
CS 4102: Algorithms
Lecture 25: P vs. NP

David Wu
Fall 2019

Today’s Keywords

Reductions
NP-Completeness
P vs. NP

2

CLRS Readings: Chapter 34

Homework

HW9, HW10C due Thursday, December 5, 11pm
• Graphs, Reductions
• Written (LaTeX)

3

Final Exam

Monday, December 9, 7pm in Olsson 120
• Practice exam coming soon
• Review session likely the weekend before
• SDAC: Please sign-up for a time on December 9

4

P vs. NP

5

A language ℒ ∈ NP if there exists a deterministic polynomial-time “verifier” ℛ such that
𝑥 ∈ ℒ ⇔ ∃𝑤 ∈ 0,1 -./0 1 : ℛ 𝑥,𝑤 = 1

A language ℒ ∈ P if there exists a deterministic polynomial-time “solver” ℛ such that
𝑥 ∈ ℒ ⇔ ℛ 𝑥 = 1

NP

P

If we can decide a problem in polynomial time, we can
verify a solution to the problem in polynomial time:

P ⊆ NP

Biggest open problem in computer science: is this
containment strict?

P = NP or P ≠ NP

Understanding the Landscape of NP

Question: What are the hard problems in NP?
• Can we systematically characterize these?
• Can we use insights from one problem to help solve

another problem?

Strategy: Identify problems at least as “hard” as NP
• If any of these “hard” problems can be solved in

polynomial time, then all NP problems can be solved
in polynomial time

A problem (or language) 𝐵 is NP-hard
• ∀𝐴 ∈ NP, 𝐴 ≤: 𝐵
• 𝐴 ≤: 𝐵 means 𝐴 reduces to 𝐵 in polynomial time

6

NP-hard

NP
P

NP-Hardness

7

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

polynomial time

polynomial time

NP-hardness reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑌𝑋

𝑨 ≤: 𝑩: there is a polynomial-time reduction from 𝑨 to 𝑩

any NP problem NP-hard problem

NP-Hardness

8

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

polynomial time

polynomial time

Map instances of problem
𝑨 to instances of 𝑩

Algorithm for 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑌𝑋

Very powerful: if we can solve even one NP-hard problem
in polynomial time, we can solve all of them!

any NP problem NP-hard problem

Understanding the Landscape of NP

Question: What are the hardest problems in NP?
• By definition, an efficient algorithm for an NP-hard problem

implies an efficient algorithm for every NP problem
• Answer: the ones that are NP-hard (if there are any)

NP-complete = NP ∩ NP-hard

“Complete” for NP in the sense that a solution to one implies a
solution to all

• To show P = NP, just need a single polynomial-time algorithm for a
single NP-complete (or NP-hard) problem

• To show P ≠ NP, just need a single lower-bound that some NP
problem cannot be solved in polynomial time

9

NP-hard

NP
P

NP-complete

Understanding the Landscape of NP

Question: What are the hardest problems in NP?
• By definition, an efficient algorithm for an NP-hard problem

implies an efficient algorithm for every NP problem
• Answer: the ones that are NP-hard (if there are any)

NP-complete = NP ∩ NP-hard

“Complete” for NP in the sense that a solution to one implies a
solution to all

• To show P = NP, just need a single polynomial-time algorithm for a
single NP-complete (or NP-hard) problem

• To show P ≠ NP, just need a single lower-bound that some NP
problem cannot be solved in polynomial time

10

NP-hard

NP
P

NP-complete

Not only do our existing techniques for proving lower
bounds not work here, we are able to prove that

most of our techniques will always fail…

NP-Completeness

NP-complete = NP ∩ NP-hard

To prove that a problem (or language) is NP-complete:
• Show it is in NP (i.e., construct a polynomial-time verifier)
• Show it is NP-hard (i.e., show every problem in NP

reduces to it)

11

NP-hard

NP
P

NP-complete

But there are a lot of
problems in NP…

NP-Completeness

NP-complete = NP ∩ NP-hard

To prove that a problem (or language) is NP-complete:
• Show it is in NP (i.e., construct a polynomial-time verifier)
• Show it is NP-hard (i.e., show every problem in NP

reduces to it)
• Sufficient to show that another NP-hard problem reduces to it
• Suppose 𝐶 is NP-hard and 𝐶 ≤: 𝐵; then for all 𝐴 ∈ NP

𝐴 ≤: 𝐶 ≤: 𝐵 ⇒ 𝐴 ≤: 𝐶
• Challenge: coming up with a first NP-hard problem

12

NP-hard

NP
P

NP-complete

3-SAT (Satisfiability)

Shown to be NP-hard by Cook and Levin (independently)

Given a 3-CNF formula (logical AND of clauses, each an OR of 3
variables), is there an assignment of true/false to each variable to make
the formula true (i.e., satisfy the formula)?

