
CS 4102: Algorithms
Lecture 23: Bipartite Matching

David Wu
Fall 2019



Today’s Keywords

Edge-Disjoint Paths 
Vertex-Disjoint Paths
Bipartite Matching
Reductions

2

CLRS Readings: Chapter 26, 34



Homework

HW8 out today, due Thursday, November 21, 11pm
• Programming assignment (Python or Java)
• Graph algorithms

HW9, HW10C out Thursday, November 21 (due Thursday, December 5)
• Graphs, Reductions
• Written (LaTeX)

3



Final Exam

Monday, December 9, 7pm in Olsson 120
• Practice exam coming next week
• Review session likely the weekend before

Exam conflicts: Will email out a sign-up form for alternative exam time
• Alternative exam only for student with an conflicting exam at the same time

4



Review: Max Flow and Residual Graphs

5

1/3

1/3

2/3

2/2

𝑠
𝑡

0/1

2/2

1/1

2/3
1/2

1/2

2/3

Flow 𝑓 in 𝐺 Residual graph 𝐺%

𝑠
𝑡

2
1

1

11
2

1
1

1

2
1

2

1

2

21
2

1

Given a flow 𝑓 in graph 𝐺, the residual graph 𝐺% models additional flow that is possible
• Forward edge for each edge in 𝐺 with weight set to remaining capacity 𝑐 𝑒 − 𝑓(𝑒)

• Models additional flow that can be sent along the edge
• Backward edge by flipping each edge 𝑒 in 𝐺 with weight set to flow 𝑓(𝑒)

• Models amount of flow that can be removed from the edge



Max-Flow Min-Cut Theorem

Let 𝑓 be a flow in a graph 𝐺

6

𝑓 is a maximum 
flow in 𝐺

there are no 
augmenting paths in the 

residual graph 𝐺%

there exists a cut 
(𝑆, 𝑇) of 𝐺 where 

𝑓 = ‖𝑆, 𝑇‖

Statements are equivalent!

Implications:
• Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more 

augmenting paths in the residual graph 𝐺%, which means that 𝑓 is a maximum flow
• Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut 

of the graph (max
%

𝑓 = min
5,6

𝑆, 𝑇 )



Warm-Up: Flow Integrality Theorem

7

Theorem: If 𝐺 is a flow graph with integer capacities, then there is a 
maximum flow that assigns integer flows to every edge

Proof: Follows by correctness of Ford-Fulkerson:
• If the graph 𝐺 has integer capacities, then the initial residual graph will 

only have integer weights
• Each augmentation step in Ford-Fulkerson increases the flow along an 

edge by an integer amount (specifically, the least-weight edge in the 
augmenting path)

• The final flow output by Ford-Fulkerson uses integer flow along each 
edge, and by correctness of Ford-Fulkerson, this flow is maximal



Edge-Disjoint Paths

8

Problem: Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 

from 𝑠 to 𝑡 which share no edges

𝑠

𝑡



Edge-Disjoint Paths

9

Problem: Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 

from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

Set of size 3



Edge-Disjoint Paths

10

Problem: Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 

from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

Set of size 4



Edge-Disjoint Paths

11

Problem: Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 

from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

Solve using max flow:
• Set source to be 𝑠
• Set sink to be 𝑡
• Edge capacity 1 for each edge
• Max flow = max number of edge-

disjoint paths

Algorithm for max 
flow

Algorithm for 
edge-disjoint paths

1

111

1
1

1

1
1

1

1 11

1
1



Correctness of Edge-Disjoint Paths Algorithm

12

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
• If there is a flow with value 𝑘, then there are 𝑘 edge-disjoint paths in the graph
• If there are 𝑘 edge-disjoint paths from 𝑠 to 𝑡 in the graph, then there is a flow with 

value 𝑘

Without the first claim…
• Maximum flow could be much larger than the number of edge-disjoint paths

Without the second claim…
• Maximum flow could be much smaller than the number of edge-disjoint paths



