
CS 4102: Algorithms
Lecture 20: Shortest Path Algorithms

David Wu
Fall 2019



Warm-Up

2

Show that no cycle crosses a cut exactly once

• Consider an edge 𝑒 = (𝑢, 𝑣) that 
crosses the cut

• After removing the edge 𝑒 from 
the graph, there is still a path
from 𝑢 ∈ 𝑆 to 𝑣 ∉ 𝑆

• At least one edge along the path
from cross the cut

𝑣

𝑢

𝑆

𝑉 − 𝑆



Today’s Keywords

Graphs
Shortest paths algorithms
Dijkstra’s algorithm
Breadth-first search (BFS)

3

CLRS Readings: Chapter 22, 23



Homework

HW7 due Thursday, November 14, 11pm
• Graph algorithms
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

HW10B also out today, due Thursday, November 14, 11pm
• No late submissions allowed (no exceptions)

4



Minimum Spanning Tree

5

A tree 𝑇 = (𝑉., 𝐸.) is a minimum spanning tree for an 
undirected graph 𝐺 = (𝑉, 𝐸) if 𝑇 is a spanning tree of 

minimal cost

Cost 𝑇 = 5
6∈78

𝑤(𝑒)

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Minimum Spanning Tree

6

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Minimum Spanning Tree

7

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Minimum Spanning Tree

8

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Minimum Spanning Tree

9

Two greedy algorithms:

Kruskal: add minimum-weight edge that does not introduce a cycle

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Minimum Spanning Tree

10

Two greedy algorithms:

Prim: “grow” a tree by adding minimum-weight edge
from the tree to an external node

10

2

6 11

9
5

8

3

7

3

1

8

12

9



10

2

6 11

9
5

8

3

7

3

1

8

12

9

Minimum Spanning Tree

11

Two greedy algorithms:

Prim: “grow” a tree by adding minimum-weight edge
from the tree to an external node



10

2

6 11

9
5

8

3

7

3

1

8

12

9

Minimum Spanning Tree

12

Two greedy algorithms:

Prim: “grow” a tree by adding minimum-weight edge
from the tree to an external node



10

2

6 11

9
5

8

3

7

3

1

8

12

9

Minimum Spanning Tree

13

Two greedy algorithms:

Prim: “grow” a tree by adding minimum-weight edge
from the tree to an external node



Prim’s Algorithm Implementation

14

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL



Prim’s Algorithm Implementation

15

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

10

2

6 11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞



Prim’s Algorithm Implementation

16

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

17

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

9

∞

8

∞
∞

∞

∞

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

18

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

9

7

8

∞
5

∞

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

19

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

9

7

8

6
5

11

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

20

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

1

3

8

6
5

11

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

21

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

1

3

8

6
5

11

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

22

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

1

3

8

6
5

11

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

23

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

1

3

8

6
5

2

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Prim’s Algorithm Implementation

24

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

1

3

8

6
5

2

8

Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Implementation (with nodes in the priority queue):
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

Prim’s Algorithm Running Time

25

𝑂 𝑉
Initialization:

𝑉 iterations
𝑂 log 𝑉
𝐸 iterations total

𝑂 log 𝑉

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉



Single-Source Shortest Path

26

Find the shortest path from UVA to each of these other places
Given a graph 𝐺 = (𝑉, 𝐸) and a start node (i.e., source) 𝑠 ∈ 𝑉, 

for each 𝑣 ∈ 𝑉 find the minimum-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))
Assumption (for now): all edge weights are positive

10

2

11

9
5

8

3

7

3

1

8

12

9



1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the “nearest” node not yet in 𝑇 to 𝑇

Dijkstra’s Algorithm

27

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Prim’s Algorithm

28

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

10

2

6 11

9
5

8

3

7

3

1

8

12

9



Prim’s Algorithm Implementation

29

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL



Dijkstra’s Algorithm Implementation

30

1. Start with an empty tree 𝑇 and add the source to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the “nearest” node not yet in 𝑇 to 𝑇