13

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

Clause
Variables

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
• Show 3-SAT≤: 𝑘-Independent Set

14

𝑘-Independent Set is in NP

Show: For any graph 𝐺:
• There is a short witness (i.e., proof) that 𝐺 has a 𝑘-independent set
• The proof can be checked efficiently (in polynomial time)

15

A B

C D

GF

H
J

K L

E

I

Graph 𝐺

Witness for 𝑮: 𝑆 = 𝐴, 𝐶, 𝐸, 𝐺, 𝐻, 𝐽
(nodes in the 𝑘-independent set)

Checking the witness:
• Check that 𝑆 = 𝑘
• Check that every edge is incident on at

most one node in 𝑆

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑉 + 𝐸

Total time: 𝑂 𝐸 + 𝑉 = poly 𝑉 + 𝐸

𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
• Show 3-SAT≤: 𝑘-Independent Set

16

3-SAT ≤𝒑 𝒌-Independent Set

17

polynomial time

polynomial time

polynomial-time reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

3-SAT ≤𝒑 𝒌-Independent Set

18

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

F𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

F𝑢

F𝑦̅𝑧

For each clause, construct a triangle graph with its three variables as nodes
Add an edge between each node and its negation

Claim. There is a 𝑘-independent set in this graph if and only if
there is a satisfying assignment

Let 𝑘 = number of clauses

3-SAT ≤𝒑 𝒌-Independent Set

19

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

F𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

F𝑢

F𝑦̅𝑧

Suppose there is a 𝑘-independent set 𝑆 in this graph 𝐺
• By construction of 𝐺, at most one node from each triangle is in 𝑆
• Since 𝑆 = 𝑘 and there are 𝑘 triangles, each triangle contributes one node
• If a variable 𝑥 is selected in one triangle, then �̅� is never selected in another

triangle (since each variable is connected to its negation)
• There are no contradicting assignments, so can set variable chosen in each

triangle to “true”; satisfying assignment by construction

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

3-SAT ≤𝒑 𝒌-Independent Set

20

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

F𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

�̅�𝑢

F𝑢

F𝑦̅𝑧

Suppose there is a satisfying assignment to the formula
• At least one variable in each clause must be true
• Add the node to that variable to the set 𝑆
• There are 𝑘 clauses, so set 𝑆 has exactly 𝑘 nodes
• If we use 𝑥 in any clause, we will never use �̅�, so there are no edges among the

nodes in 𝑆

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

3-SAT ≤𝒑 𝒌-Independent Set

21

polynomial time

polynomial time

polynomial-time reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑘-independent set3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
2. Show it is NP-Hard
• Show 3-SAT≤: 𝑘-independent set

22

Max Independent Set ≤: Min Vertex Cover

23

𝑂(1) time

𝑂 𝑉 time

Reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑘-independent set 𝑘-vertex cover

𝑘-Vertex Cover is NP-Complete

24

1. Show that it belongs to NP
• Given a candidate cover, check that every edge is covered

2. Show it is NP-Hard
• Show 𝑘-independent set≤: 𝑘-vertex cover

𝑘-Clique Problem

Clique: A complete subgraph
𝒌-Clique problem: given a graph
𝐺 and a number 𝑘, is there a
clique of size 𝑘?