Correctness of Edge-Disjoint Paths Algorithm

13

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
• If there is a flow with value 𝑘, then there are 𝑘 edge-disjoint paths in the graph
• If there are 𝑘 edge-disjoint paths from 𝑠 to 𝑡 in the graph, then there is a flow with 

value 𝑘

Claim 1. If there is a flow 𝑓 with value 𝑘, then there are 𝑘 edge-disjoint paths in the graph
• Take any edge 𝑠, 𝑢< where 𝑓 𝑠, 𝑢< = 1
• Since flow is conserved, there must be a sequence of nodes 𝑢=,… , 𝑢? = 𝑡 where 
𝑓 𝑢@, 𝑢@A< = 1 for all 𝑖 = 2,… , 𝑑 − 1

• This gives a path from 𝑠 to 𝑡 (which delivers exactly 1 unit of flow)
• Set 𝑓 𝑠, 𝑢< = 𝑓 𝑢<, 𝑢= = ⋯ = 𝑓 𝑢?F<, 𝑡 = 0 and repeat this step to obtain the 

full set of 𝑘 edge-disjoint paths



Correctness of Edge-Disjoint Paths Algorithm

14

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
• If there is a flow with value 𝑘, then there are 𝑘 edge-disjoint paths in the graph
• If there are 𝑘 edge-disjoint paths from 𝑠 to 𝑡 in the graph, then there is a flow with 

value 𝑘

Claim 2. If there are 𝑘 edge-disjoint paths in the graph, then there is a flow with value 𝑘
• Since paths are edge disjoint, we can send 1 unit of flow along each of those paths
• Thus, there is a flow with value 𝑘



Correctness of Edge-Disjoint Paths Algorithm

15

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
• If there is a flow with value 𝑘, then there are 𝑘 edge-disjoint paths in the graph
• If there are 𝑘 edge-disjoint paths from 𝑠 to 𝑡 in the graph, then there is a flow with 

value 𝑘

Conclusion: Finding the maximum flow in the graph 𝐺 yields a maximal set of edge-disjoint 
paths in 𝐺

This is an example of a reduction: showing that solution to one problem 
(max flow) gives solution to another problem (edge-disjoint paths)



Vertex-Disjoint Paths

16

Problem: Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 

from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡



Vertex-Disjoint Paths

17

Problem: Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 

from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

Not a vertex-disjoint
set of paths!



Vertex-Disjoint Paths

18

Idea: Convert an instance of the vertex-disjoint paths 
problem into an instance of edge-disjoint paths

𝑠

𝑡𝑣

𝑣IJ 𝑣KLM

𝑣IJ
Replace every 

internal node in 𝐺
with this “gadget”



Vertex-Disjoint Paths

19

𝑠

𝑡

𝑣IJ 𝑣KLM

𝑣IJ
Replace every 

internal node in 𝐺
with this “gadget”

Idea: Convert an instance of the vertex-disjoint paths 
problem into an instance of edge-disjoint paths

Solve edge-disjoint paths 
on new graph 𝐺N



Vertex-Disjoint Paths

20

𝑠

𝑡

𝑣IJ 𝑣KLM

𝑣IJ
Replace every 

internal node in 𝐺
with this “gadget”

Idea: Convert an instance of the vertex-disjoint paths 
problem into an instance of edge-disjoint paths

Solve edge-disjoint paths 
on new graph 𝐺N



Vertex-Disjoint Paths

21

Idea: Convert an instance of the vertex-disjoint paths 
problem into an instance of edge-disjoint paths

Set of edge-disjoint paths in 𝐺N corresponds to set 
of vertex-disjoint paths in 𝐺



Correctness of Vertex-Disjoint Paths Algorithm

22

Theorem. A set of paths is vertex-disjoint paths in 𝐺 if and only if it is edge-disjoint in 𝐺N

Proof. Follows essentially by construction of the gadget
• A path 𝑠, 𝑣<, … , 𝑣O, 𝑡 in 𝐺 maps to a path 𝑠, 𝑣<,IJ, 𝑣<,KLM, … , 𝑣O,IJ, 𝑣O,KLM, 𝑡 in 𝐺N
• A set of vertex-disjoint paths in 𝐺 is also vertex-disjoint in 𝐺N, and thus, must also be edge-disjoint
• A set of edge-disjoint paths in 𝐺′ must also be vertex disjoint

