Today’s Keywords

Reductions
NP-Completeness
P vs. NP

CLRS Readings: Chapter 34
Homework

HW8 due Saturday, November 23, 11pm
 • Programming assignment (Python or Java)
 • Graph algorithms

HW9, HW10C out today (due Thursday, December 5)
 • Graphs, Reductions
 • Written (LaTeX)
Final Exam

Monday, December 9, 7pm in Olsson 120

- Practice exam coming next week
- Review session likely the weekend before

Exam conflicts: Sign-up by tomorrow (Friday, November 22)
- Alternative exam only for student with an conflicting exam at the same time
Reductions

Problem \(A \)

Solution for \(A \)

Map instances of problem \(A \) to instances of \(B \)

Map solutions of problem \(B \) to solutions of \(A \)

Problem \(B \)

Algorithm for \(B \)

Solution for \(B \)

\(A \leq B \): there is a reduction from \(A \) to \(B \)
Reduction Examples

Map instances of problem A to instances of B

Map solutions of problem B to solutions of A

Reduction

Ford-Fulkerson

edge-disjoint paths

max flow
Reduction Examples

vertex-disjoint paths

Edge-disjoint paths

Map instances of problem A to instances of B

Map solutions of problem B to solutions of A

Reduction

Edge-disjoint paths algorithm
Reduction Examples

maximum bipartite matching

Map instances of problem A to instances of B

Map solutions of problem B to solutions of A

Reduction

max flow

Ford-Fulkerson
Draw edges between people who do not get along

Goal: Find the maximum number of people who get along
Maximum Independent Set

Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge

Maximum independent set problem: Given a graph $G = (V, E)$, find the largest independent set S
Maximum Independent Set Example

Independent set of size 6
Need to place defenders on each base so each edge is defended.
Generalized Baseball

Need to place defenders on each base so each edge is defended

Problem: Fewest number of defenders required?
Minimum Vertex Cover

Vertex cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

Minimum vertex cover: Given a graph $G = (V, E)$, find the smallest vertex cover C
Vertex Cover Example

Turns out that problem of finding a minimum vertex cover is closely related to problem of finding a maximum independent set.
Reductions

Problem \(A \)

Solution for \(A \)

\(A \leq B \): there is a reduction from \(A \) to \(B \)

Map instances of problem \(A \) to instances of \(B \)

Map solutions of problem \(B \) to solutions of \(A \)

Problem \(B \)

Algorithm for \(B \)

Solution for \(B \)
Max Independent Set \(\leq \) Min Vertex Cover

\[A \leq B: \text{there is a reduction from } A \text{ to } B \]
Max Independent Set \leq Min Vertex Cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: S is an independent set if and only if its complement $V - S$ is a vertex cover

Important note: a maximum independent set may not be a vertex cover
Max Independent Set \leq Min Vertex Cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: S is an independent set $\Rightarrow V - S$ is a vertex cover
- Suppose S is an independent set

Important note: a maximum independent set may **not** be a vertex cover
Max Independent Set \leq Min Vertex Cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: S is an independent set $\Rightarrow V - S$ is a vertex cover
- Suppose S is an independent set
- Take any edge $e = (u, v) \in E$
- Either $u \notin S$ or $v \notin S$ (otherwise, $u, v \in S$, and S is no longer an independent set)
- Either $u \in V - S$ or $v \in V - S$, so e is covered by $V - S$

Important note: a maximum independent set may not be a vertex cover
Max Independent Set \leq Min Vertex Cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: $V - S$ is a vertex cover $\Rightarrow S$ is an independent set

- Suppose $V - S$ is a vertex cover
- Take any edge $e = (u, v) \in E$
- Since $V - S$ is a vertex cover, at least one of $u \in V - S$ or $v \in V - S$ should hold
- This means either $u \not\in S$ or $v \not\in S$ (or both)
- Thus, there is no edge between any pair of nodes $u, v \in S$

Important note: a maximum independent set may **not** be a vertex cover
Max Independent Set \(\leq \) Min Vertex Cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: \(S \) is an independent set if and only if its complement \(V - S \) is a vertex cover

Conclusions:
- There is a one-to-one correspondence between independent sets and vertex covers
- Independent sets and vertex covers are complements so maximizing one means minimizing the other

Important note: a maximum independent set may **not** be a vertex cover
Max Independent Set \(\leq \) Min Vertex Cover

Maximum independent set

Minimum vertex cover

Map instances of problem \(A \) to instances of \(B \)

\(O(1) \) time

Map solutions of problem \(B \) to solutions of \(A \)

\(O(|V|) \) time

Reduction
Min Vertex Cover \leq Max Independent Set

Minimum vertex cover

Maximum independent set

Map instances of problem A to instances of B in $O(1)$ time.

