CS 4102: Algorithms

Lecture 22: Network Flow

David Wu
Fall 2019

Review: All-Pairs Shortest Path

THEu

UNIVERSITY
OF UTAH

Thus far: single-source shortest path algorithms (Dijkstra, Bellman-Ford)

All-pairs shortest-paths: find shortest path between every pair of nodes 5

Review: All-Pairs Shortest Path

Naively: Run single-source shortest paths algorithm for each node s (to
compute shortest path from s to every other node in the graph)

* |f edge weights are all non-negative, can use Dijkstra (running time
O(|V|IE]log|V])

* |f edge weights can be negative, can use Bellman-Ford (running time
O(IVI*|E])

When |E| = Q(|V]%), both of these algorithms are O(|V|3 log|V|) or
o(IV|*)

Floyd-Warshall All-Pairs Shortest Paths

Finds all-pairs shortest paths in @(|V|?) using dynamic programming

Also works if graph has negative-weight edges

Same observation as before: Every subpath of a shortest path is itself a

shortest path (optimal substructure)
* Namely if shortest path from i to j goes through k, then the i — k and
k — j subpaths must themselves be a shortest path

Short(i, j, k) = weight of shorte§t path frc?m [— jusing 9
nodes 1, ..., k as intermediate hops ?

Shortest path from i to j includes k
Two possibilities OR Short(i, k, k — 1) + Short(k, j, k — 1)
for node k:

Shortest path from i to j excludes k
Short(i,j, k — 1)

4

Floyd-Warshall All-Pairs Shortest Paths

Finds all-pairs shortest paths in @(|V|?) using dynamic programming

Also works if graph has negative-weight edges

Same observation as before: Every subpath of a shortest path is itself a
shortest path (optimal substructure)
* Namely if shortest path from i to j goes through k, then the i — k and
k — j subpaths must themselves be a shortest path

Short(i, j, k) = weight of shorte§t path frc?m [— jusing
nodes 1, ..., k as intermediate hops

Short(i, k,k — 1) + Short(k,j, k — 1)

Short(i, j, k) = min v
Short(i,j, k — 1)

Floyd-Warshall All-Pairs Shortest Paths

allocate short[n][n][n] (initialized to o0)

f 1, 7 in E:
or (i, J) 1in k = 0: shortest path cannot use any

short[1] [J][0] = wl[i][J] intermediate nodes (must be direct path)
for 1 = 1,...,n:

short[1][i][0] = O k = 0: shortest path from node to itself is always 0

for k =1,...,n:

Short(i, k, k — 1) + Short(k,j, k — 1)
Short(i,j, k — 1)

for 1 =1,...,n: ShOI‘t(i,j,k) = min {

for j =1,...,n:
short[i][3]1[k] = min(short[i][k][k-1] + short[k][]J][k-1], short[i]l[]J][k-1])

Floyd-Warshall All-Pairs Shortest Paths

allocate short[n][n] (initialized to o)
for (i, J) 1in E:
In this case, the initialization step is

hort[i][§] = w[i] []
short|1]17] witllsl constructing the adjacency matrix of the graph

for i = 1,...,n: (this step is not needed if graph already
short[i]1[i] = O represented in this form!)
for k = 1,...,n: .. . Short(i,k,k — 1) + Short(k,j, k — 1
for 421 , Short(i, j, k) = min (, ,) (k. Jj)
OL 1 = Lyewwymi Short(i,j, k — 1)
for j =1,...,n:

short[i][J] = min(short[i][k] + shortlk][j], short[i][]])

Observation: short [1] [J] [k] only depends on values for short[]1[] [k — 1], sowe
can just use a single two-dimensional array

Floyd-Warshall All-Pairs Shortest Paths

allocate short[n][n] (initialized to o)

f 1, 7 in E:
or (i, J) 1in k = 0: shortest path cannot use any

short[i][J] = w[i][]] intermediate nodes (must be direct path)
for 1 = 1,...,n:
short[i][i] = O k = 0: shortest path from node to itself is always 0

for k =1,...,n:

Short(i, k, k — 1) + Short(k,j, k — 1)
Short(i,j, k — 1)

for 1 = 1,...,n:

Short(i, j, k) = min {

for j =1,...,n:

short[i][J] = min(short[i][k] + shortlk][j], short[i][]])

Very simple implementation!