• There is only a single outgoing edge in 𝑣@,IJ and a single incoming edge in 𝑣@,KLM
• If two paths in 𝐺′ use 𝑣@,IJ or 𝑣@,KLM, they must use the edge 𝑣@,IJ, 𝑣@,KLM , which contradicts 

edge-disjointness

𝑣IJ 𝑣KLM𝑣IJ

Graph 𝐺 Graph 𝐺N



Correctness of Vertex-Disjoint Paths Algorithm

23

Theorem. A set of paths is vertex-disjoint paths in 𝐺 if and only if it is edge-disjoint in 𝐺N

Conclusion. Solving edge-disjoint paths in 𝐺N gives a solution to vertex-disjoint paths in 𝐺

𝑣IJ 𝑣KLM𝑣IJ

Graph 𝐺 Graph 𝐺N

Why do we need to show both directions in the theorem?
• Vertex-disjoint in 𝐺 ⇒ edge-disjoint in 𝐺N needed to argue that optimal solution in 
𝐺 corresponds to some solution in 𝐺N

• Edge-disjoint in 𝐺′ ⇒ vertex-disjoint in 𝐺 needed to argue that any feasible solution 
(in 𝐺′) corresponds to a solution to the original problem (in 𝐺)



Correctness of Vertex-Disjoint Paths Algorithm

24

Theorem. A set of paths is vertex-disjoint paths in 𝐺 if and only if it is edge-disjoint in 𝐺N

Conclusion. Solving edge-disjoint paths in 𝐺N gives a solution to vertex-disjoint paths in 𝐺

𝑣IJ 𝑣KLM𝑣IJ

Graph 𝐺 Graph 𝐺N

Why do we need to show both directions in the theorem?
• Vertex-disjoint in 𝐺 ⇒ edge-disjoint in 𝐺N needed to argue that optimal solution in 
𝐺 corresponds to some solution in 𝐺N

• Edge-disjoint in 𝐺′ ⇒ vertex-disjoint in 𝐺 needed to argue that any feasible solution 
(in 𝐺′) corresponds to a solution to the original problem (in 𝐺)

If this was not true, then the maximal set of vertex disjoint paths in 𝐺 might not 
correspond to a set of edge-disjoint paths in 𝐺N (so finding the maximal set of 

edge-disjoint paths in 𝐺′ may not give a solution to the original problem)



Correctness of Vertex-Disjoint Paths Algorithm

25

Theorem. A set of paths is vertex-disjoint paths in 𝐺 if and only if it is edge-disjoint in 𝐺N

Conclusion. Solving edge-disjoint paths in 𝐺N gives a solution to vertex-disjoint paths in 𝐺

𝑣IJ 𝑣KLM𝑣IJ

Graph 𝐺 Graph 𝐺N

Why do we need to show both directions in the theorem?
• Vertex-disjoint in 𝐺 ⇒ edge-disjoint in 𝐺N needed to argue that optimal solution in 
𝐺 corresponds to some solution in 𝐺N

• Edge-disjoint in 𝐺′ ⇒ vertex-disjoint in 𝐺 needed to argue that any feasible solution 
(in 𝐺′) corresponds to a solution to the original problem (in 𝐺)

If this was not true, then the maximal set of edge-disjoint paths in 𝐺′ might not 
correspond to any collection of vertex-disjoint paths in 𝐺 (so the solution to our 

new problem may not give a solution to the original problem)



Correctness of Vertex-Disjoint Paths Algorithm

26

Theorem. A set of paths is vertex-disjoint paths in 𝐺 if and only if it is edge-disjoint in 𝐺N

Conclusion. Solving edge-disjoint paths in 𝐺N gives a solution to vertex-disjoint paths in 𝐺

𝑣IJ 𝑣KLM𝑣IJ

Graph 𝐺 Graph 𝐺N

This is another example of a reduction: showing that solution to one 
problem (edge-disjoint paths in 𝐺N) gives solution to another problem 

(vertex-disjoint paths in 𝐺)



Maximum Bipartite Matching

27

Dog Lovers Dogs



Maximum Bipartite Matching

28

Dog Lovers Dogs



Maximum Bipartite Matching

29

Dog Lovers Dogs



Maximum Bipartite Matching

Let 𝐺 = (𝐿, 𝑅, 𝐸) be a bipartite graph
• 𝐿: a set of “left” nodes
• 𝑅: a set of “right” nodes
• 𝐸: a set of edges between 𝐿 and 𝑅

