CS 4102: Algorithms

Lecture 26: Convex Hull

David Wu Fall 2019

Today's Keywords

- **Reductions and lower bounds**
- Convex hull
- Graham's algorithm (Graham scan)
- Jarvis' algorithm (Jarvis march)
- Chan's algorithm

CLRS Readings: Chapter 33.3

Homework

HW9, HW10C due Thursday, December 5, 11pm

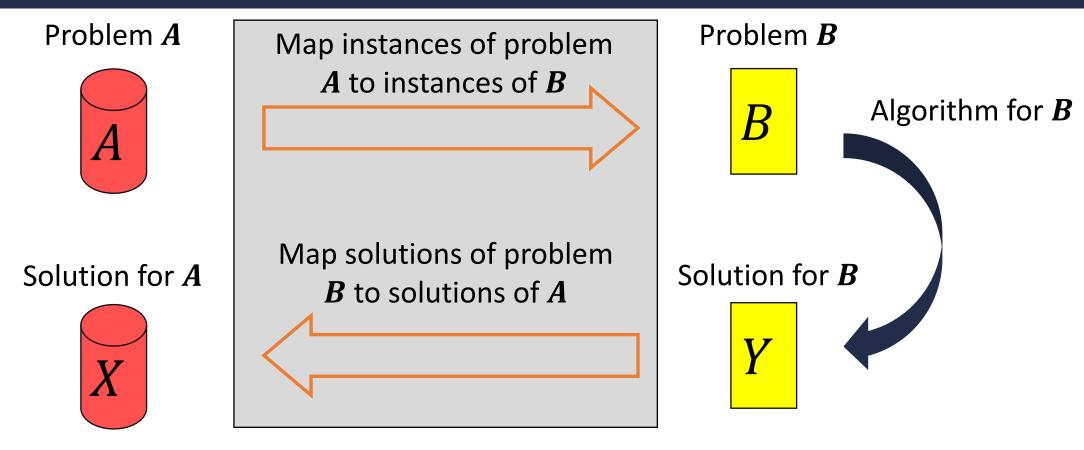
- Graphs, Reductions
- Written (LaTeX)

Final Exam

Monday, December 9, 7pm in Olsson 120

- Practice exam coming soon
- Review session likely the weekend before
- SDAC: Please sign-up for a time on December 9

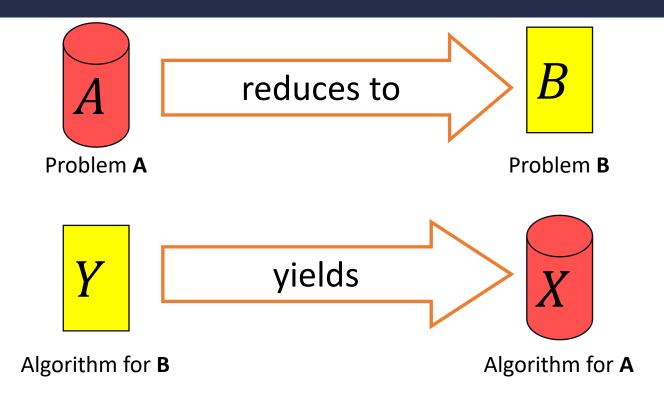
Reductions



Reduction

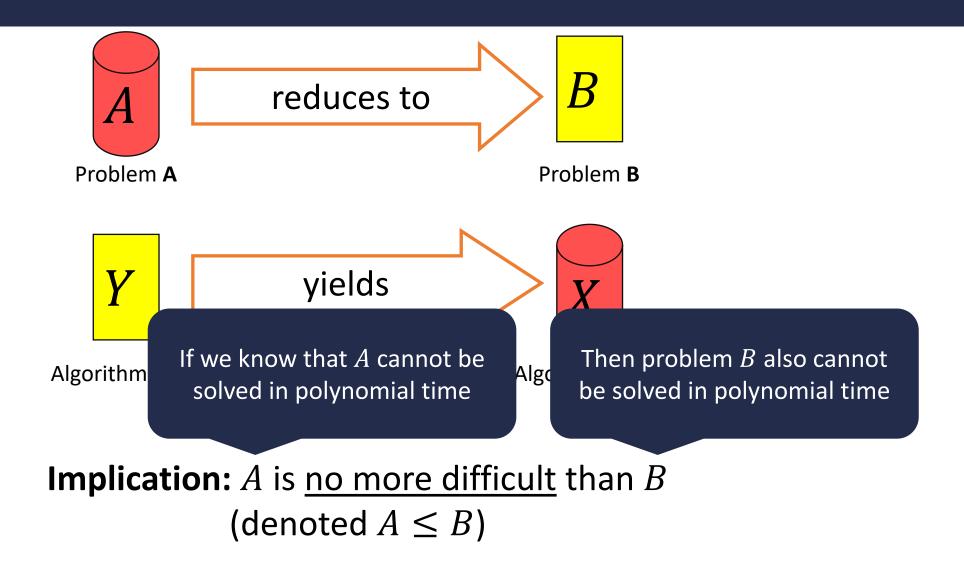
 $A \leq B$: there is a reduction from A to B

Understanding Reductions

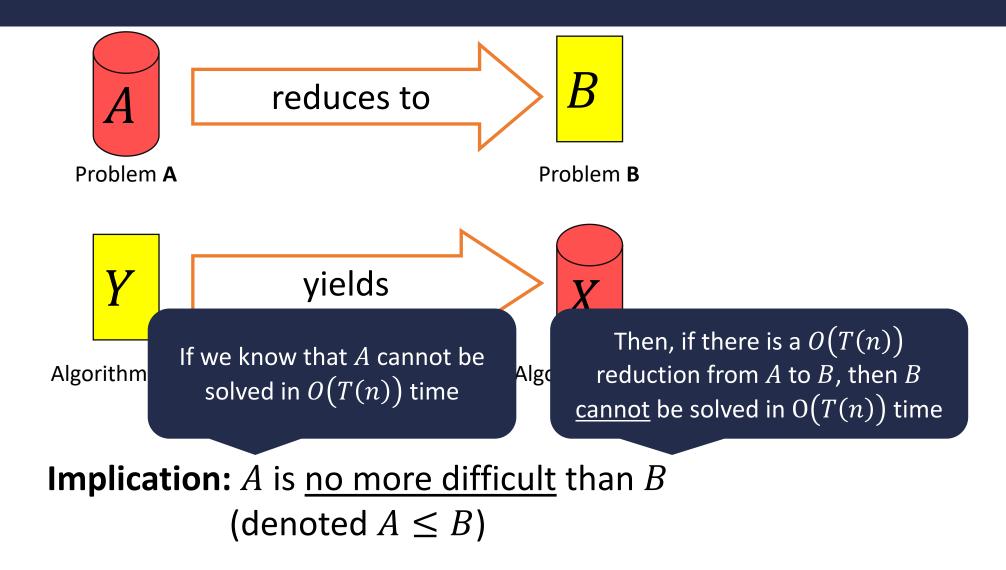


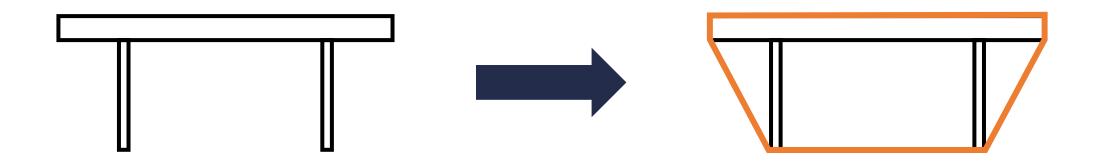
Implication: A is <u>no more difficult</u> than B (denoted $A \leq B$)