25

3-Clique

4-Clique

𝑘-Clique is NP-Complete

1. Show that it belongs to NP
• Give a polynomial time verifier

2. Show it is NP-Hard
• Give a reduction from a known NP-Hard problem
• We will show 3-SAT ≤: 𝑘-clique

26

𝑘-Clique is in NP

Show: For any graph 𝐺:
• There is a short witness (i.e., proof) that 𝐺 has a 𝑘-clique
• The proof can be checked efficiently (in polynomial time)

27Graph 𝐺

Witness for 𝑮: 𝑆 = 𝐵,𝐷, 𝐸, 𝐹
(nodes in the 𝑘-clique)

Checking the witness:
• Check that 𝑆 = 𝑘
• Check that every pair of nodes in 𝑆 share

an edge

𝑂 𝑘 = 𝑂 𝑉

𝑂 𝑘d = 𝑂(𝑉 d)

Total time: 𝑂 𝑉 d = poly 𝑉 + 𝐸

G
I

E

D
A

B

F

C

3-Clique

4-Clique

Suppose 𝑘 = 4

𝑘-Clique is NP-Complete

1. Show that it belongs to NP
• Give a polynomial time verifier

2. Show it is NP-Hard
• Give a reduction from a known NP-Hard problem
• We will show 3-SAT ≤: 𝑘-clique

28

3-SAT ≤𝒑 𝒌-Clique

29

polynomial time

polynomial time

polynomial-time reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑦 ̅𝑧
𝑧

3-SAT ≤𝒑 𝒌-Clique

30

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

For each clause, introduce a node for each of its three variables
Add an edge from each node to all non-contradictory nodes in the other clauses (i.e.,
to all nodes that is not the negation of its own variable)

Claim. There is a 𝑘-clique in this graph if and only if there is a
satisfying assignment

Let 𝑘 = number of clauses

𝑥

𝑦

𝑥 F𝑦𝑦

𝑢

(also do this for the other clauses,
omitted due to clutter)

𝑧 �̅� 𝑢

�̅� F𝑦 ̅𝑧

3-SAT ≤𝒑 𝒌-Clique

31

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

Suppose there is a 𝑘-clique in this graph
• There are no edges between nodes for variables in the same clause, so 𝑘-clique must

contain one node from each clause
• Nodes in clique cannot contain variable and its negation
• Nodes in clique must then correspond to a satisfying assignment

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 F𝑦𝑦

𝑢

𝑧 �̅� 𝑢

�̅� F𝑦 ̅𝑧

3-SAT ≤𝒑 𝒌-Clique

32

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ F𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ F𝑦 ∨ ̅𝑧)

Suppose there is a satisfying assignment to the formula
• For each clause, choose one node whose value is true
• There are 𝑘 clauses, so this yields a collection of 𝑘 nodes
• Since the assignment is consistent, there is an edge between every pair of nodes, so this

constitutes a 𝑘-clique

𝑦 ̅𝑧
𝑧

𝑥

𝑦

𝑥 F𝑦𝑦

𝑢

𝑧 �̅� 𝑢

�̅� F𝑦 ̅𝑧

3-SAT ≤𝒑 𝒌-Clique

33

polynomial time

polynomial time

polynomial-time reduction

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

𝑘-clique3-SAT

𝑥 = true
𝑦 = false
𝑧 = false
𝑢 = true

𝑘-Clique is NP-Complete

1. Show that it belongs to NP
• Give a polynomial time verifier

2. Show it is NP-Hard
• Give a reduction from a known NP-Hard problem
• We will show 3-SAT ≤: 𝑘-clique

34

Bonus Material: Coping with NP-Hardness

Material from subsequent slides will not be on the exam

Coping with NP-Hardness

36

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Greedy Vertex Cover

37

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

38

3
4

4

2

2
4

3

2

2

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

39

3
4

4

2

2
4

3

2

2

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

40

3
4

3

1

1
4

3

1

2

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

41

3
4

3

1

1
4

3

1

2

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

42

2
4

2

1

1
4

2

1

1

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

43

2
4

2

1

1
4

2

1

1

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

44

2
4

2

1

1
4

1

0

1

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

45

2
4

2

1

1
4

1

0

1

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

46

2
4

2

1

0
4

1

0

0

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

47

2
4

2

1

0
4

1

0

0

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Greedy approach?

Greedy Vertex Cover

48

2
4

2

0

0
4

1

0

0

Goal: Find a set of nodes such that every
edge is incident on one of the nodes

Greedy choice: Node with highest degree
(e.g., node that covers the most edges)

Size of vertex cover: 5
In this case, actually optimal!

Greedy approach?