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: length of shortest path 
𝑠 → 𝑢 using nodes in PQ



Prim’s Algorithm Implementation

31

1. Start with an empty tree 𝑇 and pick a start node and add it to 𝑇
2. Repeat 𝑉 − 1 times:
• Add the min-weight edge which connects a node in 𝑇 with a node not in 𝑇

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
pick a starting node 𝑠 and set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢,𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

each node also maintains a 
parent, initially NULL

key: minimum cost to connect 
𝑢 to nodes in PQ



Dijkstra’s Algorithm Implementation

32

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣

10

2

6 11

9
5

8

3

7

3

1

8

12

90

∞

∞

∞

∞

∞
∞

∞

∞



Dijkstra’s Algorithm Implementation

33

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

∞

∞

∞
∞

∞

∞

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

34

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

∞

18

∞
∞

∞

∞

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

35

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
∞

∞

∞

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

36

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

37

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

∞

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

38

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

∞

26

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

39

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

30

26

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

40

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Implementation

41

10

2

6 11

9
5

8

3

7

3

1

8

12

90

10

12

15

18

13
19

28

26

Observe: shortest paths from a source forms a 
tree, but not a minimum spanning tree

Every subpath of a shortest path is itself a 
shortest path (optimal substructure)

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Running Time

42

𝑂 𝑉
Initialization:

𝑉 iterations
𝑂 log 𝑉
𝐸 iterations total

𝑂 log 𝑉

Overall running time: 𝑂 𝑉 log 𝑉 + 𝐸 log 𝑉 = 𝑂 𝐸 log 𝑉

Implementation:
initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Dijkstra’s Algorithm Proof Strategy

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the 
priority queue, 𝑑M = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑M (as long as 𝑑M < ∞) from 𝑠 to 𝑢 in 𝐺
• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

43



Correctness of Dijkstra’s Algorithm

Inductive hypothesis: Suppose that nodes 𝑣a = 𝑠,… , 𝑣b have been 
removed from PQ, and for each of them 𝑑<c = 𝛿(𝑠, 𝑣b), and there is a 
path from 𝑠 to 𝑣b with distance 𝑑<c (whenever 𝑑<c < ∞)

Base case:
• 𝑖 = 0: 𝑣a = 𝑠
• Claim holds trivially

44



Correctness of Dijkstra’s Algorithm: Claim 1

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 1: There is a path of length 𝑑M (as long as 𝑑M < ∞) from 𝑠 to 𝑢 in 𝐺
Proof:

• Suppose 𝑑M < ∞
• This means that PQ. decreaseKey was invoked on node 𝑢 on an earlier 

iteration
• Consider the last time PQ. decreaseKey is invoked on node 𝑢
• PQ. decreaseKey is only invoked when there exists an edge 𝑣, 𝑢 ∈ 𝐸 and 

node 𝑣 was extracted from PQ in a previous iteration
• In this case, 𝑑M = 𝑑< + 𝑤 𝑣, 𝑢
• By the inductive hypothesis, there is a path 𝑠 → 𝑣 of length 𝑑< in 𝐺 and since 

there is an edge 𝑣, 𝑢 ∈ 𝐸, there is a path 𝑠 → 𝑢 of length 𝑑M in 𝐺
45



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

46

extracted nodes

𝑠
𝑢

Extracted nodes define a cut (𝑆, 𝑉 − 𝑆) of 𝐺

𝑆



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

47

extracted nodes

𝑠
𝑢

𝑥
𝑦

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses 

the cut

𝑤 𝑠,… , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑢 = 𝑤 𝑠,… , 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

𝑤 𝑠, … , 𝑥 ≥ 𝛿(𝑠, 𝑥) since 𝛿(𝑠, 𝑥) is weight of 
shortest path from 𝑠 to 𝑥

𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes define a cut (𝑆, 𝑉 − 𝑆) of 𝐺



