
CS 4102: Algorithms
Lecture 24: P vs. NP

David Wu
Fall 2019

Today’s Keywords

Reductions
NP-Completeness
P vs. NP

2

CLRS Readings: Chapter 34

Homework

HW8 due Saturday, November 23, 11pm
• Programming assignment (Python or Java)
• Graph algorithms

HW9, HW10C out today (due Thursday, December 5)
• Graphs, Reductions
• Written (LaTeX)

3

Final Exam

Monday, December 9, 7pm in Olsson 120
• Practice exam coming next week
• Review session likely the weekend before

Exam conflicts: Sign-up by tomorrow (Friday, November 22)
• Alternative exam only for student with an conflicting exam at the same time

4

Reductions

5

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Algorithm for 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑌𝑋

𝑨 ≤ 𝑩: there is a reduction from 𝑨 to 𝑩

Problem 𝑨 Problem 𝑩

Reduction Examples

6

edge-disjoint paths max flow

Reduction

Map instances of problem 𝑨 to
instances of 𝑩

Ford-Fulkerson

Map solutions of problem 𝑩 to
solutions of 𝑨

Reduction Examples

7

vertex-disjoint paths edge-disjoint paths

Reduction

Map instances of problem 𝑨 to
instances of 𝑩

Edge-disjoint paths
algorithm

Map solutions of problem 𝑩 to
solutions of 𝑨

Reduction Examples

8

maximum bipartite matching max flow

Reduction

Map instances of problem 𝑨 to
instances of 𝑩

Ford-Fulkerson

Map solutions of problem 𝑩 to
solutions of 𝑨

Party Problem

9

Draw edges between people who do not get along
Goal: Find the maximum number of people who get along

Maximum Independent Set

Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes in 𝑆
share an edge

Maximum independent set problem: Given a graph 𝐺 = (𝑉, 𝐸), find
the largest independent set 𝑆

10

Maximum Independent Set Example

11

Independent set of size 6

Classic Baseball

12

Need to place defenders on each
base so each edge is defended

Generalized Baseball

13

Problem: Fewest number of
defenders required?

Need to place defenders on each
base so each edge is defended

Minimum Vertex Cover

Vertex cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has one of its
endpoints in 𝐶

Minimum vertex cover: Given a graph 𝐺 = (𝑉, 𝐸), find the smallest
vertex cover 𝐶

14

Vertex Cover Example

15

Vertex cover of size 5

Turns out that problem of finding a
minimum vertex cover is closely
related to problem of finding a

maximum independent set

Reductions

16

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Algorithm for 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑌𝑋

𝑨 ≤ 𝑩: there is a reduction from 𝑨 to 𝑩

Problem 𝑨 Problem 𝑩

Max Independent Set ≤ Min Vertex Cover

17

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑨 ≤ 𝑩: there is a reduction from 𝑨 to 𝑩

Max Independent Set ≤ Min Vertex Cover

18

Independent set: set of nodes that do not share an
edge

Claim: 𝑆 is an independent set if and only if its
complement 𝑉 − 𝑆 is a vertex cover

Vertex cover: set of nodes that cover all edges

Important note: a
maximum independent set
may not be a vertex cover

Max Independent Set ≤ Min Vertex Cover

19

Independent set: set of nodes that do not share an
edge

Claim: 𝑆 is an independent set ⇒ 𝑉 − 𝑆 is a vertex
cover
• Suppose 𝑆 is an independent set

Vertex cover: set of nodes that cover all edges

Important note: a
maximum independent set
may not be a vertex cover

Max Independent Set ≤ Min Vertex Cover

20

Independent set: set of nodes that do not share an
edge

Claim: 𝑆 is an independent set ⇒ 𝑉 − 𝑆 is a vertex
cover
• Suppose 𝑆 is an independent set
• Take any edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Either 𝑢 ∉ 𝑆 or 𝑣 ∉ 𝑆 (otherwise, 𝑢, 𝑣 ∈ 𝑆,

and 𝑆 is no longer an independent set)
• Either 𝑢 ∈ 𝑉 − 𝑆 or 𝑣 ∈ 𝑉 − 𝑆, so 𝑒 is

covered by 𝑉 − 𝑆

𝑣

𝑢

Vertex cover: set of nodes that cover all edges

Important note: a
maximum independent set
may not be a vertex cover

Max Independent Set ≤ Min Vertex Cover

21

Independent set: set of nodes that do not share an
edge

Claim: 𝑉 − 𝑆 is a vertex cover ⇒ 𝑆 is an
independent set
• Suppose 𝑉 − 𝑆 is a vertex cover
• Take any edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Since 𝑉 − 𝑆 is a vertex cover, at least one of
𝑢 ∈ 𝑉 − 𝑆 or 𝑣 ∈ 𝑉 − 𝑆 should hold

