CS 4102: Algorithms

Lecture 21: Shortest Path Algorithms

David Wu
Fall 2019

Show how to use Dijkstra’s algorithm to compute a path s — tina graph G
which minimizes the product of edge weights along the path. You may
assume that all edge weights are greater than or equal to 1.

Recall log rules: logab = loga + logb

Show how to use Dijkstra’s algorithm to compute a path s — tina graph G
which minimizes the product of edge weights along the path. You may
assume that all edge weights are greater than or equal to 1.

Construct a graph G’ = (V, E) where the weight of each edge w'(e) in
G' islogw(e) and run Dijkstra’s on G’

The multiplicative cost of a path (vg, vy, ..., V) in G is [1i-, w(v;_q, v;)
Since all edge weights are positive, minimizing this quantity is equivalent
to minimizing log [Ti_, w(v;_1, v;) = Y- logw(v;_4, v;)

This coincides with the minimization objective of Dijkstra on G’ (all
weights in G' are non-negative since edge weights in G are > 1)

Today’s Keywords

Graphs
Shortest paths algorithms

Bellman-Ford Dynamic programming

Floyd-Warshall algorithms

CLRS Readings: Chapter 22, 23, 24

HW?7 due Thursday, November 14, 11pm
* Graph algorithms
* Written (use LaTeX!) — Submit both zip and pdf (two separate attachments)!

HW10B due Thursday, November 14, 11pm
* No late submissions allowed (no exceptions)

HWS8 out Thursday, November 14, due Thursday, November 21, 11pm
* Programming assignment (Python or Java)
* Graph algorithms

Currency Exchanges and Arbitrage

Currency code A Y
USD

GBP
INR

AUD
CAD
SGD
CHF

JPY

CNY
NZD
THB
HUF
AED

Currency name A Y Units per USD
US Dollar 1.0000000000
Euro 0.8783121137
British Pound 0.6956087704

Indian Rupee

Australian Dollar

Canadian Dollar

Singapore Dollar

Swiss Franc

Malaysian Ringgit

Japanese Yen

Chinese Yuan Renminbi

New Zealand Dollar

Thai Baht

Hungarian Forint

Emirati Dirham

66.1909310706
1.3050318080
1.2997506294
1.3478961522
0.9590451582

2 Ta'alaTas

112.5375383115

6.4492409303
1.4480018872
35.1005319022

275.7012427385

3.6730000000

Conversion rates starting from USD

USD per Unit
1.0000000000
1.1385474303
1.4375896950
0.0151078098
0.7662648480
0.7693783541
0.7418969172
1.0427037678
0.2583979328
0.0088859239
0.1550570076
0.6906068347
0.0284895968
0.0036271146
0.2722570106

1 Dollar =0.8783121137 Euro

1 Dollar = 3.87 Ringgit

Currency Exchanges and Arbitrage

Currency code A Y Currency name A ¥ Units per EUR EUR per Unit Currency code A Y Currency name A Y Units per AED AED per Unit
usD US Dollar 1.1386632306 0.8782227907 USD US Dollar 0.2722570106 3.6730000000
EUR Euro 1.0000000000 1.0000000000 EUR Euro 0.2301289074 41818433177
GBpP British Pound 0.7921136388 1.2624451227 Gep British Pound 0.1893997860 5.2798369266
INR Indlan Rupee 75.3658843112 0.0132686030 INR Indian Rupeo 18.0207422300 0.0554916100
AUD Australian Dollar 1.4859561878 06720673514 AUD Australian Dollar 0.3552996418 28145257760
CAD Canadian Dollar 1.4796754127 0.6758238945 CAD Canadian Dollar 0.3538334124 28261887234
SGD Singapore Dollar 1.5347639238 0.6515660060 SGD Singapore Dollar 0.3669652245 2.7250538559
CHF Swiss Franc 1.0917416715 0.9158676012 CH¥ Swiss Franc 0.2610686103 38304105746
MYR Malaysian Ringgit 4.4140052400 0.2265516114 MYR Malaysian Ringgit 1.0548325619 0.9480177576
JPY Japanese Yen 128.13868820287 0.0078040325 JPY Japanese Yen 306399242607 0.0326371564
CNY Chinese Yuan Renminbi 7.3411003512 0.1362103612 CNY Chinese Yuan Renminbi 17555154332 0.5696332719
NZD New Zealand Dollar 1.6484648003 0.6066250246 NZD New Zealand Dollar 0.3941937209 25368237088
THB Thai Banht 39.9627318192 0.0250233143 THB Thal Baht 9.5553789460 0.1046530970
HUF Hungarian Forint 313.9042436792 0.0031856849 HUF Hungarian Forint 75.0637936939 0.0133220019
AED Emirati Dirham 4.1823100458 0.2391023117 AED Emirati Dirham 1.0000000000 1.0000000000