Problem: find the largest set of edges 𝑀 ⊆ 𝐸 (i.e., a matching) such 
that each node 𝑢 ∈ 𝐿 or 𝑣 ∈ 𝑅 is incident on at most one edge

30

𝐿 𝑅𝐸

𝐿 𝑅𝐸 𝐿 𝑅𝐸

non-maximum
matching

maximum
matching



Maximum Bipartite Matching Using Max Flow

31

𝑠 𝑡

Idea: Convert 𝐿, 𝑅, 𝐸 into a flow network 𝐺N =
𝑉N, 𝐸N by introducing a source 𝑠 and a sink 𝑡

• Connect the source to each left node
• Connect each right node to the sink



Maximum Bipartite Matching Using Max Flow

32

𝑠 𝑡

1
1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

Idea: Convert 𝐿, 𝑅, 𝐸 into a flow network 𝐺N =
𝑉N, 𝐸N by introducing a source 𝑠 and a sink 𝑡

• Connect the source to each left node
• Connect each right node to the sink
• For each edge in 𝐸, introduce a directed 

edge from the left node to the right node
• Assign capacity 1 to each of the edges

In particular:
• 𝑉N = 𝐿 ∪ 𝑅 ∪ 𝑠, 𝑡
• 𝐸N = 𝑠, 𝑢 𝑢 ∈ 𝐿 ∪ 𝑣, 𝑡 𝑣 ∈ 𝑅 ∪ 𝐸

1

Compute a max (integer) flow in 𝐺N



Maximum Bipartite Matching Using Max Flow

33

𝑠 𝑡

1

1
1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

Idea: Convert 𝐿, 𝑅, 𝐸 into a flow network 𝐺N =
𝑉N, 𝐸N by introducing a source 𝑠 and a sink 𝑡

• Connect the source to each left node
• Connect each right node to the sink
• For each edge in 𝐸, introduce a directed 

edge from the left node to the right node
• Assign capacity 1 to each of the edges

In particular:
• 𝑉N = 𝐿 ∪ 𝑅 ∪ 𝑠, 𝑡
• 𝐸N = 𝑠, 𝑢 𝑢 ∈ 𝐿 ∪ 𝑣, 𝑡 𝑣 ∈ 𝑅 ∪ 𝐸

Compute a max (integer) flow in 𝐺N

Claim: edges used in the max flow (between 𝐿 and 𝑅) 
is precisely a maximum matching



Bipartite Matching Correctness

34

𝑠 𝑡

1

1
1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

Let 𝑀 be the set of edges used by the max flow in 𝐺N
Similar to before, we need to show the following:

• If there is an integer flow with value 𝑘, there 
is a matching with 𝑘 edges

• If there is a matching with 𝑘 edges, there is 
an integer flow with value 𝑘

Claim: Integer flow with value 𝑘 ⇒ matching of size 𝑘
• Since capacities are 0/1, flow along each edge in 
𝑓 is also 0/1

• At most 1 unit of flow can enter each node in 𝐿
• If there is 1 unit of flow entering 𝑢 ∈ 𝐿, there 

must be exactly 1 unit of flow exiting 𝐿 (along an 
edge in 𝐸) to some node 𝑣 ∈ 𝑅

• There is only 1 outgoing edge from 𝑣 to 𝑡 so all 
other incoming edges to 𝑟 have 0 flow



Bipartite Matching Correctness

35

𝑠 𝑡

1

1
1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

Let 𝑀 be the set of edges used by the max flow in 𝐺N
Similar to before, we need to show the following:

• If there is an integer flow with value 𝑘, there 
is a matching with 𝑘 edges

• If there is a matching with 𝑘 edges, there is 
an integer flow with value 𝑘

Claim: Matching of size 𝑘 ⇒ integer flow with value 𝑘
• Send 1 unit of flow from 𝑠 to each matched node 

in 𝐿, 1 unit of flow along the matched edges from 
𝐿 to 𝑅, and 1 unit of flow from each matched 
node in 𝑅 to the sink 𝑡