• This means either 𝑢 ∉ 𝑆 or 𝑣 ∉ 𝑆 (or both)
• Thus, there is no edge between any pair of

nodes 𝑢, 𝑣 ∈ 𝑆

𝑣

𝑢

Vertex cover: set of nodes that cover all edges

Important note: a
maximum independent set
may not be a vertex cover

Max Independent Set ≤ Min Vertex Cover

22

Independent set: set of nodes that do not share an
edge

Claim: 𝑆 is an independent set if and only if its
complement 𝑉 − 𝑆 is a vertex cover

𝑣

𝑢

Vertex cover: set of nodes that cover all edges

Important note: a
maximum independent set
may not be a vertex cover

Conclusions:
• There is a one-to-one correspondence

between independent sets and vertex covers
• Independent sets and vertex covers are

complements so maximizing one means
minimizing the other

Max Independent Set ≤ Min Vertex Cover

23

𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

maximum independent set minimum vertex cover

Min Vertex Cover ≤ Max Independent Set

24

𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

minimum vertex cover maximum independent set

Min Vertex Cover ≤ Max Independent Set

25

𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

minimum vertex cover maximum independent set

Then, no 𝑂 𝑉
algorithm for

maximum independent
set

Suppose there is no
𝑂 𝑉 algorithm for

minimum vertex cover

Max Independent Set ≤ Min Vertex Cover

26

𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

maximum independent set minimum vertex cover

Then, no 𝑂 𝑉
algorithm for minimum

vertex cover

Suppose there is no
𝑂 𝑉 algorithm for

maximum independent
set

Implications

27

Suppose 𝑉 = 𝑛
• Maximum independent set reduces to minimum vertex cover in 𝑂 𝑛 time
• Minimum vertex cover reduces to maximum independent set in 𝑂 𝑛 time
• Any algorithm for either problems require Ω(𝑛) time (why?)

Implications:
• Suppose there is a 𝑇 𝑛 algorithm for either problem
• Then there is a 𝑇 𝑛 algorithm for both problems

• Suppose it takes Ω 𝑇 𝑛 time to solve either problem
• Then it takes Ω 𝑇 𝑛 time to solve both problems

Interpretation: either both problems are easy (e.g., polynomial time) or both problems
are hard (e.g., not polynomial time)

Implications

28

Suppose 𝑉 = 𝑛
• Maximum independent set reduces to minimum vertex cover in 𝑂 𝑛 time
• Minimum vertex cover reduces to maximum independent set in 𝑂 𝑛 time
• Any algorithm for either problems require Ω(𝑛) time (why?)

Implications:
• Suppose there is a 𝑇 𝑛 algorithm for either problem
• Then there is a 𝑇 𝑛 algorithm for the other

• Suppose it takes Ω 𝑇 𝑛 time to solve one of the two
• Then it takes Ω 𝑇 𝑛 time to solve the other

Interpretation: either both problems are easy (e.g., polynomial time) or both problems
are hard (e.g., not polynomial time)

But we have no idea which is the case!
(but… likely that both are hard)

𝒌-Independent Set

29

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there
an independent set with size 𝑘?

𝒌-Independent Set

30

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there
an independent set with size 𝑘?

𝑘-Independent set is an example of a decision problem:
• Answer is a single bit (e.g., true/false)
• Algorithm does not have to return the independent set (if there is one)

Can also define the search version of this problem:
• Problem (Search): Given a graph 𝐺 = 𝑉, 𝐸 , find an independent set with size 𝑘
• Output is an independent set of size 𝑘 (if there is one)

Why should we care about the decision problem?
We want to find the solution!

𝒌-Independent Set

31

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there
an independent set with size 𝑘?

𝑘-Independent set is an example of a decision problem:
• Answer is a single bit (e.g., true/false)
• Algorithm does not have to return the independent set (if there is one)

Can also define the search version of this problem:
• Problem (Search): Given a graph 𝐺 = 𝑉, 𝐸 , find an independent set with size 𝑘.
• Output is an independent set of size 𝑘 (if there is one)

Why should we care about the decision problem?
We want to find the solution!