Map solutions of problem B to solutions of A in $O(|V|)$ time.

Reduction
Min Vertex Cover \leq Max Independent Set

Suppose there is no $O(|V|)$ algorithm for minimum vertex cover. Then, no $O(|V|)$ algorithm for maximum independent set.

Reduction:
- Map instances of problem A to instances of B in $O(1)$ time.
- Map solutions of problem B to solutions of A in $O(|V|)$ time.
Max Independent Set \leq Min Vertex Cover

Suppose there is no $O(|V|)$ algorithm for maximum independent set.

Map instances of problem A to instances of B

$O(1)$ time

Map solutions of problem B to solutions of A

$O(|V|)$ time

Then, no $O(|V|)$ algorithm for minimum vertex cover.
Implications

Suppose $|V| = n$
- Maximum independent set reduces to minimum vertex cover in $O(n)$ time
- Minimum vertex cover reduces to maximum independent set in $O(n)$ time
- Any algorithm for either problems require $\Omega(n)$ time (why?)

Implications:
- Suppose there is a $T(n)$ algorithm for either problem
 - Then there is a $T(n)$ algorithm for both problems
- Suppose it takes $\Omega(T(n))$ time to solve either problem
 - Then it takes $\Omega(T(n))$ time to solve both problems

Interpretation: either both problems are easy (e.g., polynomial time) or both problems are hard (e.g., not polynomial time)
Suppose $|V| = n$

- Maximum independent set reduces to minimum vertex cover in $O(n)$ time
- Minimum vertex cover reduces to maximum independent set in $O(n)$ time
- Any algorithm for either problems require $\Omega(n)$ time (why?)

Implications:
- Suppose there is a T_n algorithm for either problem
- Then there is a T_n algorithm for the other
- Suppose it takes $\Omega(T_n)$ time to solve one of the two
- Then it takes $\Omega(T_n)$ time to solve the other

But we have no idea which is the case!

(But... likely that both are hard)

Interpretation: either both problems are easy (e.g., polynomial time) or both problems are hard (e.g., not polynomial time)
k-Independent Set

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

k-Independent set is an example of a decision problem:

- Answer is a single bit (e.g., true/false)
- Algorithm does not have to return the independent set (if there is one)

Can also define the search version of this problem:

- **Problem (Search):** Given a graph $G = (V, E)$, find an independent set with size k
- Output is an independent set of size k (if there is one)

Why should we care about the decision problem?

We want to find the solution!
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

k-Independent set is an example of a decision problem:

- Answer is a single bit (e.g., true/false)
- Algorithm does not have to return the independent set (if there is one)

Can also define the search version of this problem:

- Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.
- Output is an independent set of size k (if there is one)

Why should we care about the decision problem?

We want to find the solution!
Search-to-Decision Reduction

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Goal: Find an independent set of size k

Idea: Remove a node, and check if the resulting graph still has an independent set of size k

- If not, then the node must be part of the independent set (so add the node to the set, and search for an independent set of size $k - 1$ in the remaining graph)
- If yes, then we do not need the node and continue searching over the remaining graph
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

Initially: $S = \emptyset$

Run decision algorithm with $k = 6$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \emptyset$

Run decision algorithm with $k = 6$

Output: True

Remove a node from the graph
Search-to-Decision Reduction Example

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?
Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \emptyset$

Run decision algorithm with $k = 6$

Output: False
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B\}$

Run decision algorithm with $k = 5$

Output: True
Search-to-Decision Reduction Example

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B\}$

Run decision algorithm with $k = 5$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?
Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B\}$

Run decision algorithm with $k = 5$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D\}$

Run decision algorithm with $k = 4$

Output: True
Search-to-Decision Reduction Example

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D\}$

Run decision algorithm with $k = 4$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D\}$

Run decision algorithm with $k = 4$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D\}$

Run decision algorithm with $k = 4$

Output: False
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E\}$

Run decision algorithm with $k = 3$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E\}$

Run decision algorithm with $k = 3$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E\}$

Run decision algorithm with $k = 3$

Output: False
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?
Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E, I\}$

Run decision algorithm with $k = 2$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E, I\}$

Run decision algorithm with $k = 2$

Output: False
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?
Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E, I, L\}$