But what we go from USD — EUR —» MYR?

1 Dollar =0.8783121137 Euro
1 Euro=4.1823100458 Dirham
1 Dirham=1.0548325619 Ringgit

1 Dollar = 0.8783121137 * 4.1823100458 * 1.0548325619 Ringgit
= 3.87479406049 Ringgit
= 1.00123877526 Dollar

1 Dollar = 3.87 Ringgit

Arbitrage opportunity: Profit
by exploiting uneven exchange

rates for the same asset (e.g.,
currencies, stocks, bonds, etc.)

Best Currency Exchange

Consider a directed graph where nodes correspond to currencies and edges
correspond to exchange rates

Product of edge weights along a path from s — t gives amount of currency t

that can be exchanged for 1 unit of currency s
Best currency exchange:

3.870
max 1_[w(e)
p

eEp

0.239 8

Best Currency Exchange

Consider a directed graph where nodes correspond to currencies and edges
correspond to exchange rates

Product of edge weights along a path from s — t gives amount of currency t

that can be exchanged for 1 unit of currency s
Best currency exchange:

0.258
max 1_[w(e)
p

eEp
Equivalently:

_ 1
mplnl_[W(e)

eEp

4.182 9

Best Currency Exchange

Consider a directed graph where nodes correspond to currencies and edges
correspond to exchange rates

Product of edge weights along a path from s — t gives amount of currency t

that can be exchanged for 1 unit of currency s
Best currency exchange:

1.955
max ‘ ‘ w(e)
p

eEp
Equivalently:

min z —logw(e)
p

eep
-2.065 10

Best Currency Exchange

Consider a directed graph where nodes correspond to currencies and edges
correspond to exchange rates

Product of edge weights along a path from s — t gives amount of currency t

that can be exchanged for 1 unit of currency s
Best currency exchange:

1.955
max ‘ ‘ w(e)
p

eEp
Equivalently:

min z —logw(e)
p

eep

-2.065 Standard shortest path problem! 1

Problem with Negative Edges

7 ‘ If a graph has a negative-weight
‘ 9 2 cycle, then there does not exist a
> > 9 @ shortest path from s — t (whenever
12 3 - the negative-weight cycle is
@ 11 reachable from s)

Proof: Suppose there a negative-weight cycle (v = v) of cost k < 0. Consider any path of
the form s - v - u — t. We can decrease the cost of this path by k by replacings - v —

u with s =» (v = v) - u. This decreases the weight of the path from s — t by k. This can
be repeated to make the weight of the path arbitrarily negative. .