Worst-Case Lower Bounds via Reductions



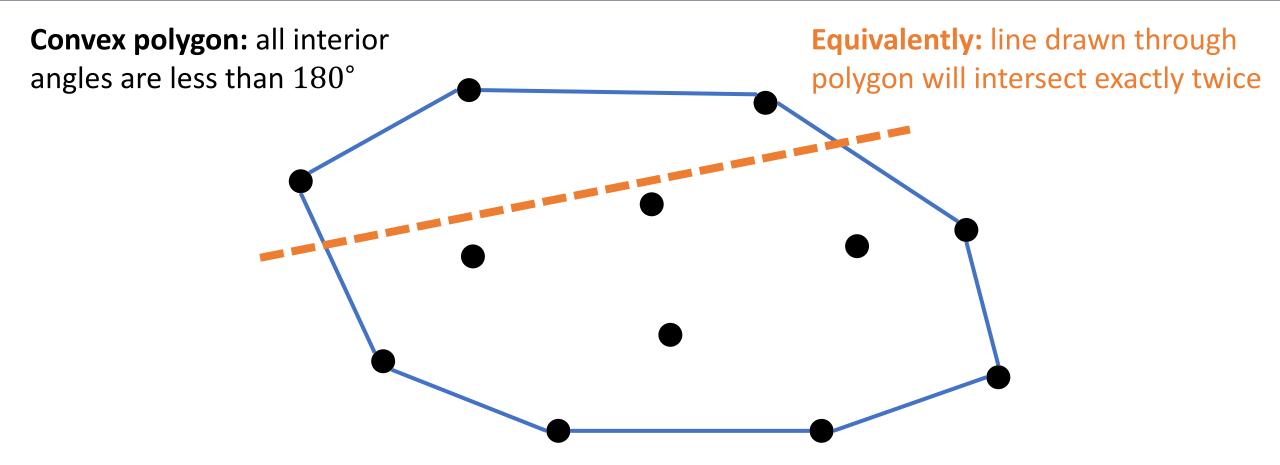
Worst-Case Lower Bounds via Reductions



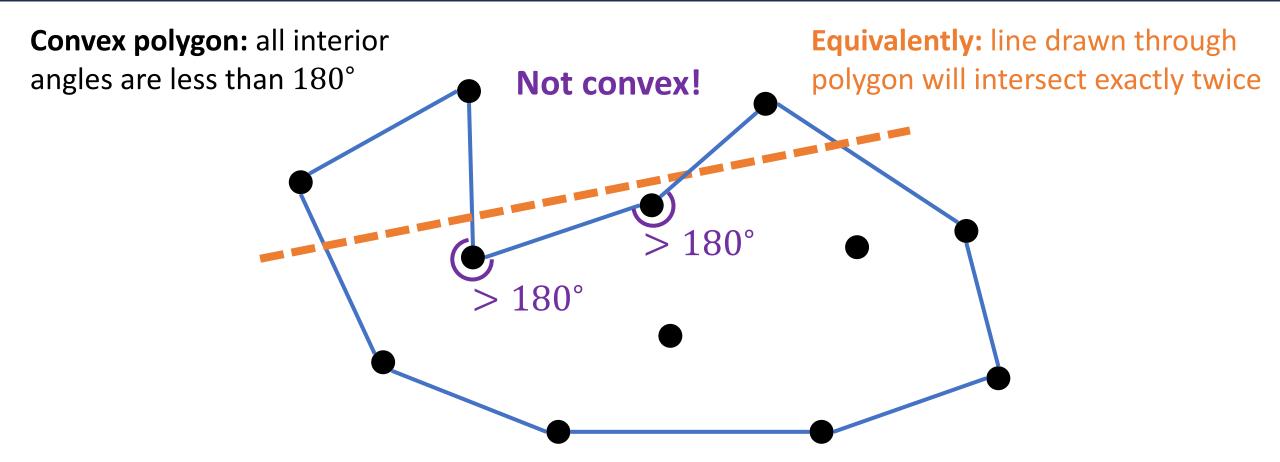


Problem: find the smallest <u>convex</u> polygon that bounds a shape (or more generally, a collection of points)

Example application: collision detection in computer graphics; also useful for solving other problems, especially in <u>computational geometry</u> (e.g., furthest pair of points)

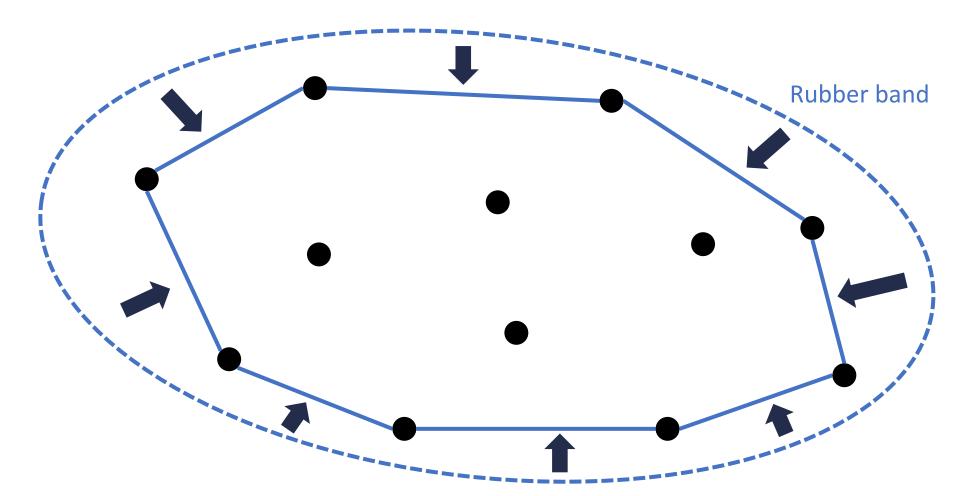


Problem: given a set of *n* points, find the smallest convex polygon such that every point is either on the boundary or the interior of the polygon

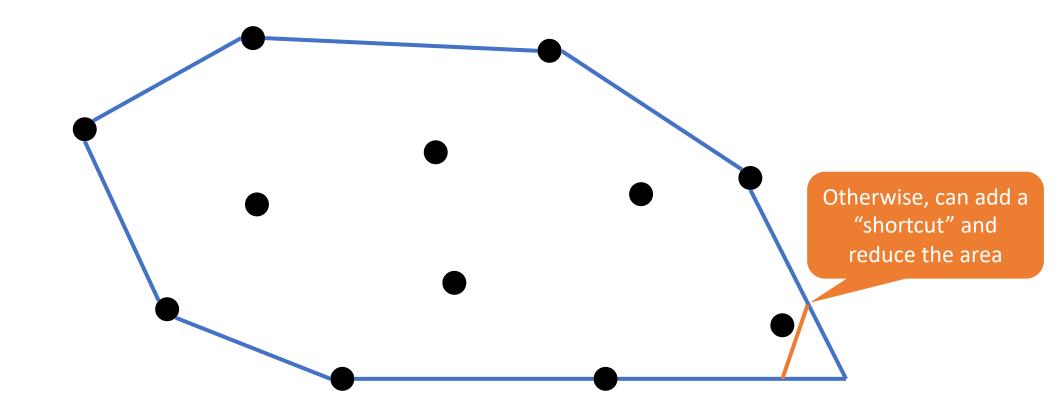


Problem: given a set of *n* points, find the smallest convex polygon such that every point is either on the boundary or the interior of the polygon

11

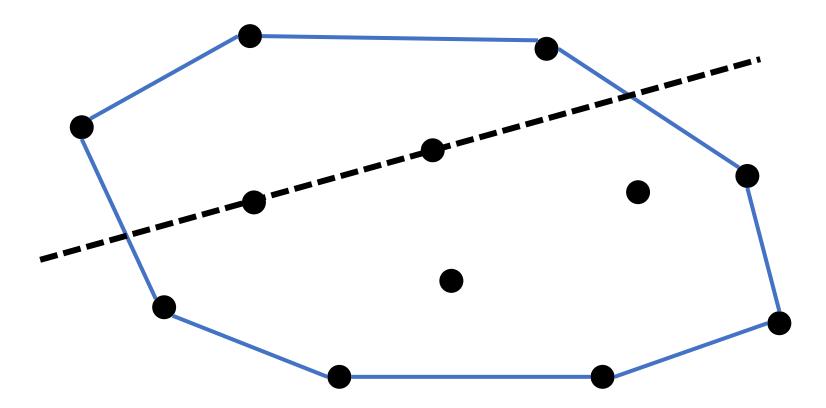


Rubber band analogy: imagine the points are nails sticking out of a board and wrapping a rubber band to encompass the nails; convex hull is resulting shape ¹²