Running time: 0(n3) = O(|V|3)

Today’s Keywords

Graphs

Network flow
Ford-Fulkerson
Edmonds-Karp

Max-Flow Min-Cut Theorem

CLRS Readings: Chapter 25, 26

HW?7 due today, 11pm
* Graph algorithms
* Written (use LaTeX!) — Submit both zip and pdf (two separate attachments)!

HW10B due today, 11pm
* No late submissions allowed (no exceptions)

HWS8 out today, due Thursday, November 21, 11pm
* Programming assignment (Python or Java)
* Graph algorithms

10

Railway map of Western USSR, 1955

Question: What is the
maximum throughput of the
railroad network?

11

Graph ¢ = (V,E)

Source nodes € V

Sink nodet € V

Edge capacities c(e) € R*

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through
a network of pipes E with capacities c(e), what is the maximum amount
of water which can flow from the faucet to the drain?

12

Assignment of values f(e) to edges

- b s AP
* “Amount of water going through that pipe
Capacity constraint . s 2/3
* fle) = c(e) 1/1 "

* “Flow cannot exceed capacity” 2/2

2/3

Flow constraint
* Yv €V —{s,t}, inflow(v) = outflow(v)
* inflow(v) = Yyev f(x, V)
* outflow(v) = Xy f (v,) flow / capacity
* Water going in must match water coming out

Flow of G: |f| = outflow(s) — inflow(s)
* Net outflow of s 3 in this example

0/1 1/2

2/3

13

Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

|f| = outflow(s) — inflow(s)

2/3 2/2

0/3 0/1

2/2 0/3

0/1 2/2
3 2/3

14

Greedy Approach

Greedy choice: saturate highest capacity path first

15

Greedy Approach

Greedy choice: saturate highest capacity path first

16

Greedy Approach

Greedy choice: saturate highest capacity path first

Flow: 20

17

Greedy Approach

Greedy choice: saturate highest capacity path first

20/20

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution 18

Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible

» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge

19

Flow f in G Residual graph Gy

Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible
» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge
* Backward edge by flipping each edge e in G with weight set to flow f (e)
* Models amount of flow that can be removed from the edge

2/2

1/3
2/3

S 1/3
2/2

v 1/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy

20

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e) flow along all forward edges (these have at least w(e) capacity)

2/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy

21

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight
Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e)flow along all forward edges (these have at least w(e) capacity)
* Remove w(e)flow along all backward edges (these contain at least w(e) units of flow)

22

Flow f in G Residual graph Gy

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight

Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e)flow along all edges (these have at least w(e) capacity)
* Remove w(e)flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by w(e)

23

Flow f in G Residual graph G

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight
Consider the minimum-weight edge e along the path: we can increase the flow by w(e)

* Send w(e) flow along all edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by w(e)

Why does this respect flow constraints?

Incoming edge to a node always
corresponds to increased flow to the node
(more incoming flow from edge or
less outgoing flow from backward edge)
Outgoing edge to a node always
corresponds to decreased flow to the
node

24

Residual graph Gy

Residual Graphs

Consider a path from s — t in G¢ using only edges with positive (non-zero) weight
Consider the minimum-weight edge e along the path: we can increase the flow by w(e)
* Send w(e) flow along all edges (these have at least w(e) capacity)
* Remove w(e) flow along all backward edges (these contain at least w(e) units of flow)

Observe: Flow has increased by W(e) Capacity constraints satisfied by construction

of the residual network

Why does this respect flow constraints?

* Incoming edge to a node always
corresponds to increased flow to the node W
(more incoming flow from edge or
less outgoing flow from backward edge)

* Qutgoing edge to a node always
corresponds to decreased flow to the
node

|
1 I ’
|
|
2 |
e

25

Residual graph Gy

Ford-Fulkerson Algorithm

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson approach: take

Ford-Fulkerson max-flow algorithm: ,
any augmenting path

* Initialize f(e) = 0foralle € E
e Construct the residual network Gf

* While there is an augmenting path p in Gy:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

(will revisit this later)

* Add c units of flow to G based on the augmenting path p
* Update the residual network Gy for the updated flow