Problem with Negative Edges

If a graph has a negative-weight
cycle, then there does not exist a
shortest path from s — t (whenever
the negative-weight cycle is
reachable from s)

Important Note: Shortest path is still well-defined if the graph has negative-weight edges,
as long as it does not have a negative-weight cycle

13

Problem with Negative Edges

8
@ .
7 @2
(0) 5
5
11
6
o (oo

Recall: Dijkstra’s algorithm does not
work if there are edges of negative
weight

Dijkstra’s algorithm is greedy: it
constructs a shortest-path tree by
always choosing the current closest
node

14

12

10

Problem with Negative Edges

Recall: Dijkstra’s algorithm does not
work if there are edges of negative
weight

Dijkstra’s algorithm is greedy: it
constructs a shortest-path tree by
always choosing the current closest
node

15

Problem with Negative Edges

Recall: Dijkstra’s algorithm does not
work if there are edges of negative
weight

Dijkstra’s algorithm is greedy: it
constructs a shortest-path tree by
always choosing the current closest

node

Problem: Dijkstra assumes that it has now found the shortest path to node B

* When weights are positive, then every other path must have greater weight because they require first
taking a path that is longer than the current distance from A —- B (e.g, A = C)

* But if edge weights can be negative, the weight of later edges (e.g., C — B) can offset the cost of the initial
longer path — hence, the greedy heuristic is suboptimal T

Problem with Negative Edges

Recall: Dijkstra’s algorithm does not
work if there are edges of negative
weight

Dijkstra’s algorithm is greedy: it
constructs a shortest-path tree by
always choosing the current closest
node

17

Optimal Substructure of Shortest Path Trees

Recall the structure of the “shortest-path” tree from the previous lecture:

Shortest paths from a source has optimal substructure
* Greedy choice (choose the “closest” node to the
source) is suboptimal with negative-weight edges
* ldea: use dynamic programming and consider all g
possible subproblems

Every subpath of a shortest path is itself a

shortest path (optimal substructure)

Observe: shortest paths from a source forms a
tree, but not a minimum spanning tree

18

Bellman-Ford Shortest Path Algorithm

When greedy does not work... try dynamic programming!

Short(i, v) = weight.of the short'est path from s
to v using at most i edges

A path of i — 1 edges from s to J\ye:o:%
some node x, then edge (x, v) PR
Two possibilities: OR
A path from s to v of at most 5@
i — 1 edges Xeé%e

min(Short(i — 1,x) + w(x,v))
Short(i,v) = min { *&

Short(i — 1, v . .
ort(s) Maximum value of i? =

Number of Hops in Shortest Path

Claim: In every graph G = (V, E') that does not contain a negative-
weight cycle, there exists a shortest path between any two connected
nodes with at most || — 1 edges

Proof: Follows by Pigeonhole principle:

 If there is a shortest path with more than |V| — 1 edges, at least one node
appears twice in the path, which means there is a cycle

e Since there are no negative-weight cycles in G, the weight of the cycleis = 0
* Thus, removing the cycle will yield a path of equal or smaller weight

* Each cycle can be removed in this manner to obtain a path satisfying the
desired property

20

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

21

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

22

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

A B C D E F G H I

<
|

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

23

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

24

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

<
|
>
W
O
O
m
M
@
T

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

25

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

26

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

27

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

28

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

29

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

30

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

31

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

32

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

33

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

;s V= A B C D E F G H I
Q
0
7 0 5 5
18 4 7 0 4 5 5 7

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

34

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v g
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

4

3 |3
s V= A B C D E F G H | 4
) o ™o
7 0 5 5
18 7 0 5 5 7
Base case:
-8 7 0 3 5 7

e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

35

O N O U1l » W N~ O

Bellman-Ford Shortest Path Algorithm

Short(i, v) = wglght of the s_hortest path from s to v g
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

o *

3 |3
s V= A B C D E F G H | A
) o ™o
8 7 0 5 5
18 8 7 0 5 5 7
Base case:
-8 8 7 0 3 5 7
e Short(0,s) =0

8 7 0 3 5 7

e Short(0,v) = wifv #s

Suppose source node is £

36

O N O U1 » W N -, O
(o)