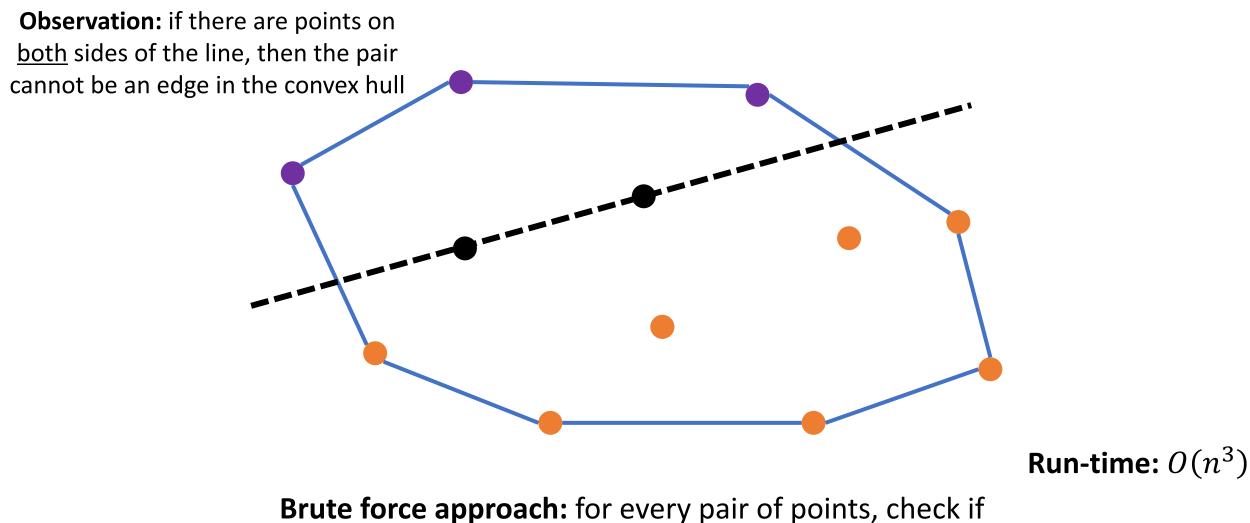


Observation: every point on the convex hull is one of the input points

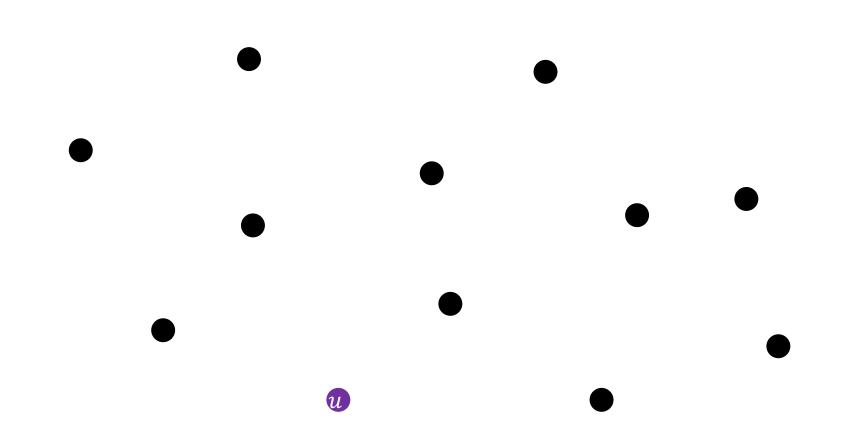
A Brute Force Approach



A Brute Force Approach

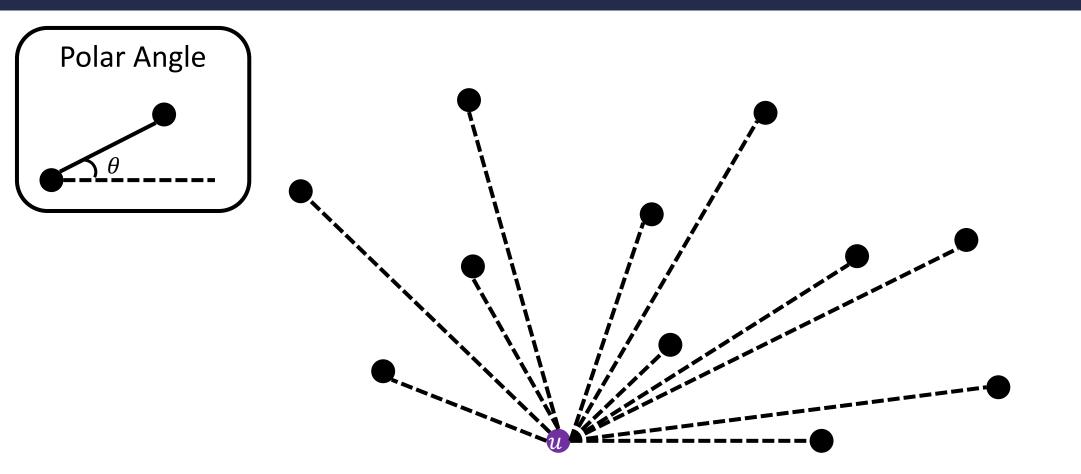


all other points are on the same side of the line

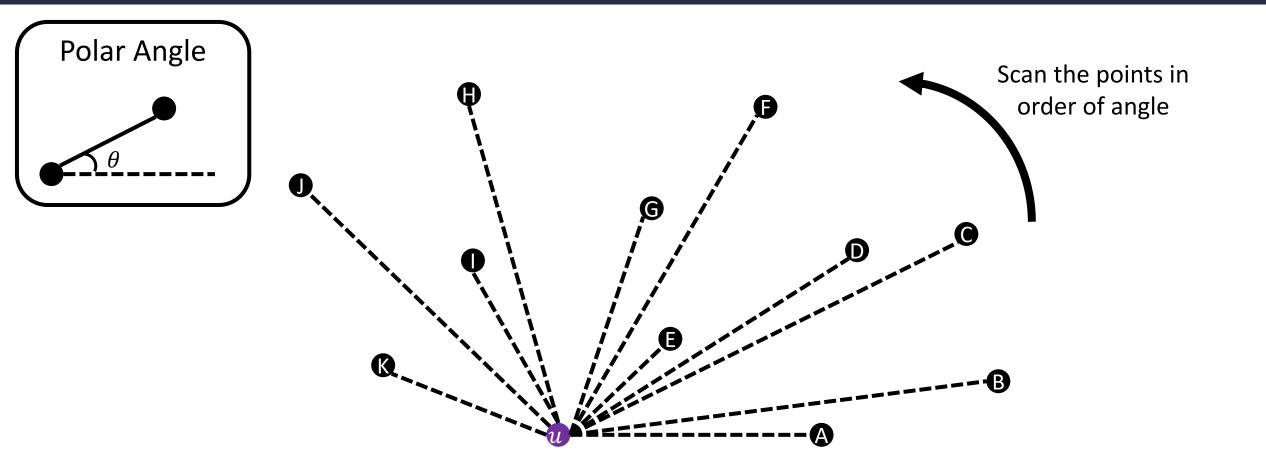


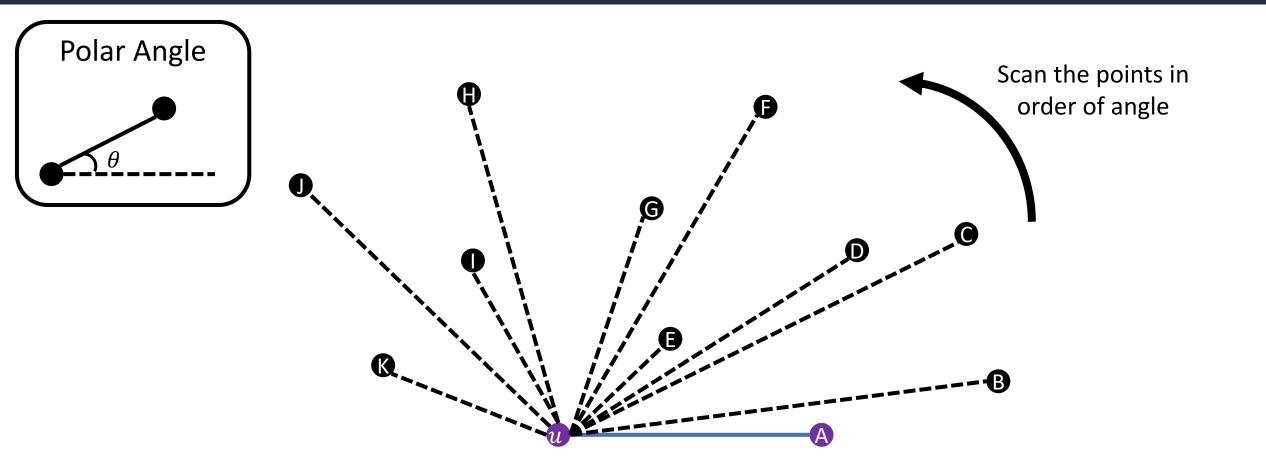
Observation: <u>Extremal</u> points must be part of the convex hull (e.g., bottommost point, left-most point, etc.)

