CS 4102: Algorithms

Lecture 25: P vs. NP

David Wu
Fall 2019

Today’s Keywords

Reductions
NP-Completeness
P vs. NP

CLRS Readings: Chapter 34

HW9, HW10C due Thursday, December 5, 11pm
* Graphs, Reductions
* Written (LaTeX)

Monday, December 9, 7pm in Olsson 120
* Practice exam coming soon
* Review session likely the weekend before
* SDAC: Please sign-up for a time on December 9

A language L € NP if there exists a deterministic polynomial-time “verifier” R such that
x € L o 3w € {0,1}PovUxD; R(x, w) =1

A language L € P if there exists a deterministic polynomial-time “solver” R such that
xeELoe Rx)=1

If we can decide a problem in polynomial time, we can

verify a solution to the problem in polynomial time:
P € NP

Biggest open problem in computer science: is this
containment strict?

P =NPorP # NP

Understanding the Landscape of NP

Question: What are the hard problems in NP?
e (Can we systematically characterize these?

 Can we use insights from one problem to help solve
another problem?

Strategy: Identify problems at least as “hard” as NP

* If any of these “hard” problems can be solved in
polynomial time, then all NP problems can be solved
in polynomial time

A problem (or language) B is NP-hard
* VAENP,A<, B
* A <, B means A reduces to B in polynomial time

NP-Hardness

any NP problem Map instances of problem NP-hard problem
A to instances of B

polynomial time B

Map solutions of problem

B to solutions of A Solution for B

Solution for 4

polynomial time Y

NP-hardness reduction

A <, B:there is a polynomial-time reduction from A to B 7

any NP problem

Solution for 4

NP-Hardness

Map instances of problem
A to instances of B

polynomial time

Map solutions of problem
B to solutions of A

polynomial time

NP-hard problem

B Algorithm for B

Solution for B

Y

Very powerful: if we can solve even one NP-hard problem
in polynomial time, we can solve all of them! .

Understanding the Landscape of NP

Question: What are the hardest problems in NP?

* By definition, an efficient algorithm for an NP-hard problem
implies an efficient algorithm for every NP problem

* Answer: the ones that are NP-hard (if there are any)

NP-complete = NP N NP-hard

NP-complete

“Complete” for NP in the sense that a solution to one implies a
solution to all

* Toshow P = NP, just need a single polynomial-time algorithm for a
single NP-complete (or NP-hard) problem

* Toshow P # NP, just need a single lower-bound that some NP
problem cannot be solved in polynomial time

Understanding the Landscape of NP

Question: What are the hardest problems in NP?

* By definition, an efficient algorithm for an NP-hard problem
implies an efficient algorithm for every NP problem

* Answer: the ones that are NP-hard (if there are any)

NP-complete = NP N NP-hard

“Complete” for NP4
solution to all
* ToshowP =N

Not only do our existing techniques for proving lower
bounds not work here, we are able to prove that
most of our techniques will always fail...

* Toshow P # NP, just need a single lower-bound that some NP
problem cannot be solved in polynomial time

NP-complete

10

NP-Completeness

NP-complete = NP N NP-hard

To prove that a problem (or language) is NP-complete:
* Showitisin NP (i.e., construct a polynomial-time verifier)

 Show itis NP-hard (i.e., show every problem in NP
reduces to it)

NP-complete

® \ Butthere are a lot of
problems in NP...

11

NP-Completeness

NP-complete = NP N NP-hard

To prove that a problem (or language) is NP-complete:
* Showitisin NP (i.e., construct a polynomial-time verifier)
* Show itis NP-hard (i.e., show every problem in NP
reduces to it)

» Sufficient to show that another NP-hard problem reduces to it NP-complete

* Suppose C is NP-hard and C <, B; then for all A € NP
A<, (<, B=>A<,C

* Challenge: coming up with a first NP-hard problem

12

3-SAT (Satisfiability)

Shown to be NP-hard by Cook and Levin (independently)

Given a 3-CNF formula (logical AND of clauses, each an OR of 3
variables), is there an assignment of true/false to each variable to make
the formula true (i.e., satisfy the formula)?

