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Review: All-Pairs Shortest Path
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Thus far: single-source shortest path algorithms (Dijkstra, Bellman-Ford)

All-pairs shortest-paths: find shortest path between every pair of nodes
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Review: All-Pairs Shortest Path

Naïvely: Run single-source shortest paths algorithm for each node 𝑠 (to 
compute shortest path from 𝑠 to every other node in the graph)

• If edge weights are all non-negative, can use Dijkstra (running time 
𝑂 𝑉 𝐸 log 𝑉

• If edge weights can be negative, can use Bellman-Ford (running time 
𝑂 𝑉 ( 𝐸

When 𝐸 = Ω 𝑉 ( , both of these algorithms are 𝑂 𝑉 + log 𝑉 or 
𝑂 𝑉 ,

3



Floyd-Warshall All-Pairs Shortest Paths
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Finds all-pairs shortest paths in Θ( 𝑉 +) using dynamic programming
Also works if graph has negative-weight edges

Same observation as before: Every subpath of a shortest path is itself a 
shortest path (optimal substructure)
• Namely if shortest path from 𝑖 to 𝑗 goes through 𝑘, then the 𝑖 → 𝑘 and 
𝑘 → 𝑗 subpaths must themselves be a shortest path

Two possibilities 
for node 𝑘: 

Shortest path from 𝑖 to 𝑗 includes 𝑘

Shortest path from 𝑖 to 𝑗 excludes 𝑘
OR

Short(𝑖, 𝑗, 𝑘 − 1)

Short(𝑖, 𝑘, 𝑘 − 1) + Short(𝑘, 𝑗, 𝑘 − 1)

𝑖
𝑗

𝑘

𝑖

𝑗
𝑘

Short 𝑖, 𝑗, 𝑘 = weight of shortest path from 𝑖 → 𝑗 using 
nodes 1,… , 𝑘 as intermediate hops



Floyd-Warshall All-Pairs Shortest Paths

5

Finds all-pairs shortest paths in Θ( 𝑉 +) using dynamic programming
Also works if graph has negative-weight edges

Same observation as before: Every subpath of a shortest path is itself a 
shortest path (optimal substructure)
• Namely if shortest path from 𝑖 to 𝑗 goes through 𝑘, then the 𝑖 → 𝑘 and 
𝑘 → 𝑗 subpaths must themselves be a shortest path

Short(𝑖, 𝑗, 𝑘 − 1)
Short(𝑖, 𝑘, 𝑘 − 1) + Short(𝑘, 𝑗, 𝑘 − 1)Short 𝑖, 𝑗, 𝑘 = min

Short 𝑖, 𝑗, 𝑘 = weight of shortest path from 𝑖 → 𝑗 using 
nodes 1,… , 𝑘 as intermediate hops



Floyd-Warshall All-Pairs Shortest Paths
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allocate short[n][n][n] (initialized to ∞)
for (i, j) in E:

short[i][j][0] = w[i][j]

for i = 1,...,n:

short[i][i][0] = 0

for k = 1,...,n:

for i = 1,...,n:

for j = 1,...,n:

short[i][j][k] = min(short[i][k][k-1] + short[k][j][k-1], short[i][j][k-1])

𝒌 = 𝟎: shortest path cannot use any 
intermediate nodes (must be direct path) 

𝒌 = 𝟎: shortest path from node to itself is always 0

Short(𝑖, 𝑗, 𝑘 − 1)
Short(𝑖, 𝑘, 𝑘 − 1) + Short(𝑘, 𝑗, 𝑘 − 1)Short 𝑖, 𝑗, 𝑘 = min



Floyd-Warshall All-Pairs Shortest Paths

7

allocate short[n][n] (initialized to ∞)
for (i, j) in E:

short[i][j] = w[i][j]

for i = 1,...,n:

short[i][i] = 0

for k = 1,...,n:

for i = 1,...,n:

for j = 1,...,n:

short[i][j] = min(short[i][k] + short[k][j], short[i][j])

𝒌 = 𝟎: shortest path cannot use any 
intermediate nodes (must be direct path) 

𝒌 = 𝟎: shortest path from node to itself is always 0

Observation: short[i][j][k] only depends on values for short[][][k – 1], so we 
can just use a single two-dimensional array

Short(𝑖, 𝑗, 𝑘 − 1)
Short(𝑖, 𝑘, 𝑘 − 1) + Short(𝑘, 𝑗, 𝑘 − 1)Short 𝑖, 𝑗, 𝑘 = min

In this case, the initialization step is 
constructing the adjacency matrix of the graph 

(this step is not needed if graph already 
represented in this form!)