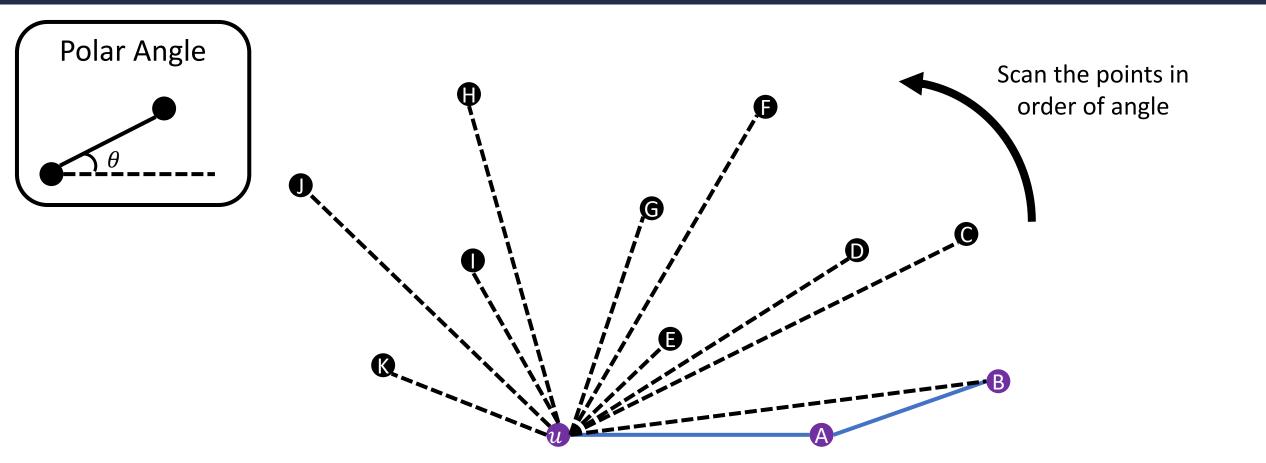
16

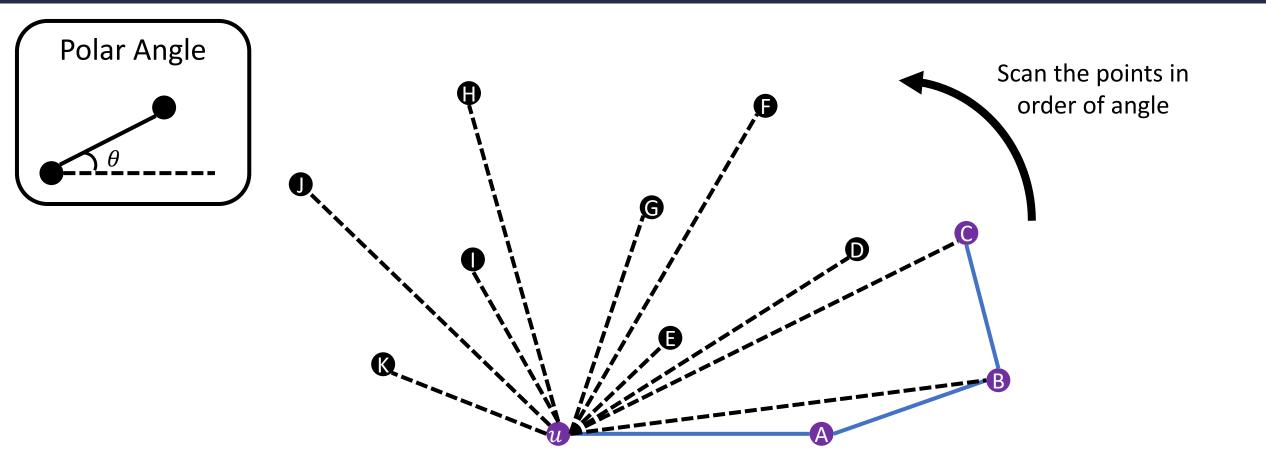


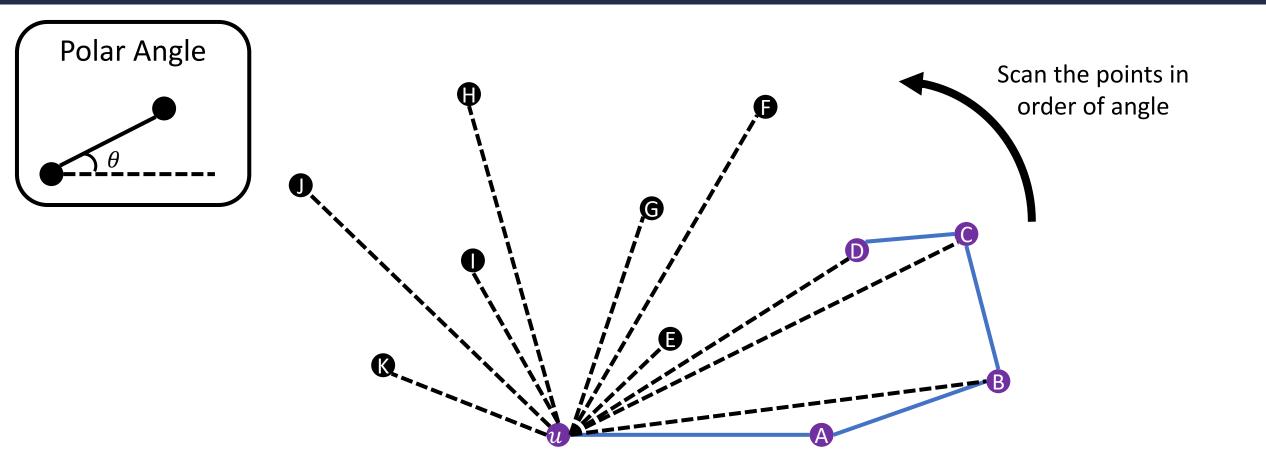
Consider the (polar) angle formed between base point *u* and every other point