(xVYyVZ)AXVYVY)AUVYVI)ANEZVIVU)A(XVYVZ)

— \T/’
Clause x = true

Variables y = false

z = false
u = true

13

k-Independent Set is NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard
* Show 3-SAT <,, k-Independent Set

14

k-Independent Set is in NP

Show: For any graph G:
 There is a short witness (i.e., proof) that G has a k-independent set
 The proof can be checked efficiently (in polynomial time)

O0—0 Witness for G: S = {A,C,E, G, H,]}
(nodes in the k-independent set)

Checking the witness:

e Checkthat|S| =k O(k) =0(|V])
* Check that every edge is incident on at
most one node in S o(lV| + |E]

Graph G Total time: O(|E| + |V|) = poly(|V| + |E|) ;

k-Independent Set is NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard
* Show 3-SAT <,, k-Independent Set

16

3-SAT <,, k-Independent Set

3-SAT

(xVyVZ)A(xVYyVY)A(uVyV27)

x = true
y = false
z = false
u = true

Map instances of problem
A to instances of B

polynomial time

Map solutions of problem
B to solutions of A

polynomial time

polynomial-time reduction

k-independent set
-

17

3-SAT <,, k-Independent Set

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Let kK = number of clauses

Claim. There is a k-independent set in this graph if and only if
there is a satisfying assignment 18

3-SAT <,, k-Independent Set

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

x = true
y = false
z = false
u = true

Suppose there is a k-independent set S in this graph G

By construction of G, at most one node from each triangle isin S

Since |S| = k and there are k triangles, each triangle contributes one node
If a variable x is selected in one triangle, then X is never selected in another
triangle (since each variable is connected to its negation)

There are no contradicting assignments, so can set variable chosen in each

triangle to “true”; satisfying assignment by construction v

3-SAT <,, k-Independent Set

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

x = true
y = false
z = false
u = true

Suppose there is a satisfying assignment to the formula
* At least one variable in each clause must be true
 Add the node to that variable to the set S
* There are k clauses, so set S has exactly k nodes

* If we use x in any clause, we will never use X, so there are no edges among the

nodesin S
20

3-SAT <,, k-Independent Set

3-SAT k-independent set
Map instances of problem
(xVyVZAEVIVY)A(@UVyV?Z) A to instances of B w
polynomial time

Map solutions of problem

x = true B to solutions of A

y = false /AN / \

z = false polynomial time —\%

u = true !

polynomial-time reduction

21

k-Independent Set is NP-Complete

1. Show that it belongs to NP

2. Show it is NP-Hard
* Show 3-SAT <,, k-independent set

22

Max Independent Set <,, Min Vertex Cover

k-independent set k-vertex cover

Map instances of problem *—o
A to instances of B
O(1) time
o—

Map solutions of problem
B to solutions of A

O(|V]) time

=
=

Reduction

23

k-Vertex Cover is NP-Complete

1. Show that it belongs to NP
* Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard
* Show k-independent set <,, k-vertex cover

24

k-Clique Problem

Cligue: A complete subgraph

k-Clique problem: given a graph
G and a number k, is there a
cligue of size k?

25

k-Clique is NP-Complete

1. Show that it belongs to NP
 Give a polynomial time verifier

2. Show itis NP-Hard

* Q@Give areduction from a known NP-Hard problem
* We will show 3-SAT <, k-clique

26

k-Clique is in NP

Show: For any graph G:

 Thereis a short witness (i.e., proof) that G has a k-clique
 The proof can be checked efficiently (in polynomial time)

A

Suppose k = 4

Witness for G:
(nodes in the k-clique)

Checking the witness:

e Checkthat|S| =k O(k) =0(|V])
* Check that every pair of nodes in S share
an edge 0(k2) = 0(|V|?)