Because oftentimes, the search problem
reduces to the decision problem, so it

suffices to analyze the simpler problem

Search-to-Decision Reduction

32

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

Goal: Find an independent set of size 𝑘

Idea: Remove a node, and check if the
resulting graph still has an independent set
of size 𝑘
• If not, then the node must be part of the

independent set (so add the node to the set, and
search for an independent set of size 𝑘 − 1 in
the remaining graph)

• If yes, then we do not need the node and
continue searching over the remaining graph

Search-to-Decision Reduction Example

33

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

Initially: 𝑆 = ∅

Run decision algorithm with 𝑘 = 6
Output: True

Search-to-Decision Reduction Example

34

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = ∅

Run decision algorithm with 𝑘 = 6
Output: True

Remove a node from the graph

Search-to-Decision Reduction Example

35

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = ∅

Run decision algorithm with 𝑘 = 6
Output: False

Search-to-Decision Reduction Example

36

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵

Run decision algorithm with 𝑘 = 5
Output: True

Search-to-Decision Reduction Example

37

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵

Run decision algorithm with 𝑘 = 5
Output: True

Search-to-Decision Reduction Example

38

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵

Run decision algorithm with 𝑘 = 5
Output: True

Search-to-Decision Reduction Example

39

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷

Run decision algorithm with 𝑘 = 4
Output: True

Search-to-Decision Reduction Example

40

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷

Run decision algorithm with 𝑘 = 4
Output: True

Search-to-Decision Reduction Example

41

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷

Run decision algorithm with 𝑘 = 4
Output: True

Search-to-Decision Reduction Example

42

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷

Run decision algorithm with 𝑘 = 4
Output: False

Search-to-Decision Reduction Example

43

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸

Run decision algorithm with 𝑘 = 3
Output: True

Search-to-Decision Reduction Example

44

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸

Run decision algorithm with 𝑘 = 3
Output: True

Search-to-Decision Reduction Example

45

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸

Run decision algorithm with 𝑘 = 3
Output: False

Search-to-Decision Reduction Example

46

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸, 𝐼

Run decision algorithm with 𝑘 = 2
Output: True

Search-to-Decision Reduction Example

47

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸, 𝐼

Run decision algorithm with 𝑘 = 2
Output: False

Search-to-Decision Reduction Example

48

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸, 𝐼, 𝐿

Run decision algorithm with 𝑘 = 1
Output: True

Search-to-Decision Reduction Example

49

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸, 𝐼, 𝐿

Run decision algorithm with 𝑘 = 1
Output: True

Search-to-Decision Reduction Example

50

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸, 𝐼, 𝐿

Run decision algorithm with 𝑘 = 1
Output: False

Search-to-Decision Reduction Example

51

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

A B

D C

GF

I
H

K L

E

J

Consider 𝑘 = 6

𝑆 = 𝐵,𝐷, 𝐸, 𝐼, 𝐿, 𝐻

Invocations of decision algorithm: 𝑂 𝑉

Cost of reduction: 𝑂 𝑉 + 𝐸

Search-to-Decision Reduction

52

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

search decision

True

transform search problem into
many instances of decision problem

construct solution one
node at a time

Search-to-Decision Reduction

53

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

search decision

True

transform search problem into
many instances of decision problem

construct solution one
node at a time

oftentimes called a
“self-reduction”

Search vs. Decision Problems

54

Problem (Decision): Given a graph 𝐺 = (𝑉, 𝐸), is there an independent set with size 𝑘?
Problem (Search): Given a graph 𝐺 = (𝑉, 𝐸), find an independent set with size 𝑘.

Search problems: “Find a solution to the problem”

Decision problems: “Does a solution to the problem exist?”