Run decision algorithm with $k = 1$

Output: True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E, I, L\}$

Run decision algorithm with $k = 1$

Output: True
Search-to-Decision Reduction Example

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E, I, L\}$

Run decision algorithm with $k = 1$

Output: False
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Consider $k = 6$

$S = \{B, D, E, I, L, H\}$

Invocations of decision algorithm: $O(|V|)$

Cost of reduction: $O(|V| + |E|)$
Search-to-Decision Reduction

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

search

transform search problem into many instances of decision problem

decision

construct solution one node at a time

True
Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?
Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Search-to-Decision Reduction

transform search problem into many instances of decision problem

often times called a "self-reduction"

construct solution one node at a time
Search vs. Decision Problems

Problem (Decision): Given a graph $G = (V, E)$, is there an independent set with size k?

Problem (Search): Given a graph $G = (V, E)$, find an independent set with size k.

Search problems: “Find a solution to the problem”

Decision problems: “Does a solution to the problem exist?”

For many problems like k-independent set and k-vertex cover, there is a search-to-decision reduction (i.e., a self-reduction)
 • As we will see, this will be the case for any NP-complete problem

This is a key reason why we focus on decision problems rather than search problems
The Class NP

Given a graph G and a set S, it is easy to check if S is a k-independent set.

Running Time: $O(|E| + |V|)$

Given a graph G and a set S, it is easy to check if S is a k-vertex cover.

Running Time: $O(|E| + |V|)$

For both of these problems, it is easy to check a candidate solution.
The Class NP

Complexity class NP:
- **Decision problems** whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of languages $\mathcal{L} \subseteq \{0,1\}^*$ (i.e., infinite set of bitstrings)
 - k-independent set: $\mathcal{L} = \{G : G$ has an independent set of size $k\}$
 - k-vertex cover: $\mathcal{L} = \{G : G$ has a vertex cover of size $k\}$
- Solving a decision problem equates to deciding whether an instance x (called a statement) is contained in the language \mathcal{L} (i.e., deciding if $x \in \mathcal{L}$)
- A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1$

Given a graph G and a set S, it is **easy** to check if S is a k-independent set.

Running Time: $O(|E| + |V|)$
The Class NP

Complexity class NP:
- **Decision problems** whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of **languages** $\mathcal{L} \subseteq \{0,1\}^*$ (i.e., infinite set of bitstrings)
 - k-independent set: $\mathcal{L} = \{ G : G \text{ has an independent set of size } k \}$
 - k-vertex cover: $\mathcal{L} = \{ G : G \text{ has a vertex cover of size } k \}$

Solving a decision problem equates to deciding whether an instance x (called a statement) is contained in the language \mathcal{L} (i.e., deciding if $x \in \mathcal{L}$)

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that

$$x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1$$

Given a graph G and a set S, it is easy to check if S is a k-independent set.

Running Time: $O(|E| + |V|)$
The Class NP

Complexity class NP:

- **Decision problems** whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of languages \(\mathcal{L} \subseteq \{0,1\}^* \) (i.e., infinite set of bitstrings)
 - \(k \)-independent set:
 \(\mathcal{L} = \{G: G \text{ has an independent set of size } k\} \)
 - \(k \)-vertex cover:

Given a graph \(G \) and a set \(S \), it is easy to check if \(S \) is a \(k \)-independent set

Running Time: \(O(|E| + |V|) \)

\(w \) is a “witness” or proof (of polynomial length) that the statement \(x \in \mathcal{L} \)

A language \(\mathcal{L} \in \text{NP} \) if there exists a deterministic polynomial-time algorithm \(\mathcal{R} \) such that

\[x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1 \]
The Class NP

Given a graph G and a set S, it is easy to check if S is a k-independent set.

Running Time: $O(|E| + |V|)$

Complexity class NP:
- Decision problems whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of languages $\mathcal{L} \subseteq \{0,1\}^*$ (i.e., infinite set of bitstrings)
 - k-independent set:
 $\mathcal{L} = \{ G : G$ has an independent set of size $k \}$
 - k-vertex cover:
 $\mathcal{L} = \{ G : G$ has a vertex cover of size $k \}$
- Solving a decision problem equates to deciding whether an instance x (called a statement) is contained in the language \mathcal{L} (i.e., deciding if $x \in \mathcal{L}$)
- A language $\mathcal{L} \in$ NP if there exists a deterministic polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1$

\mathcal{R} is the “NP relation” or “solution-checker;” given an instance x and a candidate solution w, \mathcal{R} decides whether the solution is valid or not in polynomial time.
The Class P