Total time: O(|V|%) = poly(|V| + |E]) 27

k-Clique is NP-Complete

1. Show that it belongs to NP
 Give a polynomial time verifier

2. Show itis NP-Hard

* Q@Give areduction from a known NP-Hard problem
* We will show 3-SAT <, k-clique

28

3-SAT <,, k-Clique

3-SAT k-clique
Map instances of problem Q
(xVyVZ)AEVIVY)A@VyV?7) A to instances of B //)7
N~
polynomial time \\\¢
/
Map solutions of problem _— \
X = true B to solutions of A -
y = false \ ¢
z = false polynomial time C—
u = true —

polynomial-time reduction

29

3-SAT <,, k-Clique

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

(also do this for the other clauses,
omitted due to clutter)

v |
For each clause, introduce a node for each of its three variables

Add an edge from each node to all non-contradictory nodes in the other clauses (i.e.,
to all nodes that is not the negation of its own variable)

Let kK = number of clauses
Claim. There is a k-clique in this graph if and only if there is a
satisfying assignment 30

3-SAT <,, k-Clique

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

Suppose there is a k-clique in this graph

There are no edges between nodes for variables in the same clause, so k-clique must
contain one node from each clause

Nodes in clique cannot contain variable and its negation
Nodes in cligue must then correspond to a satisfying assignment

31

3-SAT <,, k-Clique

(XVYVZ)ANEVYVY)A@VYVZ)ANEZVIVU)ANKVYVZ)

Suppose there is a satisfying assignment to the formula
 For each clause, choose one node whose value is true

 There are k clauses, so this yields a collection of k nodes
* Since the assignment is consistent, there is an edge between every pair of nodes, so this

constitutes a k-clique

32

3-SAT <,, k-Clique

3-SAT k-clique

Map instances of problem
(xVYVAEVIVY)A(@UVYVZI) A to instances of B

polynomial time

Map solutions of problem

X = true B to solutions of 4
y = false

z = false polynomial time
u = true

polynomial-time reduction

33

k-Clique is NP-Complete

1. Show that it belongs to NP
 Give a polynomial time verifier

2. Show itis NP-Hard

* Q@Give areduction from a known NP-Hard problem
* We will show 3-SAT <, k-clique

34

Bonus Material: Coping with NP-Hardness

Material from subsequent slides will not be on the exam

Coping with NP-Hardness

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

36

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

37

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

38

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

39

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

40

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

41

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

42

Greedy Vertex Cover

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

43

Greedy Vertex Cover

(@) Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

44

Greedy Vertex Cover

(@) Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

45

Greedy Vertex Cover

(@) Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

a\c Greedy choice: Node with highest degree

(e.g., node that covers the most edges)

46

Greedy Vertex Cover

(@) Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

a\a Greedy choice: Node with highest degree

(e.g., node that covers the most edges)

47

Greedy Vertex Cover

(@) Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy approach?

G Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Size of vertex cover: 5
0 In this case, actually optimal!

48

Greedy Vertex Cover

But not always optimal...

Graph G Optimal Greedy

49

Greedy Vertex Cover

But is it “good enough?”

How do we measure good enough?

Let OPT(G) denote the size of the minimum vertex cover in G and |A(G)| be the
size of the cover output by algorithm A

Define the approximation factor of A to be

|ACG)]
OPT

The larger this value is, the worse the

ApproxFactor(4) =

quality of the approximation
(Goal: as close to 1 as possible)

50

Greedy Vertex Cover

But is it “good enough?”

How do we measure good enough?

Let OPT(G) denote the size of the minimum vertex cover in G and |A(G)| be the
size of the cover output by algorithm A

Define the approximation factor of A to be

|ACG)]
OPT

ApproxFactor(4) =

Theorem. The greedy algorithm for vertex cover achieves an approximation factor
of Q(log|V])

Not that great... quality of solution is worse for large instances 51

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

52

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex

cover that is at most twice as large as the
optimal)

Consideranedgee = (u,v) € E
* Optimal vertex covering must contain
eitheruorv
* Our approach: take both of them!
e Add u, v to cover

« Remove all edges incident on u
and v

* Repeat until no edges remain

53

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex

cover that is at most twice as large as the
optimal)

Consider anedge e = (u,v) € E
* Optimal vertex covering must contain
eitheruorv
* Our approach: take both of them!
e Add u, v to cover

« Remove all edges incident on u
and v

* Repeat until no edges remain

54

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex

cover that is at most twice as large as the
optimal)