Bellman-Ford Shortest Path Algorithm

. _ weight of the shortest path from s to v 3
Short(i,v) = e , 10 9 G .
g at most i edges
/
mi‘rll(Short(i —1,x) +w(x,v)) Q -4 Q 2
Short(i,v) = min { *° _ Q 5
Short(i — 1, v) 9 0
el)P
N v= A B C D E F G H I 6 @ -4
N 0 0 1 G

1 8 7 0 5 5

18 8 4 7 0 4 5 5 7
2 5 Base case:

- 8 4 7 0 4 3 5 7
3 P ; » p ; e Short(0,s) =0

. 7 5 7]
4 e Short(0,v) = wifv #s
5 -8 8 4 7 0 4 3 5 7
6| -8 8 a4 7 0 4 3 5 7 Suppose source node is E
7| -8 8 4 7 0 4 3 5 7 Backtrack to reconstruct
8| -8 8 4 7 0 4 3 5 7 shortest path Y

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

38

O N O U1l » W N~ O

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

= A B C D E F G H I

<

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

39

O N O U1l » W N~ O

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

s UvV=A B C D E F G H I

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

40

O N O U1l » W N~ O

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

;s V= A B C D E F G H |
N
0
7 0 5 5
18 4 7 0 2 5 5 7

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

41

O N O U1l » W N~ O

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v g
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

o

3 15
s V= A B C D E F G H | A
) : ™~
7 0 5 5
18 4 7 0 2 5 5 7
Base case:
-8 3 7 0 2 3 5 7

e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

42

O N O U1l » W N~ O

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v g
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

o

3 15
s V= A B C D E F G H | A
) : ™~
8 7 0 5 5
18 8 4 7 0 2 5 5 7
Base case:
-8 8 3 7 0 2 3 5 7
e Short(0,s) =0

8 3 6 0 2 3 5 7

e Short(0,v) = wifv #s

Suppose source node is £

43

O N O U1 » W N -, O
Vo)

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

, v=A B C D E F G H |
Q

0 0
1 8 7 0 5 5

18 | 8 4 7 0 2 5 5 7
2 Base case:

8 | 8 3 7 0 2 3 5 7
3 s 3 - - » 3 e Short(0,s) =0

5 7 .

4 e Short(0,v) = wifv #s
5/ 9 | 8 3 6 0 1 3 5 7
6 Suppose source node is E
7
8 44

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

, v=A B C D E F G H |
Q
0 0
1 8 7 0 5 5
18 | 8 4 7 0 2 5 5 7
2 Base case:
8 | 8 3 7 0 2 3 5 7
3 e Short(0,s) =0
9 | 8 3 6 0 2 3 5 7 .
4 e Short(0,v) = wifv #s
5/ 9 | 8 3 6 0 1 3 5 7
6 9 | s 7 6 0 1 3 5 7 Suppose source node is E
7
8 45

Detecting Negative-Weight Cycles

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

, v=A B C D E F G H |
Q
0 0
1 8 7 0 5 5
18 | 8 4 7 0 2 5 5 7
2 Base case:
8 | 8 3 7 0 2 3 5 7
3 e Short(0,s) =0
9 | 8 3 6 0 2 3 5 7 .
4 e Short(0,v) = wifv #s
5/ 9 | 8 3 6 0 1 3 5 7
6 9 | s 7 6 0 1 3 5 7 Suppose source node is E
71 -10 | 8 2 5 0 1 3 5 7
8 46

Detecting Negative-Weight Cycles

3
10
- %
5
12 3 5

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))
XEV

Short(i — 1,v)

Short(i, v) = min

r V= A B C D E F G H | \Q . -4
0 0 1
1 8 7 0 5 5
2| 18 | 8 4 7 0 2 5 5 7 Base case:
3| -8 | 8 3 7 0 2 3 5 7 « Short(0,s) = 0
41 9 | 8 3 6 0 2 3 > ’ e Short(0,v) = 0ifv £s
5/ -9 | 8 3 6 0 1 3 5 7
61 9 | 8 5 6 0 1 3 5 7 Suppose source node is £
71 -10 | 8 2 5 0 1 3 5 7
g| -10 | 8 2 5 0 0 3 5 7 47