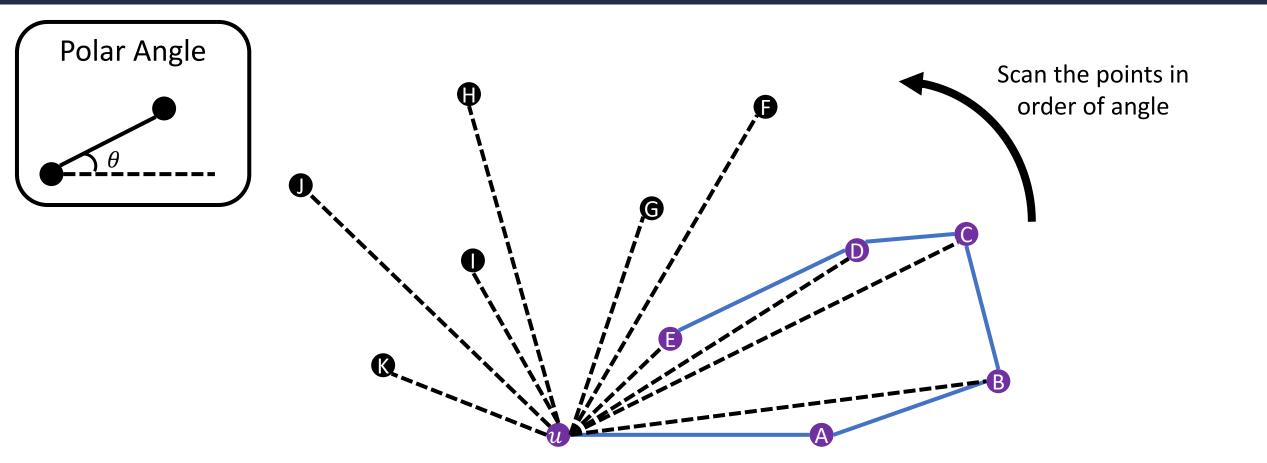


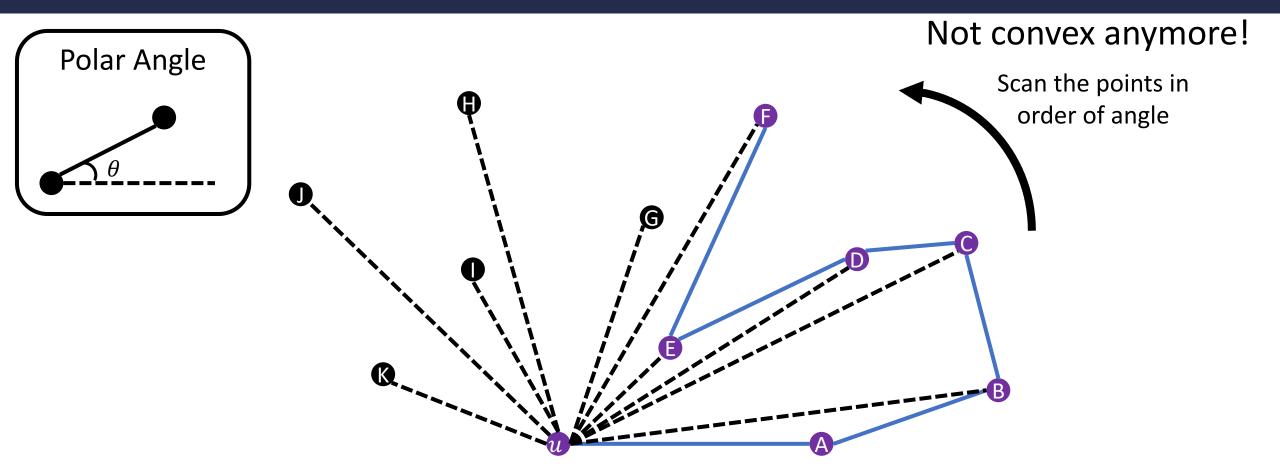


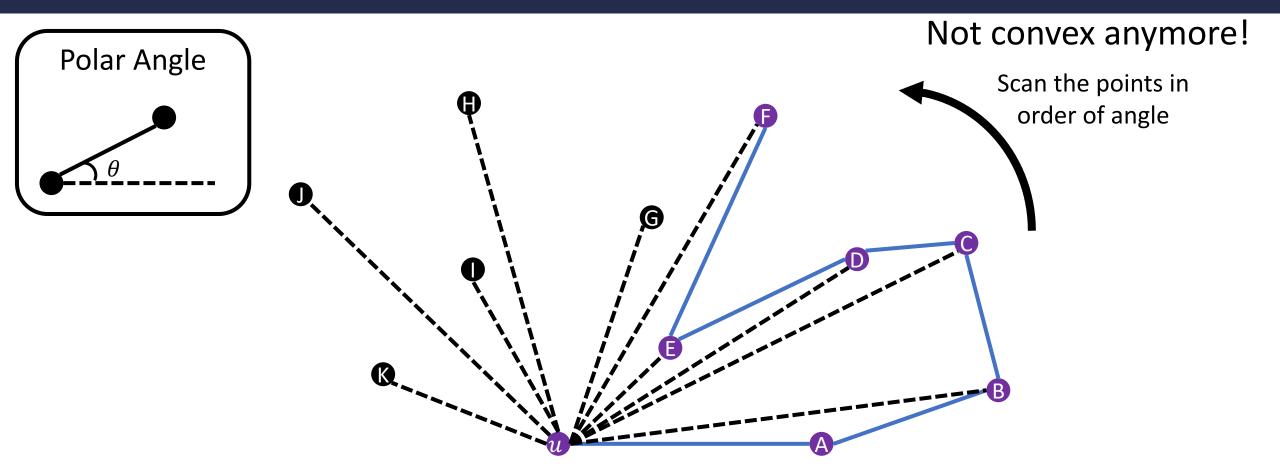




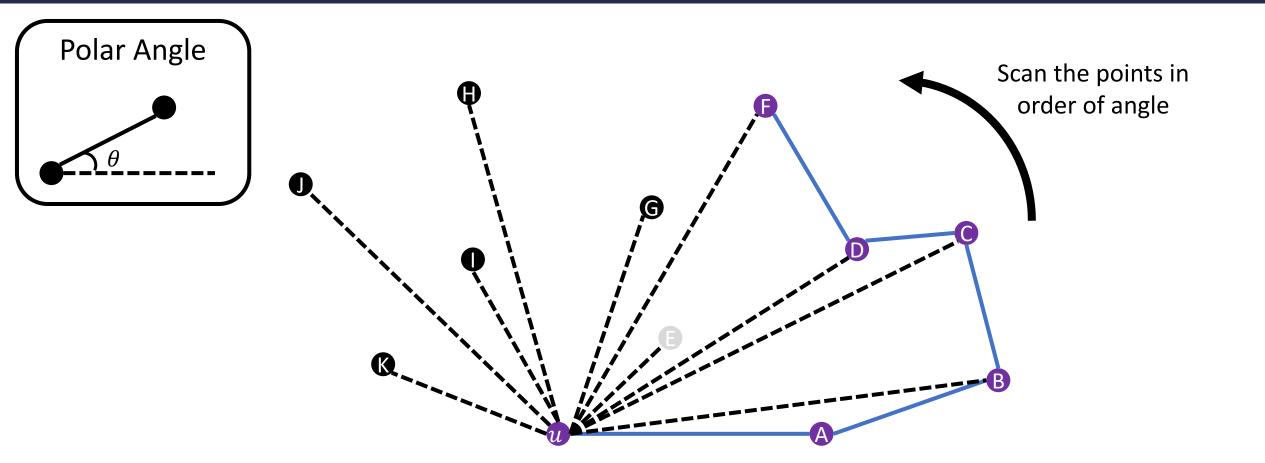




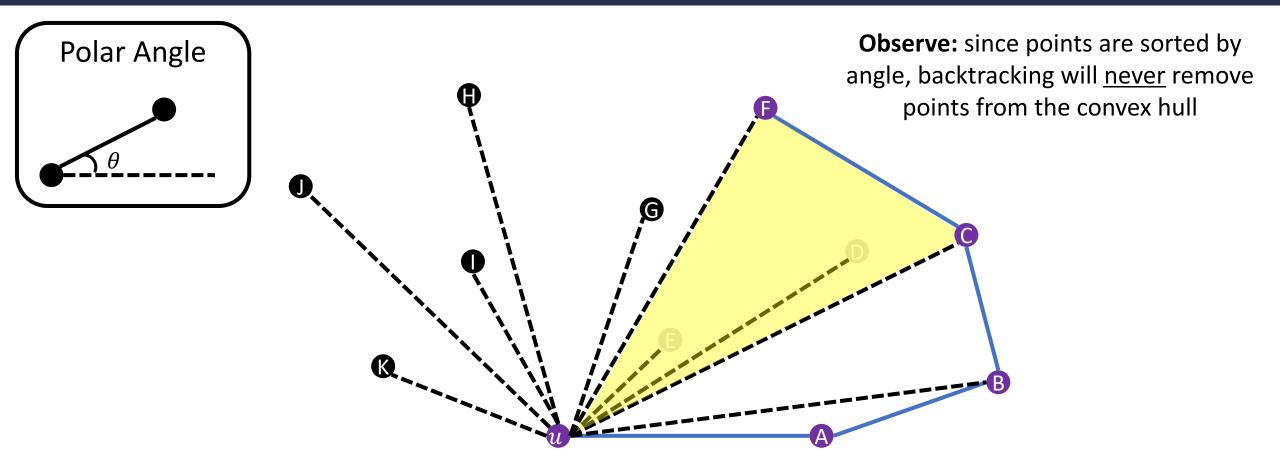




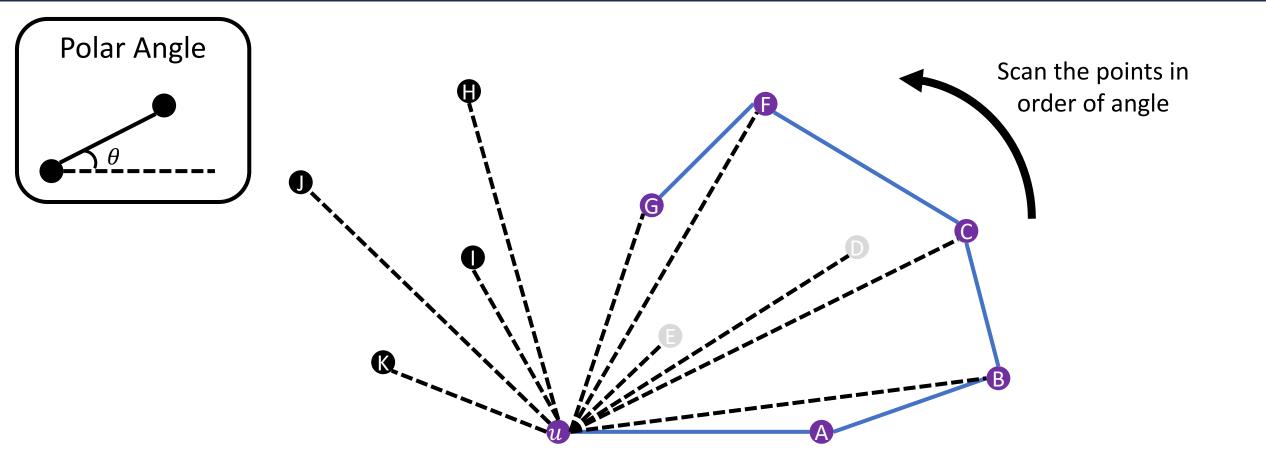
Idea: Try extending the convex hull from the previous vertex if we are unable to extend from the current one