Greedy Vertex Cover

49

But not always optimal…

Graph 𝐺 Optimal Greedy

Greedy Vertex Cover

50

But is it “good enough?”

Let OPT(𝐺) denote the size of the minimum vertex cover in 𝐺 and 𝐴 𝐺 be the
size of the cover output by algorithm 𝐴

Define the approximation factor of 𝐴 to be

ApproxFactor 𝐴 =
𝐴 𝐺
OPT

How do we measure good enough?

The larger this value is, the worse the
quality of the approximation

(Goal: as close to 1 as possible)

Greedy Vertex Cover

51

But is it “good enough?”

Let OPT(𝐺) denote the size of the minimum vertex cover in 𝐺 and 𝐴 𝐺 be the
size of the cover output by algorithm 𝐴

Define the approximation factor of 𝐴 to be

ApproxFactor 𝐴 =
𝐴 𝐺
OPT

How do we measure good enough?

Theorem. The greedy algorithm for vertex cover achieves an approximation factor
of Ω log 𝑉

Not that great… quality of solution is worse for large instances

Approximate Vertex Cover

52

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Approximate Vertex Cover

53

𝑣

𝑢

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

54

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

55

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

56

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

57

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

58

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

59

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Approximate Vertex Cover

60

Goal: Obtain a 2-approximation (i.e., vertex
cover that is at most twice as large as the
optimal)

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remainSize of vertex cover: 6

Size of optimal vertex cover: 5

Approximate Vertex Cover

61

Consider an edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸
• Optimal vertex covering must contain

either 𝑢 or 𝑣
• Our approach: take both of them!
• Add 𝑢, 𝑣 to cover
• Remove all edges incident on 𝑢

and 𝑣
• Repeat until no edges remain

Theorem. The approximate algorithm for
vertex cover achieves an approximation
factor of 2

Coping with NP-Hardness

62

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Question: Can we do better than a 2-approximation?

Slightly… there is an algorithm that achieves a 2 − 𝑂 ⁄1 log 𝑉 approximation

Question: What’s the best we could hope for? Can we have a 1.00001-approximation?

Open Problem: Obtain a (2 − 𝜀)-approximation for constant 𝜀 > 0

Unlikely, computing a 2 ≈ 1.41 approximation is NP-hard (Khot-Minzer-Safra, 2018)

Earlier lower bounds: ⁄7 6 ≈ 1.17 (Håstad, 1997), 10 5 − 21 ≈ 1.36 (Dinur-Safra, 2005)

Coping with NP-Hardness

63

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Question: Can we do better than a 2-approximation?

Slightly… there is an algorithm that achieves a 2 − 𝑂 ⁄1 log 𝑉 approximation

Question: What’s the best we could hope for? Can we have a 1.00001-approximation?

Open Problem: Obtain a (2 − 𝜀)-approximation for constant 𝜀 > 0

Unlikely, computing a 2 ≈ 1.41 approximation is NP-hard (Khot-Minzer-Safra, 2018)

Earlier lower bounds: ⁄7 6 ≈ 1.17 (Håstad, 1997), 10 5 − 21 ≈ 1.36 (Dinur-Safra, 2005)

Hardness of approximation: many NP-hard problems
are hard not only to solve exactly, but even hard to

approximate (beautiful theory – see also PCP theorem)

Coping with NP-Hardness

64

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Approach 2: For small instances, solve using brute force or dynamic programming
Can also improve (expected) run-time using heuristics

Coping with NP-Hardness

65

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Approach 2: For small instances, solve using brute force or dynamic programming
Can also improve (expected) run-time using heuristics

Approach 3: Special cases of the problems can be tractable

Vertex Cover on a Tree

66

When the graph is a tree, vertex cover can be
solved using dynamic programming:

• Consider the root node
• Either it is part of the cover or all of its children

are part of the cover

OR

Solve vertex cover on subtrees and take the minimum

Coping with NP-Hardness

67

Many optimization problems that come up in practice are NP-complete
What do we do?

Approach 1: Find an algorithm that gives nearly-optimal solutions

Approach 2: For small instances, solve using brute force or dynamic programming
Can also improve (expected) run-time using heuristics

Approach 3: Special cases of the problems can be tractable
(see also parameterized complexity)