Detecting Negative-Weight Cycles

Observation: After |V | — 1 iterations, if the lengths of the shortest 10 G G 5
paths has not converged (e.g., shortest path change after one more / Q
iteration of Bellman-Ford), there must exist a negative-weight cycle 0 -4 2

(since without negative-weight cycles, the shortest path requires at 3 9 a
most |[V| — 1 hops) 12 /

A B C D

<
|

P

N

Base case:
e Short(0,s) =0
e Short(0,v) = wifv #s

Suppose source node is £

CO |00 (OO0 |00 | OO | OO (0O | O
NITNIN W W W|bL
V(U0 | O | O [N (NN
OO0 ([0O|0O |0 |0 |OC|0O | O |
ORI IN|NI([IN

WW W wH wiw|(u|wu
tvunfunfivniuu viiun v | v,
NI N (N (NN |IN(N

48

O N O U1 » W N -, O
1
Vo)

Bellman-Ford Implementation

allocate short[n] [n]

initialize short[0][v] = o for each v
initialize short[0][s] = 0O
for 1 =1,...,n — 1:
for each e = (x, y) 1n E:
short[1] [y] = min (
short[1i-1][x] + w[x]I[vy], Bellman-Ford update

short[i-1][v]

49

Bellman-Ford Run Time

allocate short[n] [n] 0(|V|2)
initialize short[0][v] = o for each v oV
initialize short[0][s] = O 0(1)
for i = 1,...,n - 1: V] times
for each e = (x, y) 1in E: |E| times
short[1] [y] = min (

short[1-1][x] + w[x]I[vy],
short[i-1][vy]

0(1)

Running time (naive) : O(|V|? + |E||V])

50

Bellman-Ford Run Time

allocate short[n] [n] 0(|V|2)
initialize short[0][v] = o for each v oV
initialize short[0][s] = O 0(1)
for i = 1,...,n - 1: V] times
for each e = (x, y) 1in E: |E| times
short[1] [y] = min (

short[1-1][x] + w[x]I[vy],
short[i-1][vy]

0(1)

)

Observation: update for row i only depends on update forrow i — 1
Optimization: only need to store two rows of short (previous row and current row)

Overall running time of Bellman-Ford: O(|E||V])

51

Dijkstra vs. Bellman-Ford

Both algorithms solve the single-source shortest path (SSSP) problem
Both algorithms handle directed and undirected graphs

Dijkstra:

Greedy algorithm that always adds the node that is “closest” to the nodes that have
been considered so far

Only works for graphs with non-negative weights

Updates require keeping track of shortest path to all nodes in the graph (changing graph
weight essentially requires re-running the algorithm)

Running time: O(|E| log|V|)

Bellman-Ford:

Dynamic programming algorithm that updates the costs of all paths based on the current

shortest distance to all nodes in the graph
Handles graphs with negative weights, can also be used to detect negative-weight cycles

Updates can be distributed (each node only needs to know shortest path from/to each of
its neighbors) — used in old routing protocols (e.g., the Routing Information Protocol)

Running time: O(|E||V])

52

Bellman-Ford in Dynamic Graphs (Update)

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))
Short(i, v) = min {xev _
Short(i — 1,v)
,'\\ v= A B C D E F G H I

0 0
1 8 7 0 5 5
2| 18 8 4 7 0 4 5 5 7
3| -8 8 4 7 0 4 3 5 7
4|1 -8 8 4 7 0 4 3 5 7
5| -8 8 4 7 0 4 3 5 7
6| -8 8 4 7 0 4 3 5 7
7| -8 8 4 7 0 4 3 5 7
8| -8 8 4 7 0 4 3 5 7 >3

Bellman-Ford in Dynamic Graphs (Update)

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))
Short(i, v) = min {xev _
Short(i — 1,v)
,'\\ v= A B C D E F G H I