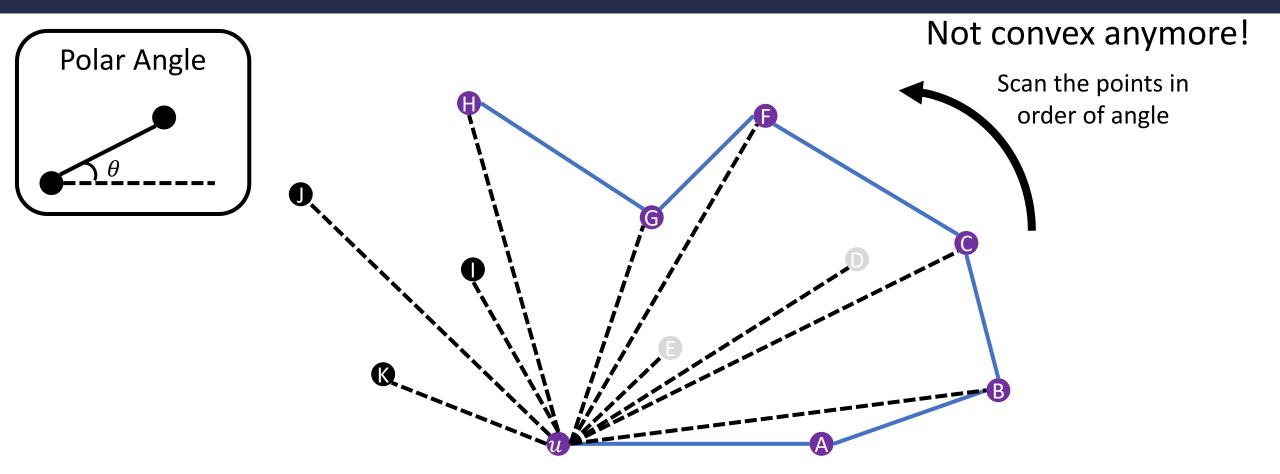


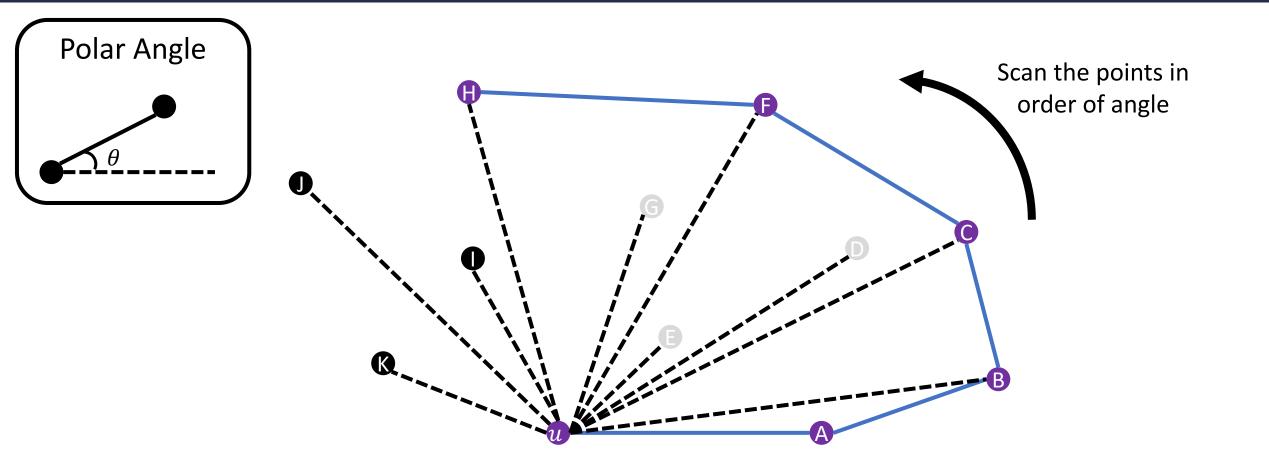
Idea: Try extending the convex hull from the previous vertex if we are unable to extend from the current one

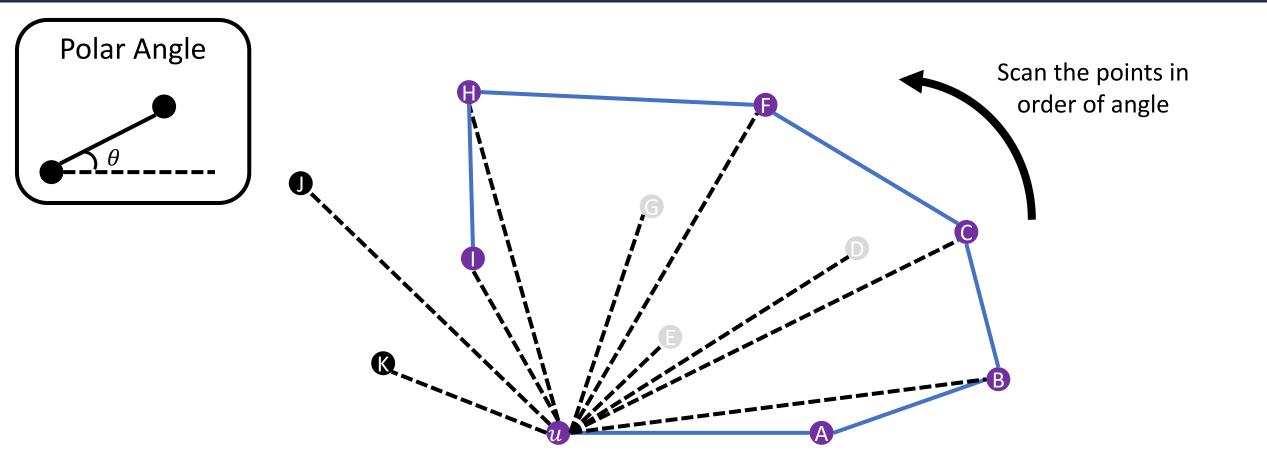


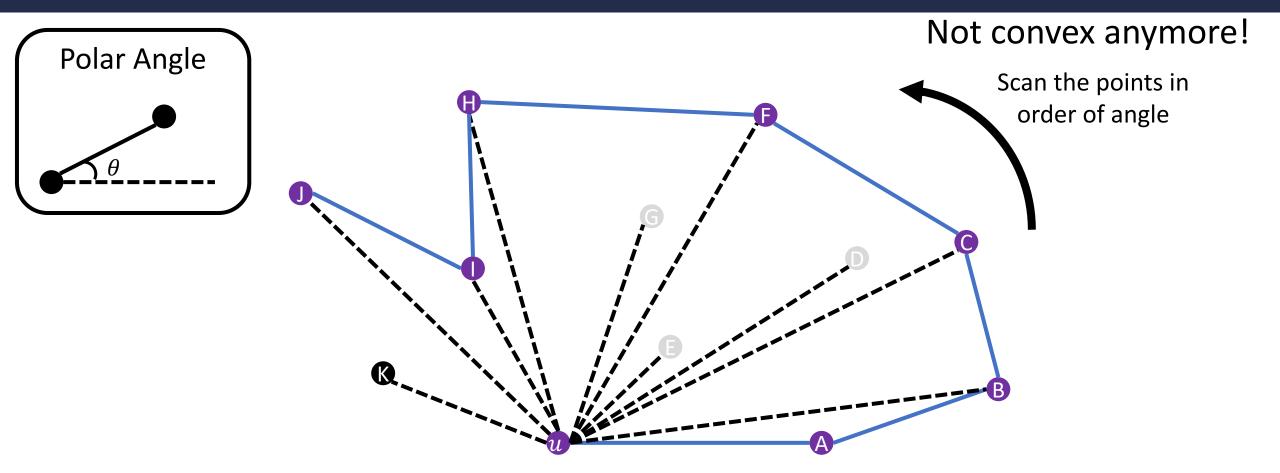
Idea: Try extending the convex hull from the previous vertex if we are unable to extend from the current one

