T
2. Repeat |V| — 1 times:
e Addthe “nearest” node notyetinT toT

3
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2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

3
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Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T
2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
initialize d,, = oo for each node v
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pick a starting node sandsetd. =0
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Dijkstra’s Algorithm Implementation

1. Start with an empty tree T and add the sourceto T

2. Repeat |V| — 1 times:
e Addthe “nearest” node notyetinT toT

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandd, + w(v,u) < d,: key: length of shortest path
PQ. decreaseKey(u, + w(v, u)) $ = u using nodes in PQ

u.parent = v
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Prim’s Algorithm Implementation

1. Start with an empty tree T and pick a start node and add itto T

2. Repeat |V| — 1 times:
 Add the min-weight edge which connects a node in T" with anode notin T

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ), using d,, as the key
pick a starting node sandsetd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifu e PQandw(v,u) < dy: key: minimum cost to connect

PQ. decreaseKey(u, w(v,u)) u to nodes in PQ
u.parent = v
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Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()

for each u € V such that (v,u) € E: 3
ifuePQandd, +w(v,u) <dy,: 10
PQ. decreaseKey(u, d, +w(v, u)) -
Uu. pal‘ent =P e 9 @ 2
5
9 o
12 3
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Dijkstra’s Algorithm Implementation
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Dijkstra’s Algorithm Implementation

Implementation:
initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d,, as the key
setd. =0
while PQ is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E: 3
ifuePQandd, +w(v,u) <dy,: 10
PQ. decreaseKey(u, d, +w(v, u))
u.parent = v

Every subpath of a shortest path is itself a

shortest path (optimal substructure)

Observe: shortest paths from a source forms a
tree, but not a minimum spanning tree "



Dijkstra’s Algorithm Running Time

Implementation:

initialize d,, = oo for each node v Initialization:
add all nodes v € V to the priority queue PQ, using d,, as the key oV
setd. =0
while PQ is not empty: |V| iterations
v = PQ. extractMin() 0 (log|V])
for each u € V such that (v,u) € E: |E| iterations total
ifuePQandd, +w(v,u) <d,: -
PQ.decreaseKey(u, d, + w(v,u)) O(log|V])

u.parent = v

Overall running time: O(|V|log|V| + |E|log|V|) = O(|E|log|V]|)
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Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node u is removed from the
priority queue, d,, = o(s,u)
* Claim 1: There is a path of length d,, (as longas d,, < o) fromstouinG
* Claim 2: For every path (s, ..., u), w(s, ...,u) = dy

43



Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes v; = s, ..., v; have been
removed from PQ, and for each of them d,,, = 8(s, v;), and there is a

path from s to v; with distance d,,, (whenever d,,, < )

Base case:
i =0:v1 =5
e Claim holds trivially

44



Correctness of Dijkstra’s Algorithm: Claim 1

Let u be the (i + 1)5! node extracted

Claim 1: There is a path of length d,, (aslongas d,, < o) fromstouinG

Proof:
* Supposed, < ©

* This means that PQ. decreaseKey was invoked on node u on an earlier
iteration

* Consider the last time PQ. decreaseKey is invoked on node u

* PQ.decreaseKey is only invoked when there exists an edge (v,u) € E and
node v was extracted from PQ in a previous iteration

* Inthiscase, d, =d, + w(v,u)

* By the inductive hypothesis, there is a path s = v of length d,, in G and since
there is an edge (v,u) € E, there is a path s - u of length d, in G

45



Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes definea cut (S,V —S) of G

extracted nodes

46



Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes definea cut (S,V —S) of G
Take any path (s, ..., 1)

‘ Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x)+w(x,y)+w(y,..,u)

w(s, ...,u) =w(s,..,x) +wlx,y) + w(y, ..., u)

w(s,...,x) = 6(s,x) since §(s, x) is weight of
shortest path from s to x

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes definea cut (S,V —S) of G
Take any path (s, ..., 1)

‘ Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s,..,u) = 6(s,x)+w(x,y)+w(y,..,u)
= d,+w(xy)+w(y,..,u

Inductive hypothesis: since x was extracted
before, d,, = 6(s,x)

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes definea cut (S,V —S) of G
Take any path (s, ..., 1)

Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s, ..., u) 5(s,x) +w(x,y) + w(y, ..., u)
d, +w(x,y) +w(y, ..., u)

= dy + w(y, ..., u)

By construction of Dijkstra’s algorithm, when x is
extracted, d,, is updated to satisfy
d, <d,+w(ky)

extracted nodes
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Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes definea cut (S,V —S) of G
Take any path (s, ..., 1)

Sinceu € S, (s, ..., 1) crosses the cut somewhere
‘ * Let (x,y) be last edge in the path that crosses
the cut

‘ w(s, ..., u)

5(s,x) +w(x,y) + w(y, ..., u)
d, +w(x,y) +w(y,..,u)

d, +w(,..,u)

d, +w(y,..,u)

VALY,

extracted nodes Greedy choice property: we always extract the

node of minimal distance so d,, < d,,
50



Correctness of Dijkstra’s Algorithm: Claim 2

Let 1 be the (i + 1)5! node extracted
Claim 2: For every path (s, ..., 1), w(s,...,u) = d,,

Extracted nodes definea cut (S,V —S) of G

Take any path (s, ..., 1)
‘ Sinceu € S, (s, ..., 1) crosses the cut somewhere
S ‘ * Let (x,y) be last edge in the path that crosses
the cut
‘ w(s,..,u) = 6(s,x)+w(x,y)+w(y,..,u)
= dy+w(x,y)+w(y, .., u)
= d, +w(,..,u)
> d,+w(y,..,u)
>
extracted nodes "

All edge weights assumed to be positive51



Correctness of Dijkstra’s Algorithm

Proof by induction

Proof Idea: we will show that when node u is removed from the
priority queue, d,, = o(s,u)
* Claim 1: There is a path of length d,, (as longas d,, < o) fromstouinG
* Claim 2: For every path (s, ..., u), w(s, ...,u) = dy
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Breadth-First Search

Input: a node s

Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, until all nodes have been visited

Output: lots of choices!
* Is the graph connected?
* |s there a path from s to u?
* Smallest number of “hops” from s to u

Sounds like a “shortest path” property!

53



Dijkstra’s Algorithm

initialize d,, = oo for each node v
add all nodes v € V to the priority queue PQ, using d, as the key
setd. =0
while P(Q) is not empty:
v = PQ. extractMin()
for each u € V such that (v,u) € E:
ifuePQandd, +w(v,u) <d,:
PQ. decreaseKey(u, d, + w(v, u))
u.parent = v
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Breadth-First Search

initialize a flag d,, = 0 for each node v
pick a start node s
Q. push(s)
while () is not empty:

v = Q.pop() andsetd, =1

for each u € V such that (v,u) € E:

if d, = 0:
Q.push(u)

Key observation: replace the priority queue with a queue 55



BFS to Count Number of Hops

initialize a counter d,, = oo for each node v
pick a start node sandsetd. =0
Q. push(s)
while () is not empty:
v = Q.pop()
for each u € V such that (v,u) € E:
if d,, = oo:
Q.push(u)
d,=d,+1

56