Floyd-Warshall All-Pairs Shortest Paths
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allocate short[n][n] (initialized to ∞)
for (i, j) in E:

short[i][j] = w[i][j]

for i = 1,...,n:

short[i][i] = 0

for k = 1,...,n:

for i = 1,...,n:

for j = 1,...,n:

short[i][j] = min(short[i][k] + short[k][j], short[i][j])

𝒌 = 𝟎: shortest path cannot use any 
intermediate nodes (must be direct path) 

𝒌 = 𝟎: shortest path from node to itself is always 0

Very simple implementation!

Running time: 𝑂 𝑛+ = 𝑂 𝑉 +

Short(𝑖, 𝑗, 𝑘 − 1)
Short(𝑖, 𝑘, 𝑘 − 1) + Short(𝑘, 𝑗, 𝑘 − 1)Short 𝑖, 𝑗, 𝑘 = min



Today’s Keywords

Graphs
Network flow
Ford-Fulkerson
Edmonds-Karp
Max-Flow Min-Cut Theorem
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CLRS Readings: Chapter 25, 26



Homework

HW7 due today, 11pm
• Graph algorithms
• Written (use LaTeX!) – Submit both zip and pdf (two separate attachments)!

HW10B due today, 11pm
• No late submissions allowed (no exceptions)

HW8 out today, due Thursday, November 21, 11pm
• Programming assignment (Python or Java)
• Graph algorithms
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Network Flow

11Railway map of Western USSR, 1955

Question: What is the 
maximum throughput of the 

railroad network?



Flow Networks

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge capacities 𝑐 𝑒 ∈ ℝK

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡 through 
a network of pipes 𝐸 with capacities 𝑐(𝑒), what is the maximum amount 
of water which can flow from the faucet to the drain?
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Assignment of values 𝑓 𝑒 to edges
• “Amount of water going through that pipe”

Capacity constraint
• 𝑓 𝑒 ≤ 𝑐(𝑒)
• “Flow cannot exceed capacity”

Flow constraint
• ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, inRlow 𝑣 = outRlow(𝑣)
• inRlow 𝑣 = ∑V∈W 𝑓(𝑥, 𝑣)
• outRlow 𝑣 = ∑V∈W 𝑓(𝑣, 𝑥)
• Water going in must match water coming out

Flow of 𝐺: |𝑓| = outRlow 𝑠 − inRlow(𝑠)
• Net outflow of 𝑠
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flow / capacity

3 in this example

Network Flow
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Maximum Flow Problem

Of all valid flows through the graph, find the one that maximizes:

𝑓 = outRlow 𝑠 − inRlow(𝑠)
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Greedy Approach
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Greedy choice: saturate highest capacity path first



Greedy Approach
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Greedy Approach
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20/30
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10 20/20

10

Greedy choice: saturate highest capacity path first

Flow: 20



Greedy Approach
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10/30

20/20

𝑠 𝑡

10/10 20/20

10/10

Greedy choice: saturate highest capacity path first

Maximum Flow: 30

Observe: highest capacity path is not saturated in optimal solution



Residual Graphs
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Flow 𝑓 in 𝐺

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺Z models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge

Residual graph 𝐺Z
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Residual Graphs
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Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺Z models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge



Residual Graphs
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Flow 𝑓 in 𝐺

Consider a path from 𝑠 → 𝑡 in 𝐺Z using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
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Residual Graphs
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Consider a path from 𝑠 → 𝑡 in 𝐺Z using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒)flow along all forward edges (these have at least 𝑤(𝑒) capacity)
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Residual Graphs
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Observe: Flow has increased by 𝑤(𝑒)

Consider a path from 𝑠 → 𝑡 in 𝐺Z using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒)flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒)flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)



Residual Graphs
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Consider a path from 𝑠 → 𝑡 in 𝐺Z using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺Z
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Observe: Flow has increased by 𝑤(𝑒)

Why does this respect flow constraints?
• Incoming edge to a node always 

corresponds to increased flow to the node 
(more incoming flow from forward edge or 
less outgoing flow from backward edge)