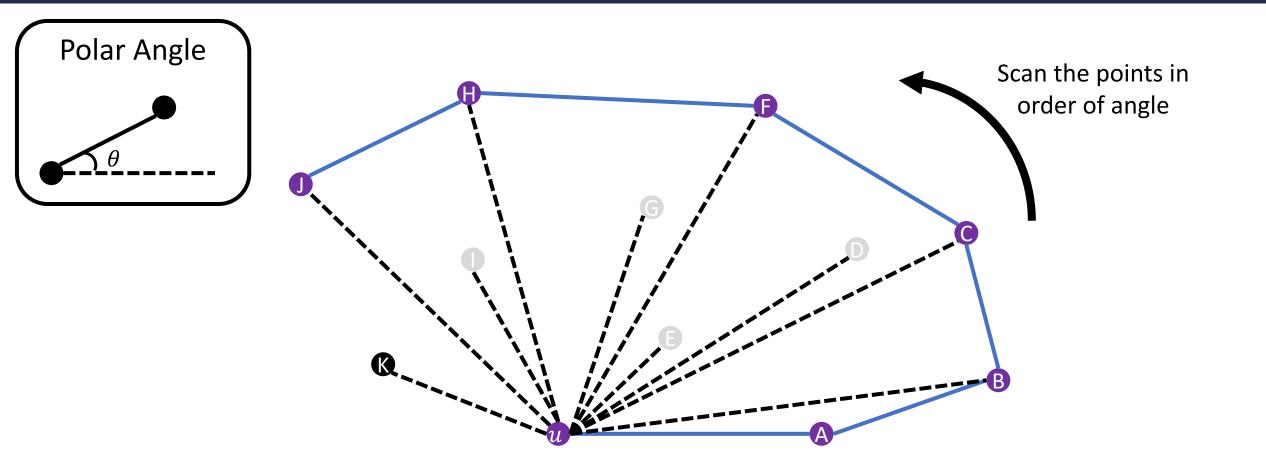


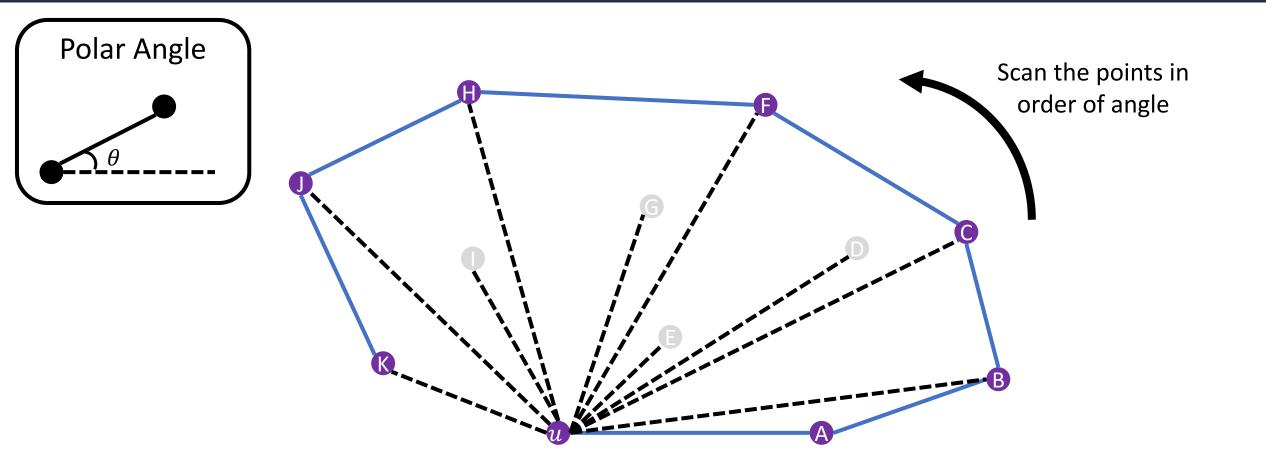


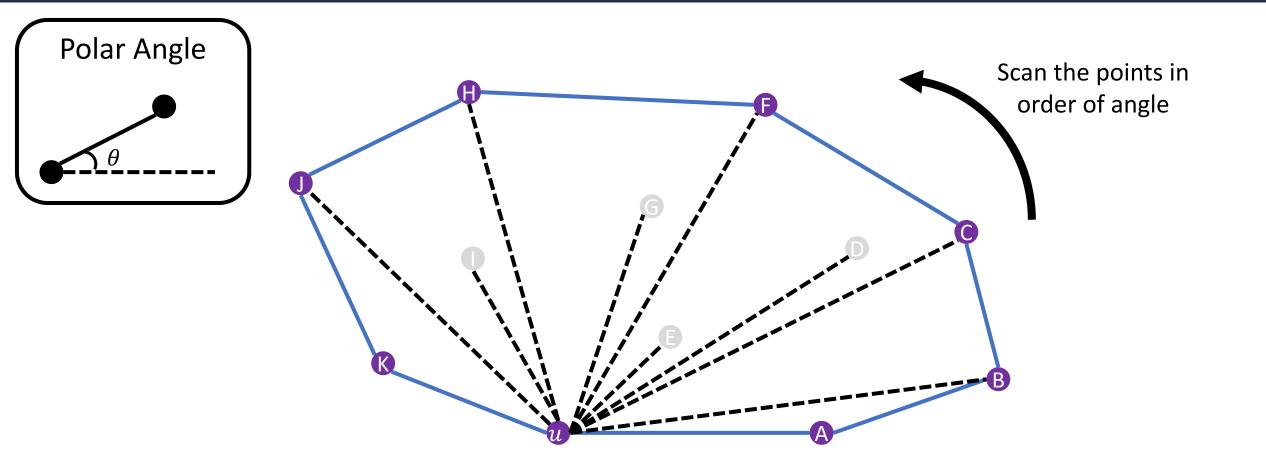






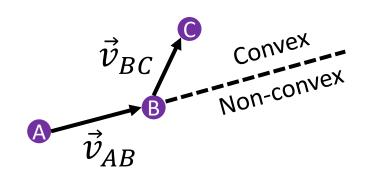






- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as an ordered list)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

How to implement this?



Imagine driving from $A \rightarrow B$

- $B \rightarrow C$ is convex if need to take a "left turn" to reach C
- $B \rightarrow C$ is non-convex if need to take a "non-left turn" Decide "left turn" vs. "right turn" by computing the <u>sign</u> of the (vector) cross product between \vec{v}_{AB} and \vec{v}_{BC}

Graham's Algorithm

- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as an ordered list)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

Which data structure to use?

Need to be able to insert elements and remove in order of most-recent insertion

Can implement both operations in <u>constant-time</u> using a <u>stack</u>

Graham's Algorithm

- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as an ordered list)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

Correctness?

See CLRS 33.3

Running Time of Graham's Algorithm

- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as **a stack**)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

 $\begin{array}{l}
0(n)\\
0(1)\\
0(n\log n)
\end{array}$

0(1)

Running time: $O(n \log n)$

Graham's Algorithm

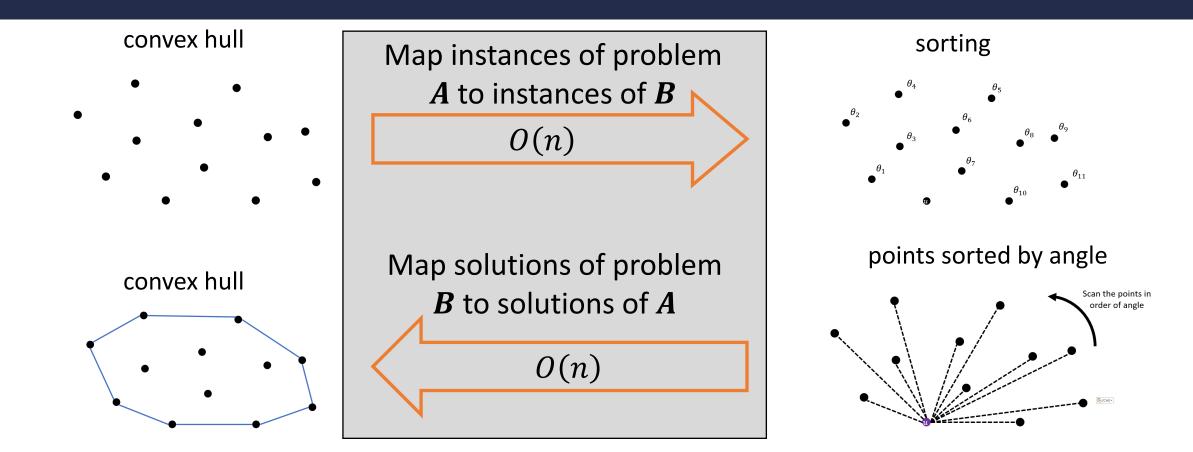
- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as **a stack**)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

We have essentially <u>reduced</u> the problem of computing a convex hull to the problem of sorting!