Consider anedge e = (u,v) € E
* Optimal vertex covering must contain
eitheruorv
* Our approach: take both of them!
e Add u, v to cover

« Remove all edges incident on u
and v

* Repeat until no edges remain

55

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex

cover that is at most twice as large as the
optimal)

Consider anedge e = (u,v) € E
* Optimal vertex covering must contain
eitheruorv
* Our approach: take both of them!
e Add u, v to cover

« Remove all edges incident on u
and v

* Repeat until no edges remain

56

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex

cover that is at most twice as large as the
optimal)

Consider anedge e = (u,v) € E
* Optimal vertex covering must contain
eitheruorv
* Our approach: take both of them!
e Add u, v to cover

« Remove all edges incident on u
and v

* Repeat until no edges remain

57

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the

‘ optimal)

Consider anedge e = (u,v) € E
‘ * Optimal vertex covering must contain
‘ eitheru or v
* Our approach: take both of them!
e Add u, v to cover
‘ « Remove all edges incident on u
and v
* Repeat until no edges remain

58

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the

‘ optimal)

Consider anedge e = (u,v) € E
‘ * Optimal vertex covering must contain
‘ eitheru or v
* Our approach: take both of them!
e Add u, v to cover
‘ « Remove all edges incident on u
and v
* Repeat until no edges remain

59

Approximate Vertex Cover

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the

‘ optimal)

Consider anedge e = (u,v) € E
‘ * Optimal vertex covering must contain
’ eitheruorv

* Our approach: take both of them!
‘ e Add u, v to cover
‘ « Remove all edges incident on u
and v

Size of vertex cover: 6 * Repeat until no edges remain
Size of optimal vertex cover: 5 °

Approximate Vertex Cover

Theorem. The approximate algorithm for
vertex cover achieves an approximation

‘ factor of 2

Consider anedge e = (u,v) € E

* Optimal vertex covering must contain
‘ eitheruorv

* Our approach: take both of them!

Add u, v to cover

Remove all edges incident on u
and v

Repeat until no edges remain

61

Coping with NP-Hardness

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Question: Can we do better than a 2-approximation?
Slightly... there is an algorithm that achieves a (2 — 0(1/\/10g|V|)) approximation

Open Problem: Obtain a (2 — &)-approximation for constant € > 0

Question: What's the best we could hope for? Can we have a 1.00001-approximation?
Unlikely, computing a V2 = 1.41 approximation is NP-hard (Khot-Minzer-Safra, 2018)

Earlier lower bounds: 7/6 ~ 1.17 (Hastad, 1997), 10v/5 — 21 ~ 1.36 (Dinur-Safra, 2005)

Coping with NP-Hardness

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Question: Can we do better than a 2-approximation?

\/logIVI)) approximation

Hardness of approximation: many NP-hard problems
OLLNSLIEUBIOIE /o hord not only to solve exactly, but even hard to

approximate (beautiful theory — see also PCP theorem)

Question: What’s thé& ation?

Unlikely, computing a v2 =~ 1.41 approximation is NP-hard (Khot-Minzer-Safra, 2018)
Earlier lower bounds: 7/6 ~ 1.17 (Hastad, 1997), 10v/5 — 21 ~ 1.36 (Dinur-Safra, 2005)

Coping with NP-Hardness

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Approach 2: For small instances, solve using brute force or dynamic programming
Can also improve (expected) run-time using heuristics

64

Coping with NP-Hardness

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Approach 2: For small instances, solve using brute force or dynamic programming
Can also improve (expected) run-time using heuristics

Approach 3: Special cases of the problems can be tractable

65

Vertex Cover on a Tree

When the graph is a tree, vertex cover can be

solved using dynamic programming:
 Consider the root node
e Eitheritis part of the cover or all of its children
are part of the cover

OR

Solve vertex cover on subtrees and take the minimum
66

Coping with NP-Hardness

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Approach 2: For small instances, solve using brute force or dynamic programming
Can also improve (expected) run-time using heuristics

Approach 3: Special cases of the problems can be tractable
(see also parameterized complexity)

67