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

48

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)
= 𝑑j + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Inductive hypothesis: since 𝑥 was extracted 
before, 𝑑j = 𝛿(𝑠, 𝑥)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes define a cut (𝑆, 𝑉 − 𝑆) of 𝐺



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

49

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑k + 𝑤(𝑦, … , 𝑢)
= 𝑑j + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

By construction of Dijkstra’s algorithm, when 𝑥 is 
extracted, 𝑑k is updated to satisfy

𝑑k ≤ 𝑑j + 𝑤(𝑥, 𝑦)

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes define a cut (𝑆, 𝑉 − 𝑆) of 𝐺



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

50

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑k + 𝑤(𝑦, … , 𝑢)
≥ 𝑑M + 𝑤(𝑦, … , 𝑢)

= 𝑑j + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

Greedy choice property: we always extract the 
node of minimal distance so 𝑑M ≤ 𝑑k

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes define a cut (𝑆, 𝑉 − 𝑆) of 𝐺



Correctness of Dijkstra’s Algorithm: Claim 2

Let 𝑢 be the 𝑖 + 1 fg node extracted
Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

51

extracted nodes

𝑠
𝑢

𝑥
𝑦

𝑤 𝑠, … , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

≥ 𝑑k + 𝑤(𝑦, … , 𝑢)
≥ 𝑑M + 𝑤(𝑦, … , 𝑢)
≥ 𝑑M

= 𝑑j + 𝑤 𝑥, 𝑦 + 𝑤(𝑦, … , 𝑢)

All edge weights assumed to be positive

Since 𝑢 ∉ 𝑆, 𝑠, … , 𝑢 crosses the cut somewhere
• Let 𝑥, 𝑦 be last edge in the path that crosses 

the cut
𝑆

Take any path 𝑠, … , 𝑢
Extracted nodes define a cut (𝑆, 𝑉 − 𝑆) of 𝐺



Correctness of Dijkstra’s Algorithm

Proof by induction

Proof Idea: we will show that when node 𝑢 is removed from the 
priority queue, 𝑑M = 𝛿(𝑠, 𝑢)
• Claim 1: There is a path of length 𝑑M (as long as 𝑑M < ∞) from 𝑠 to 𝑢 in 𝐺
• Claim 2: For every path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑M

52



Breadth-First Search

Input: a node 𝑠
Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors 
of neighbors of 𝑠, until all nodes have been visited
Output: lots of choices!
• Is the graph connected?
• Is there a path from 𝑠 to 𝑢?
• Smallest number of “hops” from 𝑠 to 𝑢

53

Sounds like a “shortest path” property!



Dijkstra’s Algorithm

54

initialize 𝑑< = ∞ for each node 𝑣
add all nodes 𝑣 ∈ 𝑉 to the priority queue PQ, using 𝑑< as the key
set 𝑑A = 0
while PQ is not empty:

𝑣 = PQ. extractMin()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑢 ∈ PQ and 𝑑< + 𝑤 𝑣, 𝑢 < 𝑑M:
PQ. decreaseKey 𝑢, 𝑑< + 𝑤 𝑣, 𝑢
𝑢. parent = 𝑣



Breadth-First Search

55

initialize a flag 𝑑< = 0 for each node 𝑣
pick a start node 𝑠
Q. push(𝑠)
while Q is not empty:

𝑣 = Q. pop() and set 𝑑< = 1
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑑M = 0:
Q. push(𝑢)

Key observation: replace the priority queue with a queue

flag to denote whether a node 
has been visited or not



BFS to Count Number of Hops

56

initialize a counter 𝑑< = ∞ for each node 𝑣
pick a start node 𝑠 and set 𝑑A = 0
Q. push(𝑠)
while Q is not empty:

𝑣 = Q. pop()
for each 𝑢 ∈ 𝑉 such that 𝑣, 𝑢 ∈ 𝐸:

if 𝑑M = ∞:
Q. push(𝑢)
𝑑M = 𝑑< + 1

counter to denote number of 
hops from the source