• This yields an integer flow with value 𝑘 in 𝐺N



Bipartite Matching Correctness

36

𝑠 𝑡

1

1
1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

Let 𝑀 be the set of edges used by the max flow in 𝐺N
Similar to before, we need to show the following:

• If there is an integer flow with value 𝑘, there 
is a matching with 𝑘 edges

• If there is a matching with 𝑘 edges, there is 
an integer flow with value 𝑘

Conclusion: Solving max (integer) flow in 𝐺N =
(𝑉N, 𝐸N) yields a maximum bipartite matching in 𝐺 =
𝐿, 𝑅, 𝐸

This is another example of a reduction: 
showing that solution to one problem (max 

flow in 𝐺N) gives solution to another problem 
(max bipartite matching in 𝐺)



Running Time of Bipartite Matching

37

𝑠 𝑡

1

1
1

1

1

1

1

1

1

1 1

1

1

1
1

1

1

1. Construct flow graph 𝐺N = 𝑉N, 𝐸N
from 𝐺 = 𝐿, 𝑅, 𝐸

2. Find a max (integer) flow in 𝐺N
3. Output the set of edges between 𝐿

and 𝑅 with flow 1

𝑂 𝐿 + 𝑅

𝑂 𝐸 𝐿 + 𝑅

𝑂 𝐿 + 𝑅

Note: Maximum flow 𝑓 in 𝐺N is bounded by min 𝐿 , 𝑅 , 
so running time of Ford-Fulkerson (assuming linear-time 
augmenting path selection) is

𝑂 𝐸 ⋅ min 𝐿 , 𝑅 = 𝑂 𝐸 𝐿 + 𝑅

Overall running time: 𝑂 𝐸 𝐿 + 𝑅 = 𝑂 𝐸 𝑉



Reductions

Very general technique for designing algorithms

Idea: map the problem A (that we are trying to solve) to another problem B that we 
already know how to solve

38

So far in this course, we have reduced problems 
to smaller subproblems (i.e., divide and 
conquer, dynamic programming, greedy 

algorithms); reductions reduce one problem to a 
different problem



Reductions

Very general technique for designing algorithms

Idea: map the problem A (that we are trying to solve) to another problem B that we 
already know how to solve

Blueprint:
1. Convert instance of Problem A into an instance of Problem B
2. Convert solution of Problem B back into a solution of Problem A

Both of these steps need to be efficient

Analysis: Show that solution to Problem B can be used to obtain solution to 
Problem A

39



Reductions

40

Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map instances of problem 𝑨 to 
instances of 𝑩

Algorithm for 
problem 𝑩

Map solutions of problem 𝑩 to 
solutions of 𝑨

𝑌𝑋



Reduction Examples

41

Edge-disjoint paths Max flow

Reduction

Map instances of problem 𝑨 to 
instances of 𝑩

Ford-Fulkerson

Map solutions of problem 𝑩 to 
solutions of 𝑨



Reduction Examples

42

Vertex-disjoint paths Edge-disjoint paths

Reduction

Map instances of problem 𝑨 to 
instances of 𝑩

Edge-disjoint paths 
algorithm

Map solutions of problem 𝑩 to 
solutions of 𝑨



Reduction Examples

43

Maximum bipartite matching Max flow

Reduction

Map instances of problem 𝑨 to 
instances of 𝑩

Ford-Fulkerson

Map solutions of problem 𝑩 to 
solutions of 𝑨



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
(denoted 𝐴 ≤ 𝐵)

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Understanding Reductions



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
denoted 𝐴 ≤ 𝐵

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Worst-Case Lower Bounds via Reductions

If we know that 𝐴 cannot be 
solved in polynomial time

Then problem 𝐵 also cannot 
be solved in polynomial time



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
denoted 𝐴 ≤ 𝐵

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Worst-Case Lower Bounds via Reductions

If we know that 𝐴 cannot be 
solved in 𝑂 𝑇 𝑛 time

If there is a 𝑂 𝑇 𝑛 reduction 
from 𝐴 to 𝐵, then 𝐵 cannot be 

solved in O 𝑇 𝑛 time 



Reductions

47

Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map instances of problem 𝑨 to 
instances of 𝑩

Algorithm for 
problem 𝑩

Map solutions of problem 𝑩 to 
solutions of 𝑨

𝑌𝑋