• Outgoing edge to a node always 
corresponds to decreased flow to the 
node



Residual Graphs
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Consider a path from 𝑠 → 𝑡 in 𝐺Z using only edges with positive (non-zero) weight
Consider the minimum-weight edge 𝑒 along the path: we can increase the flow by 𝑤(𝑒)
• Send 𝑤(𝑒) flow along all forward edges (these have at least 𝑤(𝑒) capacity)
• Remove 𝑤(𝑒) flow along all backward edges (these contain at least 𝑤(𝑒) units of flow)

Residual graph 𝐺Z
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Observe: Flow has increased by 𝑤(𝑒)

Why does this respect flow constraints?
• Incoming edge to a node always 

corresponds to increased flow to the node 
(more incoming flow from forward edge or 
less outgoing flow from backward edge)

• Outgoing edge to a node always 
corresponds to decreased flow to the 
node

Capacity constraints satisfied by construction 
of the residual network



Ford-Fulkerson Algorithm

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺Z (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path 𝑝 in 𝐺Z:

• Let 𝑐 = min
]∈^

𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow

26

Ford-Fulkerson approach: take 
any augmenting path
(will revisit this later)



Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Example
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Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺Z (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path 𝑝 in 𝐺Z:

• Let 𝑐 = min
]∈^

𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow

40

Initialization: 𝑂 𝐸



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺Z (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path 𝑝 in 𝐺Z:

• Let 𝑐 = min
]∈^

𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow

41

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺Z (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path 𝑝 in 𝐺Z:

• Let 𝑐 = min
]∈^

𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow

42

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

We only care about nodes reachable from 
the source 𝑠 (so the number of nodes 

that are “relevant” is at most 𝐸 )



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺Z (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path 𝑝 in 𝐺Z:

• Let 𝑐 = min
]∈^

𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow

43

Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

How many iterations are needed?
• For integer-valued capacities, min-weight of each augmenting path is 1, so 

number of iterations is bounded by 𝑓∗ , where 𝑓∗ is max-flow in 𝐺
• For rational-valued capacities, can scale to make capacities integer
• For irrational-valued capacities, algorithm may never terminate!

• Extra credit: Construct a graph where this happens



Ford-Fulkerson Running Time

Define an augmenting path to be an 𝑠 → 𝑡 path in the residual graph 𝐺Z (using edges of 
non-zero weight)

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path 𝑝 in 𝐺Z:

• Let 𝑐 = min
]∈^

𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)
• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow
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Initialization: 𝑂 𝐸
Construct residual network: 𝑂 𝐸
Finding augmenting path in residual network: 𝑂 𝐸 using BFS/DFS

For graphs with integer capacities, running time 
of Ford-Fulkerson is

𝑂 𝑓∗ ⋅ 𝐸
Highly undesirable if 𝑓∗ ≫ |𝐸| (e.g., graph is 
small, but capacities are ≈ 2+()

As described, algorithm is not polynomial-time!



Worst-Case Ford-Fulkerson

45

0/1

0/100

𝑠 𝑡

0/100 0/100

0/100

1

100

𝑠 𝑡

100 100

100



Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Worst-Case Ford-Fulkerson
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Observation: each iteration increases flow by 1 unit
Total number of iterations: 𝑓∗ = 200



Can We Avoid this?

Edmonds-Karp Algorithm: choose augmenting path with fewest hops
Running time: Θ min 𝐸 𝑓∗ , 𝑉 𝐸 ( = 𝑂 𝑉 𝐸 (

53

Ford-Fulkerson max-flow algorithm:
• Initialize 𝑓 𝑒 = 0 for all 𝑒 ∈ 𝐸
• Construct the residual network 𝐺Z
• While there is an augmenting path in 𝐺Z, let 𝑝 be the path with fewest hops:
• Let 𝑐 = min

]∈^
𝑐Z(𝑒) (𝑐Z(𝑒) is the weight of edge 𝑒 in the residual network 𝐺Z)

• Add 𝑐 units of flow to 𝐺 based on the augmenting path 𝑝
• Update the residual network 𝐺Z for the updated flow

How to find this? 
Use breadth-first search (BFS)!

