CS 4102: Algorithms

Lecture 24: P vs. NP

David Wu Fall 2019

Today's Keywords

Reductions NP-Completeness P vs. NP

CLRS Readings: Chapter 34

Homework

HW8 due Saturday, November 23, 11pm

- Programming assignment (Python or Java)
- Graph algorithms

HW9, HW10C out today (due Thursday, December 5)

- Graphs, Reductions
- Written (LaTeX)

Final Exam

Monday, December 9, 7pm in Olsson 120

- Practice exam coming next week
- Review session likely the weekend before

Exam conflicts: Sign-up by tomorrow (Friday, November 22)

• Alternative exam only for student with an conflicting exam at the <u>same</u> time

Reductions

Reduction

 $A \leq B$: there is a reduction from A to B

Reduction Examples

Reduction Examples

Reduction Examples

maximum bipartite matching

max flow Ford-Fulkerson R 1

Party Problem

Maximum Independent Set

Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge

Maximum independent set problem: Given a graph G = (V, E), find the <u>largest</u> independent set S

Maximum Independent Set Example

Classic Baseball

Generalized Baseball

Minimum Vertex Cover

Vertex cover: $C \subseteq V$ is a vertex cover if <u>every</u> edge in E has one of its endpoints in C

Minimum vertex cover: Given a graph G = (V, E), find the smallest vertex cover C

Vertex Cover Example

Vertex cover of size 5

Turns out that problem of finding a minimum vertex cover is closely related to problem of finding a maximum independent set

Reductions

Reduction

 $A \leq B$: there is a reduction from A to B

Reduction

 $A \leq B$: there is a reduction from A to B

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: S is an independent set if and only if its complement V - S is a vertex cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: S is an independent set $\Rightarrow V - S$ is a vertex cover

• Suppose *S* is an independent set

Important note: a maximum independent set may <u>not</u> be a vertex cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Important note: a maximum independent set may <u>not</u> be a vertex cover **Claim:** S is an independent set $\Rightarrow V - S$ is a vertex cover

- Suppose *S* is an independent set
- Take any edge $e = (u, v) \in E$
- Either u ∉ S or v ∉ S (otherwise, u, v ∈ S, and S is no longer an independent set)
- Either $u \in V S$ or $v \in V S$, so e is covered by V S

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: V - S is a vertex cover $\Rightarrow S$ is an independent set

- Suppose V S is a vertex cover
- Take any edge $e = (u, v) \in E$
- Since V − S is a vertex cover, at least one of
 u ∈ V − S or v ∈ V − S should hold
- This means either $u \notin S$ or $v \notin S$ (or both)
- Thus, there is no edge between any pair of nodes u, v ∈ S

Important note: a maximum independent set may <u>not</u> be a vertex cover

Independent set: set of nodes that do not share an edge

Vertex cover: set of nodes that cover all edges

Claim: S is an independent set if and only if its complement V - S is a vertex cover

Conclusions:

- There is a one-to-one correspondence between independent sets and vertex covers
- Independent sets and vertex covers are <u>complements</u> so maximizing one means minimizing the other

maximum independent set

minimum vertex cover

Min Vertex Cover \leq Max Independent Set

minimum vertex cover

maximum independent set

Min Vertex Cover \leq Max Independent Set

minimum vertex cover

maximum independent set

Suppose there is no O(|V|) algorithm for minimum vertex cover

maximum independent set

minimum vertex cover

Suppose there is no O(|V|) algorithm for maximum independent set

Implications

Suppose |V| = n

- Maximum independent set reduces to minimum vertex cover in O(n) time
- Minimum vertex cover reduces to maximum independent set in O(n) time
- Any algorithm for either problems require $\Omega(n)$ time (why?)

Implications:

- Suppose there is a T(n) algorithm for either problem
 - Then there is a T(n) algorithm for both problems
- Suppose it takes $\Omega(T(n))$ time to solve either problem
 - Then it takes $\Omega(T(n))$ time to solve both problems

Interpretation: either both problems are easy (e.g., polynomial time) or both problems are hard (e.g., not polynomial time)

Implications

Suppose |V| = n

- Maximum independent set reduces to minimum vertex cover in O(n) time
- Minimum vertex cover reduces to maximum independent set in O(n) time
- Any algorithm for either problems require $\Omega(n)$ time (why?)