0 0
1 5 7 0 5 5
2| 18 8 4 7 0 4 5 5 7
3| -8 8 4 7 0 4 3 5 7
4|1 -8 8 4 7 0 4 3 5 7
5| -8 8 4 7 0 4 3 5 7
6| -8 8 4 7 0 4 3 5 7
7| -8 8 4 7 0 4 3 5 7
8| -8 8 4 7 0 4 3 5 7 o4

Bellman-Ford in Dynamic Graphs (Update)

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))
Short(i, v) = min {xev _
Short(i — 1,v)
,'\\ v= A B C D E F G H I

0 0
1 5 7 0 5 5
21| 15 5 1 7 0 4 5 5 7
3| -8 5 1 7 0 4 3 5 7
4|1 -8 8 4 7 0 4 3 5 7
5| -8 8 4 7 0 4 3 5 7
6| -8 8 4 7 0 4 3 5 7
7| -8 8 4 7 0 4 3 5 7
8| -8 8 4 7 0 4 3 5 7 =

Bellman-Ford in Dynamic Graphs (Update)

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))
Short(i, v) = min eV

Short(i — 1,v)

A B C D

<
|

N

56

O|l0O|0O([CO|O0C|]OC([OC|OC |O |

0N OUT A WN RO
oo | oo
0| |[w|[w|w|wv|w|w
SO I O O I O O S
N (N(N|N|N (2NN
SO I O O I O I O I I S
Wlw wlwlw| w|(lu|lwn
L 2 I 2 I O 2 I O 2 I N O IO O I O B S |
N(N(N|(N|N(N|N

Bellman-Ford in Dynamic Graphs (Update)

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))

Short(i, v) = min eV _
Short(i — 1,v)

('\\ v= A B C D E F G H |
0 0
1 5 7 0 5 5
2|1 15 5 1 7 0 4 5 5 7
3| -11 5 1 & 0 4 3 5 7
4| -11 5 1 A 0 1 3 5 7
5| -8 8 4 7 0 4 3 5 7
6| -8 8 4 7 0 4 3 5 7
7| -8 8 4 7 0 4 3 5 7
8| -8 8 4 7 0 4 3 5 7 >/

Bellman-Ford in Dynamic Graphs (Update)

Short(i, v) = wglght of the s_hortest path from s to v
using at most i edges

min(Short(i — 1,x) + w(x, v))
XEV

Short(i, v) = min _
Short(i — 1,v)

;s V= A B C D E F G H I
N
0 0
1 5 7 0 5 5
2| 15 5 1 7 0 4 5 5 7
3| -11 5 1 4 0 4 3 5 7
4| -11 5 1 4 0 1 3 5 7 Recomputing shortest paths only requires
5| -11 5 1 4 0 1 3 5 7 local updates (only need to update paths
that emanate from a node whose shortest

6| -11 > g 4 0 3 3 3 7 path has changed)
71 -11 5 1 4 0 1 3 5 7
8| -11 5 1 4 0 1 3 5 7 o8

All-Pairs Shortest Path

THEu

UNIVERSITY
OF UTAH

1 '{T'..f"' '

4RV)\?~ >

Thus far: single-source shortest path algorithms (Dijkstra, Bellman-Ford)

All-pairs shortest-paths: find shortest path between every pair of nodes -

All-Pairs Shortest Path

Naively: Run single-source shortest paths algorithm for each node s (to
compute shortest path from s to every other node in the graph)

* |f edge weights are all non-negative, can use Dijkstra (running time

o(|lv

|E|log|V])

* |f edge weights can be negative, can use Bellman-Ford (running time

o(|lV

*|E])

When |E| = Q(|V]%), both of these algorithms are O(|V|3 log|V|) or

o(IVI*)

Can we do better?