Edmonds-Karp = Ford-Fulkerson 
using BFS to find augmenting path

Proof: See CLRS (Chapter 26.2)



Correctness of Ford-Fulkerson

Consider cuts which separate 𝑠 and 𝑡
• Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, such that 𝑉 = 𝑆 ∪ 𝑇

Cost 𝑆, 𝑇 of cut 𝑆, 𝑇 : sum of the capacities of edges from 𝑆 to 𝑇
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Max-Flow / Min-Cut
Claim: Maximum flow in a flow network 𝐺 always upper-bounded by the cost any 
cut that separates 𝑠 and 𝑡
Proof: “Conservation of flow”

• All flow from 𝑠 must eventually get to 𝑡
• To get from 𝑠 to 𝑡, all flow must cross the cut somewhere

Conclusion: Max-flow in 𝐺 is at most the cost of the min-cut in 𝐺
• max

Z
𝑓 ≤ min

j,k
𝑆, 𝑇
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Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺

56

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺Z

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more 

augmenting paths in the residual graph 𝐺Z, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut 

of the graph (max
Z

𝑓 = min
j,k

𝑆, 𝑇 )

• Finding either the minimum cut or the maximum flow yields solution to the other
• Special case of more general principle (duality in linear programming)



Max-Flow Min-Cut Duality Example
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Max-Flow Min-Cut Duality Example
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Max flow: 4
Min cut: 4

When there are no more augmenting paths in the graph, 
there is a cut whose cost matches the flow



Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺
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𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺Z

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Proof:
• Suppose 𝑓 is a max flow in 𝐺 and there is an augmenting path in 𝐺Z
• If there is an augmenting path in 𝐺Z, then we can send additional units of flow though 

the network along the augmenting path
• This contradicts optimality of 𝑓



Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺
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𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺Z

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Proof:
• Take any flow 𝑓m
• Consider the cut 𝑆, 𝑇 of 𝐺; then, 𝑓m ≤ 𝑆, 𝑇 = 𝑓
• Thus, 𝑓m ≤ 𝑓 , so 𝑓 must be a maximum flow



Max-Flow Min-Cut Theorem Proof

Let 𝑓 be a flow in a graph 𝐺

61

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺Z

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖



Max-Flow Min-Cut Theorem Proof
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No augmenting paths means there is no path from 𝑠 to 𝑡 in 𝐺Z
• Let 𝑆 be set of nodes reachable from 𝑠 in 𝐺Z
• Let 𝑇 = 𝑉 − 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺Z and 𝑣 ∈ 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺Z and 𝑣 ∈ 𝑆
• Incoming flow: Consider edge 𝑦, 𝑥 where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆

• Then, 𝑓 𝑦, 𝑥 = 0. Otherwise, there is a backward edge 𝑥, 𝑦 with positive weight in 𝐺Z and 𝑦 ∈ 𝑆



Max-Flow Min-Cut Theorem Proof
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Claim: 𝑆, 𝑇 = 𝑓
• Total flow 𝑓 is amount of outgoing flow from 𝑆 to 𝑇 minus the amount of incoming flow from 𝑇 to 𝑆
• Outgoing flow: Consider edge 𝑢, 𝑣 where 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇

• Then, 𝑓 𝑢, 𝑣 = 𝑐 𝑢, 𝑣 . Otherwise, there is a forward edge 𝑢, 𝑣 with positive weight in 𝐺Z and 𝑣 ∈ 𝑆
• Incoming flow: Consider edge 𝑦, 𝑥 where 𝑦 ∈ 𝑇 and 𝑥 ∈ 𝑆

• Then, 𝑓 𝑦, 𝑥 = 0. Otherwise, there is a backward edge 𝑥, 𝑦 with positive weight in 𝐺Z and 𝑦 ∈ 𝑆

𝑓 = p
q∈j,r∈k

𝑓 𝑢, 𝑣 − p
s∈k,V∈j

𝑓 𝑦, 𝑥

= 𝑆, 𝑇

= p
q∈j,r∈k

𝑐 𝑢, 𝑣



Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺
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𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺Z

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more 

augmenting paths in the residual graph 𝐺Z, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut 

of the graph (max
Z

𝑓 = min
j,k

𝑆, 𝑇 )



Other Max Flow Algorithms

Ford-Fulkerson
• Θ 𝐸 𝑓∗

Edmonds-Karp (Ford-Fulkerson using BFS to choose augmenting path)
• Θ( 𝐸 ( 𝑉 )

Push-Relabel (Tarjan)
• Θ( 𝐸 𝑉 ()

Faster Push-Relabel (also Tarjan)
• Θ( 𝑉 +)
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Minimum-Cost Maximum-Flow Problem

Not all paths are created equal!
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A cost is associated with each unit of flow sent along an edge
Goal: Maximize flow while minimizing cost

Much harder problem!
Can solve using linear programming