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that

$$x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x,w) = 1$$

NP is the class of decision problems with efficiently-verifiable solutions

- Does not say anything about being able to find the solutions (i.e., we do not require that there is a polynomial-time algorithm to find w)

The class P is the class of decision problems where solutions can be found efficiently (e.g., there is a polynomial-time algorithm that computes w from x)

A language $\mathcal{L} \in \text{P}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that

$$x \in \mathcal{L} \iff \mathcal{R}(x) = 1$$
The Class P

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that

$$x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1$$

NP is the class of decision problems with efficiently-verifiable solutions

• Does not say anything about being able to find the solutions (i.e., we do not require that there is a polynomial-time algorithm to find w)

The class P is the class of decision problems where solutions can be found efficiently (e.g., there is a polynomial-time algorithm that computes w from x)

A language $\mathcal{L} \in \text{P}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that

$$x \in \mathcal{L} \iff \mathcal{R}(x) = 1$$

Polynomial in the input length (i.e., $\text{poly}(|x|) = O(|x|^d)$ for some $d \in \mathbb{N}$)
A language \(\mathcal{L} \in \text{NP} \) if there exists a deterministic polynomial-time "verifier" \(\mathcal{R} \) such that
\[
x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1
\]

A language \(\mathcal{L} \in \text{P} \) if there exists a deterministic polynomial-time "solver" \(\mathcal{R} \) such that
\[
x \in \mathcal{L} \iff \mathcal{R}(x) = 1
\]

If we can decide a problem in polynomial time, we can verify a solution to the problem in polynomial time:
\[
P \subseteq \text{NP}
\]

Biggest open problem in computer science: is this containment strict?

\[
P = \text{NP} \text{ or } P \neq \text{NP}
\]
A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time “verifier” \mathcal{R} such that
\[x \in \mathcal{L} \iff \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x, w) = 1 \]

A language $\mathcal{L} \in \text{P}$ if there exists a deterministic polynomial-time “solver” \mathcal{R} such that
\[x \in \mathcal{L} \iff \mathcal{R}(x) = 1 \]

If we can decide a problem in polynomial time, we can verify a solution to the problem in polynomial time:
\[\text{P} \subseteq \text{NP} \]

One of the seven Millennium Prize problems!

$\text{P} = \text{NP}$ or $\text{P} \neq \text{NP}$
A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time “verifier” \mathcal{R} such that $w \in \{0,1\}^{\text{poly}(|x|)}$: $\mathcal{R}(x, w) = 1$

A language $\mathcal{L} \in \text{P}$ if there exists a deterministic polynomial-time “solver” \mathcal{R} such that $x \in \mathcal{L} \iff \mathcal{R}(x) = 1$

If we can decide a problem in polynomial time, we can verify a solution to the problem in polynomial time:

$\text{P} \subseteq \text{NP}$

Biggest open problem in computer science: is this containment strict?

$\text{P} = \text{NP}$ or $\text{P} \neq \text{NP}$
A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time “verifier” \mathcal{R} such that

$$x \in \mathcal{L} \iff \exists w \in \{0, 1\}^*$: \mathcal{R}(x, w) = 1$$

A language $\mathcal{L} \in \text{P}$ if there exists a deterministic polynomial-time “solver” \mathcal{R} such that

$$x \in \mathcal{L} \iff \mathcal{R}(x) = 1$$

NP: “non-deterministic polynomial time”
- Non-deterministic has nothing to do with randomness
- Non-deterministic refers to a computation taking many possible paths (e.g., $\mathcal{R}(x, \cdot)$ can be viewed as a non-deterministic algorithm that tries every possible value of w and sees if any of the branches accept – there can be exponentially-many branches, but checking each branch is polynomial time)

If we can decide a problem in polynomial time, we can verify a solution to the problem in polynomial time:

$$\text{P} \subseteq \text{NP}$$

Biggest open problem in computer science: is this containment strict?

$$\text{P} = \text{NP} \text{ or } \text{P} \neq \text{NP}$$
Show: For any graph G:
- There is a short witness (i.e., proof) that G has a k-independent set
- The proof can be checked efficiently (in polynomial time)

Witness for G: $S = \{A, C, E, G, H, J\}$
(nodes in the k-independent set)

Checking the witness:
- Check that $|S| = k$
- Check that every edge is incident on at most one node in S

Total time: $O(|E| + |V|) = \text{poly}(|V| + |E|)$