60

Floyd-Warshall All-Pairs Shortest Paths

Finds all-pairs shortest paths in @(|V|?) using dynamic programming

Also works if graph has negative-weight edges

Same observation as before: Every subpath of a shortest path is itself a
shortest path (optimal substructure)
* Namely if shortest path from i to j goes through k, then the i — j and
J = k subpaths must themselves be a shortest path

Short(i, j, k) = weight of shorte§t path frc?m [— jusing 9
nodes 1, ..., k as intermediate hops ?

Shortest path from i to j includes k
Two possibilities OR Short(i, k, k — 1) + Short(k, j, k — 1)
for node k:

Shortest path from i to j excludes k
Short(i,j, k — 1)

61

Floyd-Warshall All-Pairs Shortest Paths

Finds all-pairs shortest paths in @(|V|?) using dynamic programming

Also works if graph has negative-weight edges

Same observation as before: Every subpath of a shortest path is itself a
shortest path (optimal substructure)
* Namely if shortest path from i to j goes through k, then the i — k and
k — j subpaths must themselves be a shortest path

Short(i, j, k) = weight of shorte§t path frc?m [— jusing
nodes 1, ..., k as intermediate hops

Short(i, k,k — 1) + Short(k,j, k — 1)

Short(i, j, k) = min v
Short(i,j, k — 1)

62

Floyd-Warshall All-Pairs Shortest Paths

allocate short[n][n][n] (initialized to o0)

f 1, 7 in E:
or (i, J) 1in k = 0: shortest path cannot use any

short[1] [J][0] = wl[i][J] intermediate nodes (must be direct path)
for 1 = 1,...,n:
short[1][i][0] = O k = 0: shortest path from node to itself is always 0

for k =1,...,n:

Short(i, k, k — 1) + Short(k,j, k — 1)
Short(i,j, k — 1)

for 1 = 1,...,n:

Short(i, j, k) = min {

for j =1,...,n:
short[i][3]1[k] = min(short[i][k][k-1] + short[k][]J][k-1], short[i]l[]J][k-1])

63

Floyd-Warshall All-Pairs Shortest Paths

allocate short[n][n] (initialized to o)
for (i, J) 1in E:
In this case, the initialization step is

hort[i][§] = w[i] []
short|1]17] witllsl constructing the adjacency matrix of the graph

for i = 1,...,n: (this step is not needed if graph already
short[i]1[i] = O represented in this form!)
for k = 1,...,n: .. . Short(i,k,k — 1) + Short(k,j, k — 1
for 421 , Short(i, j, k) = min (, ,) (k. Jj)
OL 1 = Lyewwymi Short(i,j, k — 1)
for j =1,...,n:

short[i][J] = min(short[i][k] + shortlk][j], short[i][]])

Observation: short [1] [J] [k] only depends on values for short[]1[] [k — 1], sowe

can just use a single two-dimensional array »

Floyd-Warshall All-Pairs Shortest Paths

allocate short[n][n] (initialized to o)

f 1, 7 in E:
or (i, J) 1in k = 0: shortest path cannot use any

short[i][J] = w[i][]] intermediate nodes (must be direct path)
for 1 = 1,...,n:
short[i][i] = O k = 0: shortest path from node to itself is always 0

for k =1,...,n:

Short(i, k, k — 1) + Short(k,j, k — 1)
Short(i,j, k — 1)

for 1 = 1,...,n:

Short(i, j, k) = min {

for j =1,...,n:

short[i][J] = min(short[i][k] + shortlk][j], short[i][]])

Very simple implementation!

Running time: 0(n3) = O(|V|3)

65

Shortest Paths Review

Single Source Shortest Paths
* Dijkstra: O(|E| log [V])

* Greedy algorithm (choose closest node to current explored nodes)
* No negative edge weights

e Bellman-Ford: O(|E||V])

e Dynamic programming algorithm
» Supports negative edge weights (and finds negative weight cycles)
e Supports local updates when edge weights change

All Pairs Shortest Paths
* Floyd-Warshall: (|V|?)

» Supports negative edge weights

66