Implications:

- Suppose the But we have no idea which is the case!
 - Then the
- Suppose it ta
 - Then it t

(but... likely that <u>both</u> are hard)

Interpretation: either both problems are easy (e.g., polynomial time) or both problems are hard (e.g., not polynomial time)

k-Independent Set

k-Independent Set

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k?

k-Independent set is an example of a <u>decision</u> problem:

- Answer is a single bit (e.g., true/false)
- Algorithm does <u>not</u> have to return the independent set (if there is one)

Can also define the <u>search</u> version of this problem:

- **Problem (Search):** Given a graph G = (V, E), find an independent set with size k
- Output is an independent set of size k (if there is one)

Why should we care about the decision problem? We want to <u>find</u> the solution!

k-Independent Set

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k?

k-Independent set is an example of a <u>decision</u> problem:

- Answer is a single bit (e.g., true/false)
- Algorithm does <u>not</u> have to return the independent set (if there is one)

Can also define the sea

- Problem (Search): (
- Output is an indeperation

Because oftentimes, the search problem reduces to the decision problem, so it suffices to analyze the <u>simpler</u> problem

t set with size k.

Why should we care about the decision problem? We want to <u>find</u> the solution!

Search-to-Decision Reduction

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Goal: Find an independent set of size k

Idea: Remove a node, and check if the resulting graph still has an independent set of size *k*

- If not, then the node must be part of the independent set (so add the node to the set, and search for an independent set of size k - 1 in the remaining graph)
- If yes, then we do not need the node and continue searching over the remaining graph

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

Initially: $S = \emptyset$

Run decision algorithm with k = 6**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \emptyset$

Run decision algorithm with k = 6**Output:** True

Remove a node from the graph

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

$S = \emptyset$

Run decision algorithm with k = 6**Output:** False

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B\}$

Run decision algorithm with k = 5**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B\}$

Run decision algorithm with k = 5**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B\}$

Run decision algorithm with k = 5**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D\}$

Run decision algorithm with k = 4**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D\}$

Run decision algorithm with k = 4**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D\}$

Run decision algorithm with k = 4**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D\}$

Run decision algorithm with k = 4**Output:** False

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E\}$

Run decision algorithm with k = 3**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E\}$

Run decision algorithm with k = 3**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E\}$

Run decision algorithm with k = 3**Output:** False

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E, I\}$

Run decision algorithm with k = 2**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E, I\}$

Run decision algorithm with k = 2**Output:** False

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E, I, L\}$

Run decision algorithm with k = 1**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E, I, L\}$

Run decision algorithm with k = 1**Output:** True

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E, I, L\}$

Run decision algorithm with k = 1**Output:** False

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Consider k = 6

 $S = \{B, D, E, I, L, H\}$

Invocations of decision algorithm: O(|V|)

Cost of reduction: O(|V| + |E|)

Search-to-Decision Reduction

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

search

Search-to-Decision Reduction

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

search

decision

Search vs. Decision Problems

Problem (Decision): Given a graph G = (V, E), is there an independent set with size k? **Problem (Search):** Given a graph G = (V, E), find an independent set with size k.

Search problems: *"Find a solution to the problem"*

Decision problems: "Does a solution to the problem exist?"

For many problems like k-independent set and k-vertex cover, there is a search-to-decision reduction (i.e., a self-reduction)

• As we will see, this will be the case for any <u>NP-complete</u> problem

This is a key reason why we focus on <u>decision problems</u> rather than <u>search problems</u>

Given a graph G and a set S, it is <u>easy</u> to check if S is a k-independent set

```
Running Time: O(|E| + |V|)
```

Given a graph G and a set S, it is <u>easy</u> to check if S is a k-vertex cover

Running Time: O(|E| + |V|)

For both of these problems, it is easy to <u>check</u> a candidate solution

Given a graph G and a set S, it is <u>easy</u> to check if S is a k-independent set

Running Time: O(|E| + |V|)

Complexity class NP:

- <u>Decision problems</u> whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of <u>languages</u> $\mathcal{L} \subseteq \{0,1\}^*$ (i.e., infinite set of bitstrings)
 - *k*-independent set: $\mathcal{L} = \{G: G \text{ has an independent set of size } k\}$
 - *k*-vertex cover:
 - $\mathcal{L} = \{G: G \text{ has a vertex cover of size } k\}$
- Solving a decision problem equates to deciding whether an instance x (called a <u>statement</u>) is contained in the language L (i.e., deciding if x ∈ L)
- A language $\mathcal{L} \in NP$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x,w) = 1$

Given a graph G and a set S, it is <u>easy</u> t check if S is a k-independent set

Running Time: O(|E| + |V|)

Complexity class NP:

- <u>Decision problems</u> whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of <u>languages</u>
 L ⊆ {0,1}* (i.e., infinite set of bitstrings)
 - *k*-independent set:
- x is a statement and L is the language:
 x could be the description of a graph G k
 - $\mathcal L$ could be the set of graphs with a k-independent set
- Deciding whether $x \in \mathcal{L}$ is deciding whether *G* has a *k*-independent set or not

point fime algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x,w) = 1$

ling

 $x \in \mathcal{L}$

nistic

lis

Given a graph G and a set S, it is <u>easy</u> to check if S is a k-independent set

```
Running Time: O(|E| + |V|)
```

Complexity class NP:

