CS 4102: Algorithms

Lecture 23: Bipartite Matching

David Wu
Fall 2019

Today’s Keywords

Edge-Disjoint Paths
Vertex-Disjoint Paths
Bipartite Matching

Reductions

CLRS Readings: Chapter 26, 34

HWS8 out today, due Thursday, November 21, 11pm
* Programming assignment (Python or Java)
* Graph algorithms

HW9, HW10C out Thursday, November 21 (due Thursday, December 5)
* Graphs, Reductions
* Written (LaTeX)

Monday, December 9, 7pm in Olsson 120
* Practice exam coming next week
* Review session likely the weekend before

Exam conflicts: Will email out a sign-up form for alternative exam time
* Alternative exam only for student with an conflicting exam at the same time

Review: Max Flow and Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible
» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge
* Backward edge by flipping each edge e in G with weight set to flow f (e)
* Models amount of flow that can be removed from the edge

2/2

1/3
2/3

S 1/3
2/2

v 1/2

2/3

0/1 1/2
2/3
Flow f in G Residual graph Gy

Max-Flow Min-Cut Theorem

Let f be aflow in agraph G

. _ there are no there exists a cut
f |sf?0r\:1/a;>:r(r;\um augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|
t Statements are equivalent! I
Implications:

* Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more
augmenting paths in the residual graph G¢, which means that f is a maximum flow

e Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut
of the graph (m}gxlfl = n;iTnllS,Tll)

Warm-Up: Flow Integrality Theorem

Theorem: If G is a flow graph with integer capacities, then there is a
maximum flow that assigns integer flows to every edge

Proof: Follows by correctness of Ford-Fulkerson:

* If the graph G has integer capacities, then the initial residual graph will
only have integer weights

 Each augmentation step in Ford-Fulkerson increases the flow along an
edge by an integer amount (specifically, the least-weight edge in the
augmenting path)

 The final flow output by Ford-Fulkerson uses integer flow along each
edge, and by correctness of Ford-Fulkerson, this flow is maximal

Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

v

—

\/

Set of size 3 ‘

Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

_T__%
\/

Set of size 4 10

Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Solve using max flow:

e Setsourcetobes
 Setsinktobet

* Edge capacity 1 for each edge
Max flow = max number of edge-
disjoint paths

Algorithm for max
flow

Algorithm for
edge-disjoint paths

11

Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph
* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with
value k

Without the first claim...

 Maximum flow could be much larger than the number of edge-disjoint paths
Without the second claim...

 Maximum flow could be much smaller than the number of edge-disjoint paths

12

Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph
* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with

value k

Claim 1. If there is a flow f with value k, then there are k edge-disjoint paths in the graph
* Take any edge (s,u,) where f(s,uy) =1
* Since flow is conserved, there must be a sequence of nodes u,, ...,u; = t where
fuj,ujp1) =1foralli=2,...,d -1
* This gives a path from s to t (which delivers exactly 1 unit of flow)
* Setf(s,uy) = f(ug,uy) =+ = f(ug—q,t) = 0 and repeat this step to obtain the
full set of k edge-disjoint paths .

Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph

* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with
value k

Claim 2. If there are k edge-disjoint paths in the graph, then there is a flow with value k
* Since paths are edge disjoint, we can send 1 unit of flow along each of those paths

* Thus, there is a flow with value k

14

Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:

* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph

* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with
value k

Conclusion: Finding the maximum flow in the graph G yields a maximal set of edge-disjoint
pathsin G

This is an example of a reduction: showing that solution to one problem
(max flow) gives solution to another problem (edge-disjoint paths)

15

Vertex-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

16

Vertex-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

Not a vertex-disjoint
set of paths!

/

17

Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Replace every \

internal node in G
with this “gadget”

18

Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Replace every \

internal node in G
with this “gadget”

N\
----------- @

Solve edge-disjoint paths
on new graph G’

19

Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Replace every \

internal node in G
with this “gadget”

N\
----------- @

Solve edge-disjoint paths
on new graph G’

20

Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Set of edge-disjoint paths in G’ corresponds to set
of vertex-disjoint pathsin G 21

Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Proof. Follows essentially by construction of the gadget
* Apath (5,4, ..., p, t) in G maps to a path (S, V1 in, V1 outs - » Vnin» Vn.ouw £) in G’
* A set of vertex-disjoint paths in G is also vertex-disjoint in G', and thus, must also be edge-disjoint
« A set of edge-disjoint paths in G’ must also be vertex disjoint
* There is only a single outgoing edge in v; j, and a single incoming edge in v; oyt
* Iftwo pathsin G’ use v; i, Or V; oy, they must use the edge (vi,in, vi,out), which contradicts
edge-disjointness

