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Today’s Keywords

Edge-Disjoint Paths
Vertex-Disjoint Paths
Bipartite Matching

Reductions

CLRS Readings: Chapter 26, 34



HWS8 out today, due Thursday, November 21, 11pm
* Programming assignment (Python or Java)
* Graph algorithms

HW9, HW10C out Thursday, November 21 (due Thursday, December 5)
* Graphs, Reductions
* Written (LaTeX)



Monday, December 9, 7pm in Olsson 120
* Practice exam coming next week
* Review session likely the weekend before

Exam conflicts: Will email out a sign-up form for alternative exam time
* Alternative exam only for student with an conflicting exam at the same time




Review: Max Flow and Residual Graphs

Given a flow f in graph G, the residual graph G models additional flow that is possible
» Forward edge for each edge in G with weight set to remaining capacity c(e) — f(e)
* Models additional flow that can be sent along the edge
* Backward edge by flipping each edge e in G with weight set to flow f (e)
* Models amount of flow that can be removed from the edge
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Max-Flow Min-Cut Theorem

Let f be aflow in agraph G

. _ there are no there exists a cut
f |sf?0r\:1/a;>:r(r;\um augmenting paths in the (S5, T) of G where
residual graph G If| =||S,T|
t Statements are equivalent! I
Implications:

* Correctness of Ford-Fulkerson: Ford-Fulkerson terminates when there are no more
augmenting paths in the residual graph G¢, which means that f is a maximum flow

e Max-flow min-cut duality: the maximum flow in a network coincides with the minimum cut
of the graph (m}gxlfl = n;iTnllS,Tll)



Warm-Up: Flow Integrality Theorem

Theorem: If G is a flow graph with integer capacities, then there is a
maximum flow that assigns integer flows to every edge

Proof: Follows by correctness of Ford-Fulkerson:

* If the graph G has integer capacities, then the initial residual graph will
only have integer weights

 Each augmentation step in Ford-Fulkerson increases the flow along an
edge by an integer amount (specifically, the least-weight edge in the
augmenting path)

 The final flow output by Ford-Fulkerson uses integer flow along each
edge, and by correctness of Ford-Fulkerson, this flow is maximal



Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges




Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges
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Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges
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Edge-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Solve using max flow:

e Setsourcetobes
 Setsinktobet

* Edge capacity 1 for each edge
Max flow = max number of edge-
disjoint paths

Algorithm for max
flow

Algorithm for
edge-disjoint paths
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Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph
* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with
value k

Without the first claim...

 Maximum flow could be much larger than the number of edge-disjoint paths
Without the second claim...

 Maximum flow could be much smaller than the number of edge-disjoint paths
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Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph
* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with

value k

Claim 1. If there is a flow f with value k, then there are k edge-disjoint paths in the graph
* Take any edge (s,u,) where f(s,uy) =1
* Since flow is conserved, there must be a sequence of nodes u,, ...,u; = t where
fuj,ujp1) =1foralli=2,...,d -1
* This gives a path from s to t (which delivers exactly 1 unit of flow)
* Setf(s,uy) = f(ug,uy) =+ = f(ug—q,t) = 0 and repeat this step to obtain the
full set of k edge-disjoint paths .



Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:
* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph

* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with
value k

Claim 2. If there are k edge-disjoint paths in the graph, then there is a flow with value k
* Since paths are edge disjoint, we can send 1 unit of flow along each of those paths

* Thus, there is a flow with value k
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Correctness of Edge-Disjoint Paths Algorithm

Theorem. The maximum flow equals the maximum number of edge-disjoint paths

Proof. Need to show two properties:

* Ifthereis a flow with value k, then there are k edge-disjoint paths in the graph

* |f there are k edge-disjoint paths from s to t in the graph, then there is a flow with
value k

Conclusion: Finding the maximum flow in the graph G yields a maximal set of edge-disjoint
pathsin G

This is an example of a reduction: showing that solution to one problem
(max flow) gives solution to another problem (edge-disjoint paths)
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Vertex-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices
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Vertex-Disjoint Paths

Problem: Given a graph G = (V/, E), a start node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

Not a vertex-disjoint
set of paths!