26

Ford-Fulkerson Example

0/3 0/2

0/3
. 0/3 0/1

0/2 0/2 ¢

0/3
0/1

0/3

Initially: f(e) = Oforalle € E Residual graph G,

27

Ford-Fulkerson Example

Increase flow by 1 unit

0/3

. 0/3
0/2

0/1

Residual graph G

28

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G

29

Ford-Fulkerson Example

1/3

. 0/3
0/2

0/1

Residual graph G

30

Ford-Fulkerson Example

Increase flow by 1 unit

’f
S 0/3 1 3
t
0/2
2

0/1

Residual graph G

31

Ford-Fulkerson Example

Increase flow by 1 unit

2

_— oy
>

Residual graph G

32

Ford-Fulkerson Example

Increase flow by 1 unit

2/3

. 0/3
0/2

0/1

Residual graph G

33

Ford-Fulkerson Example

2/3

. 0/3
0/2

0/1

Residual graph G

34

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G

35

Ford-Fulkerson Example

Increase flow by 1 unit

2/3

. 0/3
1/2

0/1

Residual graph G

36

Ford-Fulkerson Example

2/3

. 0/3
1/2

0/1

Residual graph G

37

Ford-Fulkerson Example

Increase flow by 1 unit

Residual graph G

38

Ford-Fulkerson Example

No more augmenting paths

2/3

. 0/3
2/2

0/1

Residual graph G

Maximum flow: 4

39

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |nitialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)

40

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* |Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Initialization: O (|E|)
Construct residual network: O(|E|)

41

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorithm:
* Initialize f(e) = 0foralle € E
* Construct the residual network Gy

* While there is an augmenting path p in G¢:
* letc= melgl cr(e) (cr(e) is the weight of edge e in the residual network Gr)
e

* Add c units of flow to G based on the augme

* Update the residual network G for the upda We only care about nodes reachable from
the source s (so the number of nodes

Initialization: O (lE D that are “relevant” is at most |E)
Construct residual network: O(|E|)

Finding augmenting path in residual network: O(|E|) using BFS/DFS .

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

How many iterations are needed?
For integer-valued capacities, min-weight of each augmenting path is 1, so
number of iterations is bounded by |f*|, where |f*| is max-flow in G
For rational-valued capacities, can scale to make capacities integer
For irrational-valued capacities, algorithm may never terminate!
e Extra credit: Construct a graph where this happens

Initialization: O (|E|)
Construct residual network: O(|E|)
Finding augmenting path in residual network: O(|E|) using BFS/DFS

Ford-Fulkerson Running Time

Define an augmenting path to be an s — t path in the residual graph G¢ (using edges of
non-zero weight)

Ford-Fulkerson max-flow algorit e with - . .
- Initialize f(e) = 0 for all ¢ For graphs with integer capacities, running time

. Construct the residual ne RSRECERLLIE S NE
 While there is an augmen 0(|f*| ’ |E|)

* letc=minc(e) (cr Highly undesirable if [f*| > |E| (e.g., graph is
e
e Add c units of flow to IEUER IR EIA - I R Ak

* Update the residual n
Initialization: O(|E|) As described, algorithm is not polynomial-time!

Construct residual network: @
Finding augmenting path in residual network: O(|E|) using BFS/DFS

Worst-Case Ford-Fulkerson

45

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

46

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

47

Worst-Case Ford-Fulkerson

48

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

49

Worst-Case Ford-Fulkerson

Increase flow by 1 unit

50

Worst-Case Ford-Fulkerson

51

Worst-Case Ford-Fulkerson

Observation: each iteration increases flow by 1 unit
Total number of iterations: |f*| = 200

52

Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: @(min(|E||f*|, [V||E|?)) = O([V]|E|?)

How to find this?
Use breadth-first search (BFS)!

Ford-Fulkerson max-flow algorithm:
e |nitialize f(e) — Oforalle € E Edmonds-Karp = Ford-Fulkerson

: using BFS to find augmenting path
* Construct the residual network G 8 5 gp

* While there is an augmenting path in Gy, let p be the path with fewest hops:
* letc= melg cr(e) (cr(e) is the weight of edge e in the residual network Gy)
e

* Add c units of flow to G based on the augmenting path p
* Update the residual network G¢ for the updated flow

Proof: See CLRS (Chapter 26.2) 53

Correctness of Ford-Fulkerson

Consider cuts which separate s and ¢
e letse€ S,t€T,suchthatV =S5SUT

Cost ||S, T|| of cut (S, T): sum of the capacities of edges from Sto T

54

Max-Flow / Min-Cut

Claim: Maximum flow in a flow network G always upper-bounded by the cost any
cut that separates s and ¢
Proof: “Conservation of flow”

* All flow from s must eventually getto ¢t

* To get from s to ¢, all flow must cross the cut somewhere

Conclusion: Max-flow in G is at most the cost of the min-cutin G
. m]g:lXIfI < min|lS, T