N\

N
v,

Graph G Graph G’

)

22

Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Conclusion. Solving edge-disjoint paths in G’ gives a solution to vertex-disjoint paths in G

Why do we need to show both directions in the theorem?
* Vertex-disjoint in G = edge-disjoint in G' needed to argue that optimal solution in
G corresponds to some solution in G’
* Edge-disjointin G' = vertex-disjoint in G needed to argue that any feasible solution
(in G') corresponds to a solution to the original problem (in G)

h - | a@

Graph G Graph G’

23

Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set Q

If this was not true, then the maximal set of vertex disjoint paths in G might not
Wi [[F[e]sMNe]l correspond to a set of edge-disjoint paths in G’ (so finding the maximal set of [gN&

edge-disjoint paths in G' may not give a solution to the original problem)
Why do we neeé

* Vertex-disjointin G = edge-disjoint in G' needed to argue that optimal solution in
G corresponds to some solution in G’

* Edge-disjointin G' = vertex-disjoint in G needed to argue that any feasible solution
(in G') corresponds to a solution to the original problem (in G)

h - | a@

Graph G Graph G’

24

Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Conclusion. Solvingedge

If this was not true, then the maximal set of edge-disjoint paths in G' might not
- correspond to any collection of vertex-disjoint paths in G (so the solution to our
* Vertex-disj new problem may not give a solution to the original problem)

(G correspove

* Edge-disjointin G' = vertex-disjoint in G needed to argue that any feasible solution
(in G') corresponds to a solution to the original problem (in G)

h - | a@

Graph G Graph G’

Why do we need

25

Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Conclusion. Solving edge-disjoint paths in G’ gives a solution to vertex-disjoint paths in G

This is another example of a reduction: showing that solution to one
problem (edge-disjoint paths in G') gives solution to another problem
(vertex-disjoint paths in G)

h - | a@

Graph G Graph G’

26

Maximum Bipartite Matching

Dog Lovers Dogs

27

Maximum Bipartite Matching

Dog Lovers Dogs

28

Maximum Bipartite Matching

Dog Lovers

Maximum Bipartite Matching

Let G = (L, R, E) be a bipartite graph
 L:asetof “left” nodes
* R:asetof “right” nodes
« [FE:asetof edges between L and R

L E R

Problem: find the largest set of edges M € E (i.e., a matching) such
that each node u € L or v € R is incident on at most one edge

H H

non-maximum J\(i maximum
matching ’ matching
N

Maximum Bipartite Matching Using Max Flow

Idea: Convert (L, R, E) into a flow network G’

(V',E") by introducing a source s and a sink t
* Connect the source to each left node
 Connect each right node to the sink

31

Maximum Bipartite Matching Using Max Flow

Idea: Convert (L, R, E) into a flow network G’ =
(V',E") by introducing a source s and a sink t
* Connect the source to each left node
 Connect each right node to the sink
e Foreachedgein E, introduce a directed
edge from the left node to the right node
* Assign capacity 1 to each of the edges

In particular:
e V'=LURU{s,t}
t « EE={G,wluel}u{(v,t)IveER}VUE

Compute a max (integer) flow in G’

32

Maximum Bipartite Matching Using Max Flow

Idea: Convert (L, R, E) into a flow network G’ =
(V',E") by introducing a source s and a sink t
* Connect the source to each left node
 Connect each right node to the sink
e Foreachedgein E, introduce a directed
edge from the left node to the right node
* Assign capacity 1 to each of the edges
In particular:
e V'=LURU{s,t}
e E'={(G,u)luell}u{(v,t)|[vER}UE

Compute a max (integer) flow in G’

Claim: edges used in the max flow (between L and R)
is precisely a maximum matching

33

Bipartite Matching Correctness

Let M be the set of edges used by the max flow in G’
Similar to before, we need to show the following:
e Ifthere is an integer flow with value k, there
is @ matching with k edges
* If thereis a matching with k edges, there is
an integer flow with value k

Claim: Integer flow with value k = matching of size k

 Since capacities are 0/1, flow along each edge in
fisalso0/1

e At most 1 unit of flow can enter each node in L

e |f thereis 1 unit of flow entering u € L, there
must be exactly 1 unit of flow exiting L (along an
edge in E) to some node v € R