/
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Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Replace every \

internal node in G
with this “gadget”
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Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Replace every \

internal node in G
with this “gadget”

N\
----------- @

Solve edge-disjoint paths
on new graph G’
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Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Replace every \

internal node in G
with this “gadget”

N\
----------- @

Solve edge-disjoint paths
on new graph G’

20



Vertex-Disjoint Paths

Idea: Convert an instance of the vertex-disjoint paths
problem into an instance of edge-disjoint paths

Set of edge-disjoint paths in G’ corresponds to set
of vertex-disjoint pathsin G 21



Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Proof. Follows essentially by construction of the gadget
* Apath (5,4, ..., p, t) in G maps to a path (S, V1 in, V1 outs - » Vnin» Vn.ouw £) in G’
* A set of vertex-disjoint paths in G is also vertex-disjoint in G', and thus, must also be edge-disjoint
« A set of edge-disjoint paths in G’ must also be vertex disjoint
* There is only a single outgoing edge in v; j, and a single incoming edge in v; oyt
* Iftwo pathsin G’ use v; i, Or V; oy, they must use the edge (vi,in, vi,out), which contradicts
edge-disjointness

N\

N
v,

Graph G Graph G’

)
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Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Conclusion. Solving edge-disjoint paths in G’ gives a solution to vertex-disjoint paths in G

Why do we need to show both directions in the theorem?
* Vertex-disjoint in G = edge-disjoint in G' needed to argue that optimal solution in
G corresponds to some solution in G’
* Edge-disjointin G' = vertex-disjoint in G needed to argue that any feasible solution
(in G') corresponds to a solution to the original problem (in G)

h - | a@

Graph G Graph G’
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Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set Q

If this was not true, then the maximal set of vertex disjoint paths in G might not
Wi [ [F[e]sMNe]l correspond to a set of edge-disjoint paths in G’ (so finding the maximal set of [gN&

edge-disjoint paths in G' may not give a solution to the original problem)
Why do we neeé

* Vertex-disjointin G = edge-disjoint in G' needed to argue that optimal solution in
G corresponds to some solution in G’

* Edge-disjointin G' = vertex-disjoint in G needed to argue that any feasible solution
(in G') corresponds to a solution to the original problem (in G)

h - | a@

Graph G Graph G’
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Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Conclusion. Solvingedge

If this was not true, then the maximal set of edge-disjoint paths in G' might not
- correspond to any collection of vertex-disjoint paths in G (so the solution to our
* Vertex-disj new problem may not give a solution to the original problem)

(G correspove

* Edge-disjointin G' = vertex-disjoint in G needed to argue that any feasible solution
(in G') corresponds to a solution to the original problem (in G)

h - | a@

Graph G Graph G’

Why do we need
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Correctness of Vertex-Disjoint Paths Algorithm

Theorem. A set of paths is vertex-disjoint paths in G if and only if it is edge-disjoint in G’

Conclusion. Solving edge-disjoint paths in G’ gives a solution to vertex-disjoint paths in G

This is another example of a reduction: showing that solution to one
problem (edge-disjoint paths in G') gives solution to another problem
(vertex-disjoint paths in G)

h - | a@

Graph G Graph G’
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Maximum Bipartite Matching

Dog Lovers Dogs
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Maximum Bipartite Matching

Dog Lovers Dogs
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Maximum Bipartite Matching

Dog Lovers




Maximum Bipartite Matching

Let G = (L, R, E) be a bipartite graph
 L:asetof “left” nodes
* R:asetof “right” nodes
« [FE:asetof edges between L and R

L E R

Problem: find the largest set of edges M € E (i.e., a matching) such
that each node u € L or v € R is incident on at most one edge

H H

non-maximum J\(i maximum
matching ’ matching
N




Maximum Bipartite Matching Using Max Flow

Idea: Convert (L, R, E) into a flow network G’

(V',E") by introducing a source s and a sink t
* Connect the source to each left node
 Connect each right node to the sink
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Maximum Bipartite Matching Using Max Flow

Idea: Convert (L, R, E) into a flow network G’ =
(V',E") by introducing a source s and a sink t
* Connect the source to each left node
 Connect each right node to the sink
e Foreachedgein E, introduce a directed
edge from the left node to the right node
* Assign capacity 1 to each of the edges

In particular:
e V'=LURU{s,t}
t « EE={G,wluel}u{(v,t)IveER}VUE

Compute a max (integer) flow in G’
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Maximum Bipartite Matching Using Max Flow

Idea: Convert (L, R, E) into a flow network G’ =
(V',E") by introducing a source s and a sink t
* Connect the source to each left node
 Connect each right node to the sink
e Foreachedgein E, introduce a directed
edge from the left node to the right node
* Assign capacity 1 to each of the edges
In particular:
e V'=LURU{s,t}
e E'={(G,u)luell}u{(v,t)|[vER}UE

Compute a max (integer) flow in G’

Claim: edges used in the max flow (between L and R)
is precisely a maximum matching
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Bipartite Matching Correctness

Let M be the set of edges used by the max flow in G’
Similar to before, we need to show the following:
e Ifthere is an integer flow with value k, there
is @ matching with k edges
* If thereis a matching with k edges, there is
an integer flow with value k