T 55

Max-Flow Min-Cut Theorem

Let f be aflow in agraph G

. _ there are no there exists a cut
f |sf?0r\:1/a;>:r(r;\um augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|
t Statements are equivalent! I
Implications:

* Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more
augmenting paths in the residual graph G¢, which means that f is a maximum flow

e Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut
of the graph (m}gxlfl = n;iTnllS,Tll)

* Finding either the minimum cut or the maximum flow yields solution to the other

. 56
» Special case of more general principle (duality in linear programming)

Max-Flow Min-Cut Duality Example

no more augmenting paths

Flow graph Residual graph

Max flow: 4

57

Max-Flow Min-Cut Duality Example

no more augmenting paths

Flow graph Residual graph

Max flow: 4 When there are no more augmenting paths in the graph,
Min cut: 4 there is a cut whose cost matches the flow s

Max-Flow Min-Cut Theorem Proof

Let f be aflow in agraph G

, _ there are no
f is a maximum

flow in G

augmenting paths in the
residual graph Gy

Proof:
* Suppose f is a max flow in G and there is an augmenting path in Gy

* If there is an augmenting path in G, then we can send additional units of flow though

the network along the augmenting path
* This contradicts optimality of f 59

Max-Flow Min-Cut Theorem Proof

Let f be aflow in agraph G

there exists a cut

AUl (S5, T) of G where

flow in G

F1=1S.T]

eeee————

Proof:

* Take any flow f’

« Considerthe cut (S§,T) of G; then, |[f'| < |IS, T|| = |f]
* Thus, |f'] < |f], so f must be a maximum flow

60

Max-Flow Min-Cut Theorem Proof

Let f be aflow in agraph G

there are no there exists a cut

augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|

61

Max-Flow Min-Cut Theorem Proof

no more augmenting paths
/‘ >
1
3
2
1
T 1

Flow graph Residual graph

No augmenting paths means there is no path from s to t in G¢

e Let S be set of nodes reachable from s in Gf
e letT =V -39S 02

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

& .| /1
1; v

Claim: ||S, T|| = |f]
* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S

63

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

1%

u
/‘ >
1
3

2
1

1

Claim: ||S,T|| = |f]

* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
* Outgoing flow: Consider edge (1, V) whereu € Sandv € T
* Then, f(u,v) = c(u, v). Otherwise, there is a forward edge (1, V) with positive weight in Grandv € S

T

64

Max-Flow Min-Cut Theorem Proof

no more augmenting paths

Claim: |[S,T|| = |f]
* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S
* Outgoing flow: Consider edge (1, V) whereu € Sandv € T
* Then, f(u,v) = c(u, v). Otherwise, there is a forward edge (1, V) with positive weight in Grandv € S

* Incoming flow: Consider edge (y,x) wherey € T andx € S
* Then, f(y,x) = 0. Otherwise, there is a backward edge (x, y) with positive weight in G and y €5

Max-Flow Min-Cut Theorem Proof

-

|f]

_

T

> fawn-)

UES, VET

z c(u,v)

UuesS,veT

IS, Tl

YET,XES

~

f,x)

/

Claim: ||S,T|| = |f]

* Total flow |f| is amount of outgoing flow from S to T minus the amount of incoming flow from T to S

* Outgoing flow: Consider edge (1, V) whereu € Sandv € T
* Then, f(u,v) = c(u, v). Otherwise, there is a

* Incoming flow: Consider edge (y,x) wherey € T andx € S

with positive weightin Gy and v € §

* Then, f(y,x) = 0. Otherwise, there is a backward edge (x, y) with positive weight in G and y €S

Max-Flow Min-Cut Theorem

Let f be aflow in agraph G

. _ there are no there exists a cut
f |sf?0r\:1/a;>:r(r;\um augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|
t Statements are equivalent! I
Implications:

* Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more
augmenting paths in the residual graph G, which means that f is a maximum flow

e Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut
of the graph (m}gxlfl = n;iTnllS,Tll)

67

Other Max Flow Algorithms

Ford-Fulkerson
* O(IEIIfD

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)
* O(|EI?V])

Push-Relabel (Tarjan)
* O(|E||V]?)

Faster Push-Relabel (also Tarjan)
- 0(IVI®)

68

Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!

A is associated with each unit of flow sent along an edge Much harder problem!

Goal: Maximize flow while minimizing cost Can solve using linear programming
69