* There is only 1 outgoing edge from v to t so all
other incoming edges to r have O flow

34

Bipartite Matching Correctness

Let M be the set of edges used by the max flow in G’
Similar to before, we need to show the following:
e Ifthere is an integer flow with value k, there
is @ matching with k edges
* If thereis a matching with k edges, there is
an integer flow with value k

Claim: Matching of size k = integer flow with value k
e Send 1 unit of flow from s to each matched node
in L, 1 unit of flow along the matched edges from
L to R, and 1 unit of flow from each matched
node in R to the sink t
* This yields an integer flow with value k in G’

35

Bipartite Matching Correctness

Let M be the set of edges used by the max flow in G’
Similar to before, we need to show the following:
e Ifthere is an integer flow with value k, there
is @ matching with k edges
* If thereis a matching with k edges, there is
an integer flow with value k

Conclusion: Solving max (integer) flow in G’ =
(V', E") yields a maximum bipartite matching in G =
(L,R,E)

This is another example of a reduction:
showing that solution to one problem (max
flow in G') gives solution to another problem
(max bipartite matching in G)

36

Running Time of Bipartite Matching

1. Construct flow graph G' = (V',E") 0O(|L| + |R|)
fromG = (L,R,E)
2. Find a max (integer) flow in G’ O(IEI(IL] + [RD)
3. Output the set of edges between L
and R with flow 1 OCLI+1RD

Note: Maximum flow |f]| in G is bounded by min(|L|, |R]),
so running time of Ford-Fulkerson (assuming linear-time

augmenting path selection) is
6 O(IE| - min(|L], IRD)) = O(IEI(IL] + |R]))

Overall running time: O(IEI(ILI + |R|)) = O0(|E||V])

37

Reductions

Very general technique for designing algorithms

Idea: map the problem A (that we are trying to solve) to another problem B that we
already know how to solve

So far in this course, we have reduced problems
to smaller subproblems (i.e., divide and

conquer, dynamic programming, greedy
algorithms); reductions reduce one problem to a
different problem

38

Reductions

Very general technique for designing algorithms

Idea: map the problem A (that we are trying to solve) to another problem B that we
already know how to solve

Blueprint:
1. Convert instance of Problem A into an instance of Problem B
2. Convert solution of Problem B back into a solution of Problem A

Both of these steps need to be efficient

Analysis: Show that solution to Problem B can be used to obtain solution to
Problem A

39

Reductions

Problem we don’t know how to solve

Solution for 4

Map instances of problem A to
instances of B

Map solutions of problem B to
solutions of A

Reduction

Problem we do know how to solve

B

Solution for B

Y

Algorithm for
problem B

40

Reduction Examples

Edge-disjoint paths Max flow

Map instances of problem A to

/ instances of B
~
/ .
~
NS =

Map solutions of problem B to
solutions of A

Ford-Fulkerson

==

Reduction

Reduction Examples

Vertex-disjoint paths Edge-disjoint paths

Map instances of problem A to

/ instances of B
~
/ .
~
NS =

Map solutions of problem B to
solutions of A

Edge-disjoint paths
algorithm

==

Reduction
42

Reduction Examples

Maximum bipartite matching Max flow

Map instances of problem A to
instances of B

Map solutions of problem B to
solutions of A

Reduction
43

Understanding Reductions

. reduces to > B

Problem A Problem B
Y yields > .
Algorithm for B Algorithm for A

Implication: A is no more difficult than B
(denoted A < B)

Worst-Case Lower Bounds via Reductions

reduces to > B

Problem A Problem B

If we know that A cannot be } Then problem B also cannot
solved in polynomial time be solved in polynomial time

Implication: A is no more difficult than B
denoted A < B

Worst-Case Lower Bounds via Reductions

reduces to > B

Problem A Problem B

If there is a O(T(n)) reduction
from A to B, then B cannot be
solved in O(T(n)) time

If we know that A cannot be

Algorith
sorihm solved in O(T(n)) time

Implication: A is no more difficult than B
denoted A < B

Reductions

Problem we don’t know how to solve

Solution for 4

Map instances of problem A to
instances of B

Map solutions of problem B to
solutions of A

Reduction

Problem we do know how to solve

B

Solution for B

Y

Algorithm for
problem B

47