Claim: Integer flow with value k = matching of size k

 Since capacities are 0/1, flow along each edge in
fisalso0/1

e At most 1 unit of flow can enter each node in L

e |f thereis 1 unit of flow entering u € L, there
must be exactly 1 unit of flow exiting L (along an
edge in E) to some node v € R

* There is only 1 outgoing edge from v to t so all
other incoming edges to r have O flow
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Bipartite Matching Correctness

Let M be the set of edges used by the max flow in G’
Similar to before, we need to show the following:
e Ifthere is an integer flow with value k, there
is @ matching with k edges
* If thereis a matching with k edges, there is
an integer flow with value k

Claim: Matching of size k = integer flow with value k
e Send 1 unit of flow from s to each matched node
in L, 1 unit of flow along the matched edges from
L to R, and 1 unit of flow from each matched
node in R to the sink t
* This yields an integer flow with value k in G’
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Bipartite Matching Correctness

Let M be the set of edges used by the max flow in G’
Similar to before, we need to show the following:
e Ifthere is an integer flow with value k, there
is @ matching with k edges
* If thereis a matching with k edges, there is
an integer flow with value k

Conclusion: Solving max (integer) flow in G’ =
(V', E") yields a maximum bipartite matching in G =
(L,R,E)

This is another example of a reduction:
showing that solution to one problem (max
flow in G') gives solution to another problem
(max bipartite matching in G)
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Running Time of Bipartite Matching

1. Construct flow graph G' = (V',E") 0O(|L| + |R|)
fromG = (L,R,E)
2. Find a max (integer) flow in G’ O(IEI(IL] + [RD)
3. Output the set of edges between L
and R with flow 1 OCLI+1RD

Note: Maximum flow |f]| in G is bounded by min(|L|, |R]),
so running time of Ford-Fulkerson (assuming linear-time

augmenting path selection) is
6 O(IE| - min(|L], IRD)) = O(IEI(IL] + |R]))

Overall running time: O(IEI(ILI + |R|)) = O0(|E||V])
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Reductions

Very general technique for designing algorithms

Idea: map the problem A (that we are trying to solve) to another problem B that we
already know how to solve

So far in this course, we have reduced problems
to smaller subproblems (i.e., divide and

conquer, dynamic programming, greedy
algorithms); reductions reduce one problem to a
different problem
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Reductions

Very general technique for designing algorithms

Idea: map the problem A (that we are trying to solve) to another problem B that we
already know how to solve

Blueprint:
1. Convert instance of Problem A into an instance of Problem B
2. Convert solution of Problem B back into a solution of Problem A

Both of these steps need to be efficient

Analysis: Show that solution to Problem B can be used to obtain solution to
Problem A
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Reductions

Problem we don’t know how to solve

Solution for 4

Map instances of problem A to
instances of B

Map solutions of problem B to
solutions of A

Reduction

Problem we do know how to solve

B

Solution for B

Y

Algorithm for
problem B
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Reduction Examples

Edge-disjoint paths Max flow

Map instances of problem A to

/ instances of B
~
/ .
~
NS =

Map solutions of problem B to
solutions of A

Ford-Fulkerson

==

Reduction




Reduction Examples

Vertex-disjoint paths Edge-disjoint paths

Map instances of problem A to

/ instances of B
~
/ .
~
NS =

Map solutions of problem B to
solutions of A

Edge-disjoint paths
algorithm

==

Reduction
42




Reduction Examples

Maximum bipartite matching Max flow

Map instances of problem A to
instances of B

Map solutions of problem B to
solutions of A

Reduction
43




Understanding Reductions

. reduces to > B

Problem A Problem B
Y yields > .
Algorithm for B Algorithm for A

Implication: A is no more difficult than B
(denoted A < B)




Worst-Case Lower Bounds via Reductions

reduces to > B

Problem A Problem B

If we know that A cannot be } Then problem B also cannot
solved in polynomial time be solved in polynomial time

Implication: A is no more difficult than B
denoted A < B




Worst-Case Lower Bounds via Reductions

reduces to > B

Problem A Problem B

If there is a O(T(n)) reduction
from A to B, then B cannot be
solved in O(T(n)) time

If we know that A cannot be

Algorith
sorihm solved in O(T(n)) time

Implication: A is no more difficult than B
denoted A < B




Reductions

Problem we don’t know how to solve

Solution for 4

Map instances of problem A to
instances of B

Map solutions of problem B to
solutions of A

Reduction

Problem we do know how to solve

B

Solution for B

Y

Algorithm for
problem B
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