For many problems like 𝑘-independent set and 𝑘-vertex cover, there is a search-to-decision
reduction (i.e., a self-reduction)
• As we will see, this will be the case for any NP-complete problem

This is a key reason why we focus on decision problems rather than search problems

The Class NP

55

Given a graph 𝐺 and a set 𝑆, it is easy to
check if 𝑆 is a 𝑘-independent set

Running Time: 𝑂(𝐸 + 𝑉)

Given a graph 𝐺 and a set 𝑆, it is easy to
check if 𝑆 is a 𝑘-vertex cover

Running Time: 𝑂(𝐸 + 𝑉)

For both of these problems, it is easy to check a candidate solution

The Class NP

56

Given a graph 𝐺 and a set 𝑆, it is easy to
check if 𝑆 is a 𝑘-independent set

Running Time: 𝑂(𝐸 + 𝑉)

Complexity class NP:
• Decision problems whose solutions can be checked

efficiently (i.e., in polynomial time)
• Formally, we define problems in terms of languages

ℒ ⊆ 0,1 ∗ (i.e., infinite set of bitstrings)
• 𝑘-independent set:

ℒ = 𝐺: 𝐺 has an independent set of size 𝑘
• 𝑘-vertex cover:

ℒ = 𝐺: 𝐺 has a vertex cover of size 𝑘
• Solving a decision problem equates to deciding

whether an instance 𝑥 (called a statement) is
contained in the language ℒ (i.e., deciding if 𝑥 ∈ ℒ)

• A language ℒ ∈ NP if there exists a deterministic
polynomial-time algorithm ℛ such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥, 𝑤 = 1

The Class NP

57

Given a graph 𝐺 and a set 𝑆, it is easy to
check if 𝑆 is a 𝑘-independent set

Running Time: 𝑂(𝐸 + 𝑉)

Complexity class NP:
• Decision problems whose solutions can be checked

efficiently (i.e., in polynomial time)
• Formally, we define problems in terms of languages

ℒ ⊆ 0,1 ∗ (i.e., infinite set of bitstrings)
• 𝑘-independent set:

ℒ = 𝐺: 𝐺 has an independent set of size 𝑘
• 𝑘-vertex cover:

ℒ = 𝐺: 𝐺 has a vertex cover of size 𝑘
• Solving a decision problem equates to deciding

whether an instance 𝑥 (called a statement) is
contained in the language ℒ (i.e., deciding if 𝑥 ∈ ℒ)

• A language ℒ ∈ NP if there exists a deterministic
polynomial-time algorithm ℛ such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥, 𝑤 = 1

𝑥 is a statement and ℒ is the language:
• 𝑥 could be the description of a graph 𝐺
• ℒ could be the set of graphs with a 𝑘-

independent set
• Deciding whether 𝑥 ∈ ℒ is deciding whether

𝐺 has a 𝑘-independent set or not

The Class NP

58

Given a graph 𝐺 and a set 𝑆, it is easy to
check if 𝑆 is a 𝑘-independent set

Running Time: 𝑂(𝐸 + 𝑉)

Complexity class NP:
• Decision problems whose solutions can be checked

efficiently (i.e., in polynomial time)
• Formally, we define problems in terms of languages

ℒ ⊆ 0,1 ∗ (i.e., infinite set of bitstrings)
• 𝑘-independent set:

ℒ = 𝐺: 𝐺 has an independent set of size 𝑘
• 𝑘-vertex cover:

ℒ = 𝐺: 𝐺 has a vertex cover of size 𝑘
• Solving a decision problem equates to deciding

whether an instance 𝑥 (called a statement) is
contained in the language ℒ (i.e., deciding if 𝑥 ∈ ℒ)

• A language ℒ ∈ NP if there exists a deterministic
polynomial-time algorithm ℛ such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥, 𝑤 = 1

𝑤 is a “witness” or proof (of polynomial
length) that the statement 𝑥 ∈ ℒ

The Class NP

59

Given a graph 𝐺 and a set 𝑆, it is easy to
check if 𝑆 is a 𝑘-independent set

Running Time: 𝑂(𝐸 + 𝑉)

Complexity class NP:
• Decision problems whose solutions can be checked

efficiently (i.e., in polynomial time)
• Formally, we define problems in terms of languages

ℒ ⊆ 0,1 ∗ (i.e., infinite set of bitstrings)
• 𝑘-independent set:

ℒ = 𝐺: 𝐺 has an independent set of size 𝑘
• 𝑘-vertex cover:

ℒ = 𝐺: 𝐺 has a vertex cover of size 𝑘
• Solving a decision problem equates to deciding

whether an instance 𝑥 (called a statement) is
contained in the language ℒ (i.e., deciding if 𝑥 ∈ ℒ)

• A language ℒ ∈ NP if there exists a deterministic
polynomial-time algorithm ℛ such that

𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥, 𝑤 = 1

ℛ is the “NP relation” or “solution-checker:”
given an instance 𝑥 and a candidate solution 𝑤,
ℛ decides whether the solution is valid or not

in polynomial time

The Class P

60

A language ℒ ∈ NP if there exists a deterministic polynomial-time algorithm ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥,𝑤 = 1

NP is the class of decision problems with efficiently-verifiable solutions
• Does not say anything about being able to find the solutions (i.e., we do not require

that there is a polynomial-time algorithm to find 𝑤)

The class P is the class of decision problems where solutions can be found efficiently (e.g.,
there is a polynomial-time algorithm that computes 𝑤 from 𝑥)

A language ℒ ∈ P if there exists a deterministic polynomial-time algorithm ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

The Class P

61

A language ℒ ∈ NP if there exists a deterministic polynomial-time algorithm ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥,𝑤 = 1

NP is the class of decision problems with efficiently-verifiable solutions
• Does not say anything about being able to find the solutions (i.e., we do not require

that there is a polynomial-time algorithm to find 𝑤)

The class P is the class of decision problems where solutions can be found efficiently (e.g.,
there is a polynomial-time algorithm that computes 𝑤 from 𝑥)

A language ℒ ∈ P if there exists a deterministic polynomial-time algorithm ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

Polynomial in the input length (i.e.,
poly 𝑥 = 𝑂 𝑥 m for some 𝑑 ∈ ℕ

P vs. NP

62

A language ℒ ∈ NP if there exists a deterministic polynomial-time “verifier” ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥,𝑤 = 1

A language ℒ ∈ P if there exists a deterministic polynomial-time “solver” ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

NP

P

If we can decide a problem in polynomial time, we can
verify a solution to the problem in polynomial time:

P ⊆ NP

Biggest open problem in computer science: is this
containment strict?

P = NP or P ≠ NP

P vs. NP

63

A language ℒ ∈ NP if there exists a deterministic polynomial-time “verifier” ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥,𝑤 = 1

A language ℒ ∈ P if there exists a deterministic polynomial-time “solver” ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

NP

P

If we can decide a problem in polynomial time, we can
verify a solution to the problem in polynomial time:

P ⊆ NP

Biggest open problem in computer science: is this
containment strict?

P = NP or P ≠ NP

One of the seven Millennium Prize
problems!

P vs. NP

64

A language ℒ ∈ NP if there exists a deterministic polynomial-time “verifier” ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥,𝑤 = 1

A language ℒ ∈ P if there exists a deterministic polynomial-time “solver” ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

NP

P

If we can decide a problem in polynomial time, we can
verify a solution to the problem in polynomial time:

P ⊆ NP

Biggest open problem in computer science: is this
containment strict?

P = NP or P ≠ NP

P: “polynomial time”

P vs. NP

65

A language ℒ ∈ NP if there exists a deterministic polynomial-time “verifier” ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 fghi j : ℛ 𝑥,𝑤 = 1

A language ℒ ∈ P if there exists a deterministic polynomial-time “solver” ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

NP

P

If we can decide a problem in polynomial time, we can
verify a solution to the problem in polynomial time:

P ⊆ NP

Biggest open problem in computer science: is this
containment strict?

P = NP or P ≠ NP

NP: “non-deterministic polynomial time”
• Non-deterministic has nothing to do with randomness
• Non-deterministic refers to a computation taking many possible paths (e.g., ℛ 𝑥,⋅ can be

viewed as a non-deterministic algorithm that tries every possible value of 𝑤 and sees if any
of the branches accept – there can be exponentially-many branches, but checking each
branch is polynomial time)

𝑘-Independent Set is in NP

Show: For any graph 𝐺:
• There is a short witness (i.e., proof) that 𝐺 has a 𝑘-independent set
• The proof can be checked efficiently (in polynomial time)

66

A B

C D

GF

H
J

K L

E

I

Graph 𝐺

Witness for 𝑮: 𝑆 = 𝐴, 𝐶, 𝐸, 𝐺, 𝐻, 𝐽
(nodes in the 𝑘-independent set)

Checking the witness:
• Check that 𝑆 = 𝑘
• Check that every edge is incident on at

most one node in 𝑆

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑉 + 𝐸

Total time: 𝑂 𝐸 + 𝑉 = poly 𝑉 + 𝐸