- <u>Decision problems</u> whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of <u>languages</u>
 L ⊆ {0,1}* (i.e., infinite set of bitstrings)
 - *k*-independent set:

 L = {*G*: *G* has an independent set of size *k*}
 - *k*-vertex cover:

w is a "witness" or proof (of polynomial length) that the statement $x \in \mathcal{L}$

polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x,w) = 1$

Ŋ

 $\in \mathcal{L}$)

stic

Given a graph G and a set S, it is <u>easy</u> to check if S is a k-independent set

```
Running Time: O(|E| + |V|)
```

Complexity class NP:

- <u>Decision problems</u> whose solutions can be checked efficiently (i.e., in polynomial time)
- Formally, we define problems in terms of <u>languages</u>
 L ⊆ {0,1}* (i.e., infinite set of bitstrings)
 - *k*-independent set:

 L = {*G*: *G* has an independent set of size *k*}
 - *k*-vertex cover:
 - \mathcal{R} is the "NP relation" or "solution-checker:" given an instance x and a candidate solution w, \mathcal{R} decides whether the solution is valid or not in <u>polynomial time</u>

```
x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)} \colon \mathcal{R}(x,w) = 1
```

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x,w) = 1$

NP is the class of decision problems with <u>efficiently-verifiable</u> solutions

 Does not say anything about being able to <u>find</u> the solutions (i.e., we do not require that there is a polynomial-time algorithm to <u>find</u> w)

The class P is the class of decision problems where solutions can be found efficiently (e.g., there is a polynomial-time algorithm that computes w from x)

A language $\mathcal{L} \in P$ if there exists a <u>deterministic</u> polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \mathcal{R}(x) = 1$

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}: \mathcal{R}(x,w) = 1$

NP is the class of decision problems with <u>efficiently-verifiable</u> solutions

 Does not say anything about being able to <u>find</u> the solutions (i.e., we do not require that there is a polynomial-time algorithm to <u>find</u> w)

The class P is the class of decision problems there is a polynomial-time algorithm that co

Polynomial in the input length (i.e., poly $(|x|) = O(|x|^d)$ for some $d \in \mathbb{N}$

A language $\mathcal{L} \in P$ if there exists a <u>deterministic</u> polynomial-time algorithm \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \mathcal{R}(x) = 1$

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time "verifier" \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}$: $\mathcal{R}(x,w) = 1$

A language $\mathcal{L} \in P$ if there exists a deterministic polynomial-time "solver" \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \mathcal{R}(x) = 1$

If we can decide a problem in polynomial time, we can verify a solution to the problem in polynomial time: $P \subseteq NP$

Biggest open problem in computer science: is this containment strict?

$$P = NP \text{ or } P \neq NP$$

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time "verifier" \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \exists w \in \{0,1\}^{\text{poly}(|x|)}$: $\mathcal{R}(x,w) = 1$

A language $\mathcal{L} \in P$ if there exists a deterministic polynomial-time "solver" \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \mathcal{R}(x) = 1$

A langua

P: "polynomial time"

eterministic polynomial-time "verifier" \mathcal{R} such that $v \in \{0,1\}^{\text{poly}(|x|)}$: $\mathcal{R}(x,w) = 1$

A language $\mathcal{L} \in P$ if there exists a deterministic polynomial-time "solver" \mathcal{R} such that $x \in \mathcal{L} \Leftrightarrow \mathcal{R}(x) = 1$

If we can decide a problem in polynomial time, we can verify a solution to the problem in polynomial time: $P \subseteq NP$

Biggest open problem in computer science: is this containment strict?

$$P = NP \text{ or } P \neq NP$$

A language $\mathcal{L} \in \text{NP}$ if there exists a deterministic polynomial-time "verifier" \mathcal{R} such that

NP: "non-deterministic polynomial time"

- Non-deterministic has <u>nothing</u> to do with randomness
- Non-deterministic refers to a computation taking many possible paths (e.g., $\mathcal{R}(x, \cdot)$ can be viewed as a non-deterministic algorithm that tries every possible value of w and sees if any of the branches accept there can be exponentially-many branches, but checking each branch is polynomial time)

A lar

verify a solution to the problem in polynomial time: $\mathbf{P} \subseteq \mathbf{NP}$

Biggest open problem in computer science: is this containment strict?

$$P = NP \text{ or } P \neq NP$$

k-Independent Set is in NP

Show: For any graph *G*:

- There is a short witness (i.e., proof) that G has a k-independent set
- The proof can be checked efficiently (in polynomial time)

Witness for $G: S = \{A, C, E, G, H, J\}$ (nodes in the *k*-independent set)

Checking the witness:

- Check that |S| = k O(k) = O(|V|)
- Check that every edge is incident on at most one node in S
 O(|V| + |E|)

Total time: O(|E| + |V|) = poly(|V| + |E|)

Graph G