O(1) $O(n \log n)$

O(n)

Convex Hull to Sorting Reduction



convex hull \leq sorting convex hull can be reduced to sorting in O(n) time

Running Time of Graham's Algorithm

- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as a stack)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

Running time of Graham's algorithm: same as best sorting algorithm

Can we do better (without going through sorting)?

 $O(n \log n)$

O(n)

0(1)

⁰⁽¹⁾

Running Time of Graham's Algorithm

- 1. Let p_1 be the point with the smallest y-coordinate (and smallest xcoordinate if multiple points have the same minimum-y coordinate)
- 2. Add p_1 to the convex hull C (represented as a stack)
- 3. Sort all of the points based on their angle relative to p_1
- 4. For each of the points p_i in sorted order:
 - Try adding p_i to the convex hull C
 - If adding p_i makes C non-convex, then remove the last component of C and repeat this check

Trivial lower bound: $\Omega(n)$

ne as best sorting algorithm

Can we do better (without going through sorting)?

43

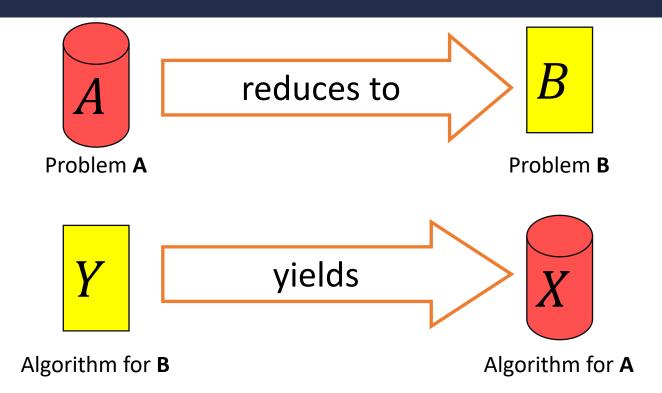
O(n)

0(1)

0(1)

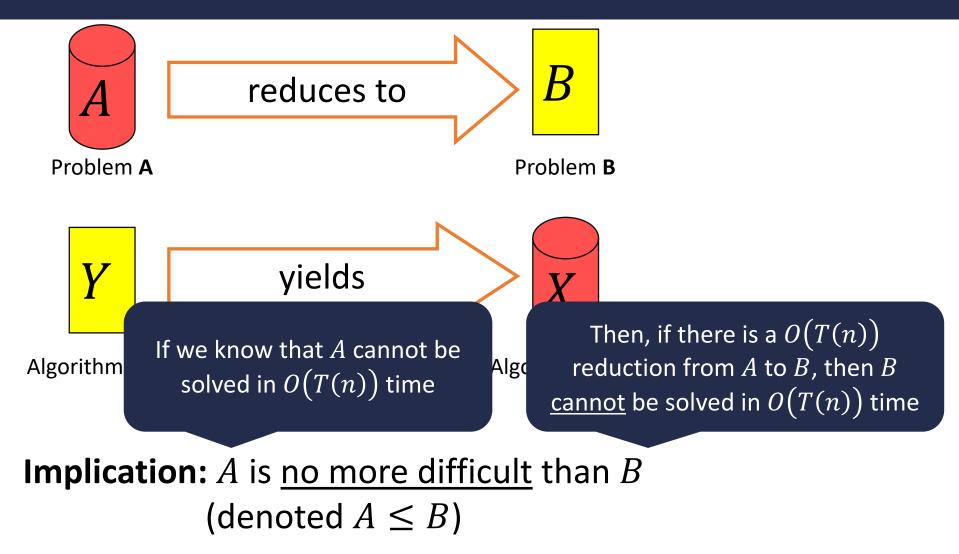
 $O(n \log n)$

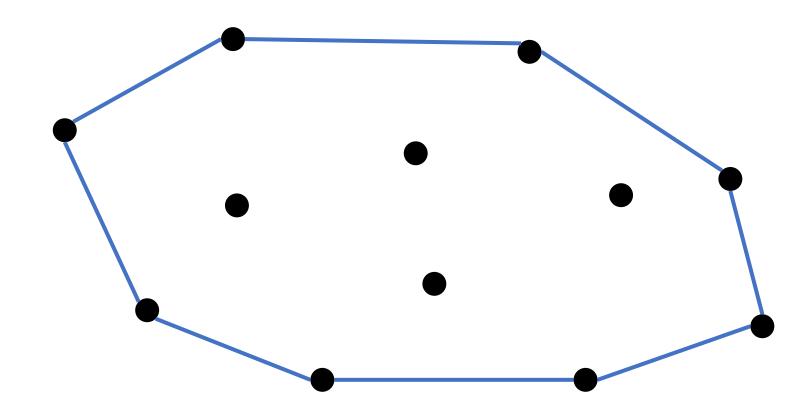
Worst-Case Lower Bounds via Reductions



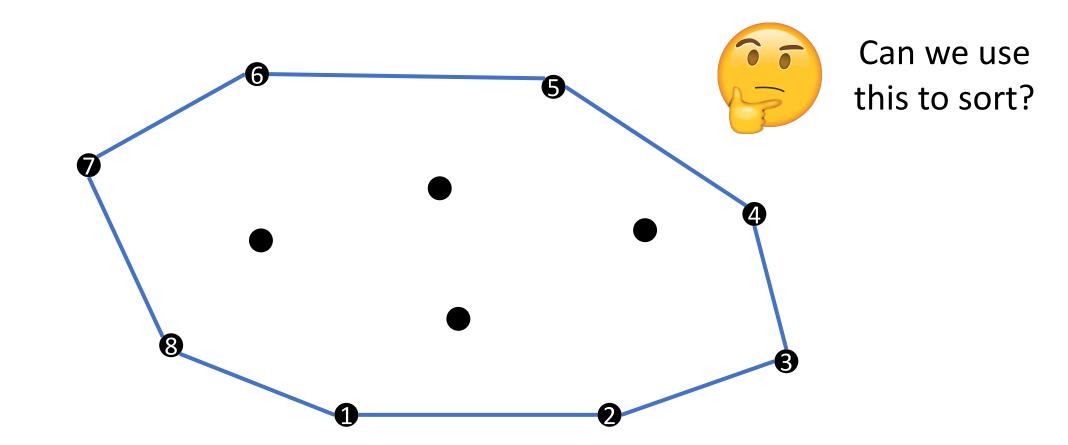
Implication: A is <u>no more difficult</u> than B (denoted $A \le B$)

Worst-Case Lower Bounds via Reductions

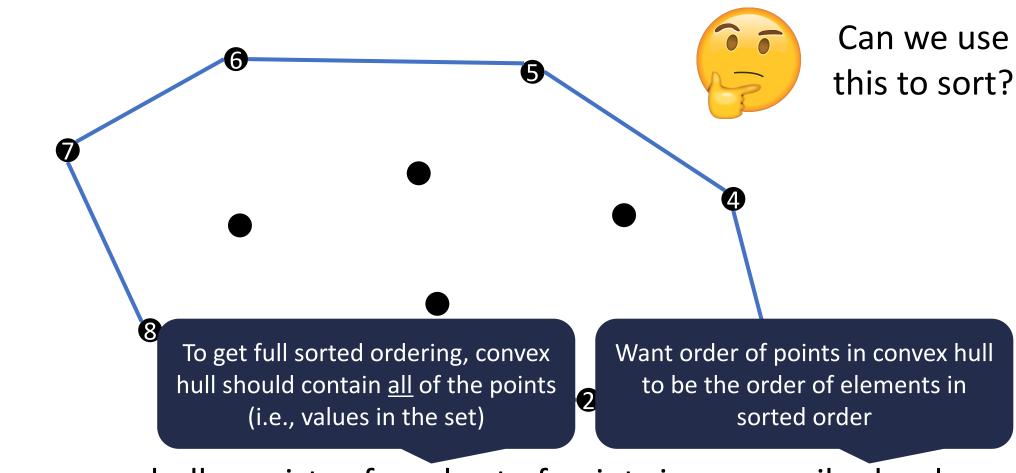




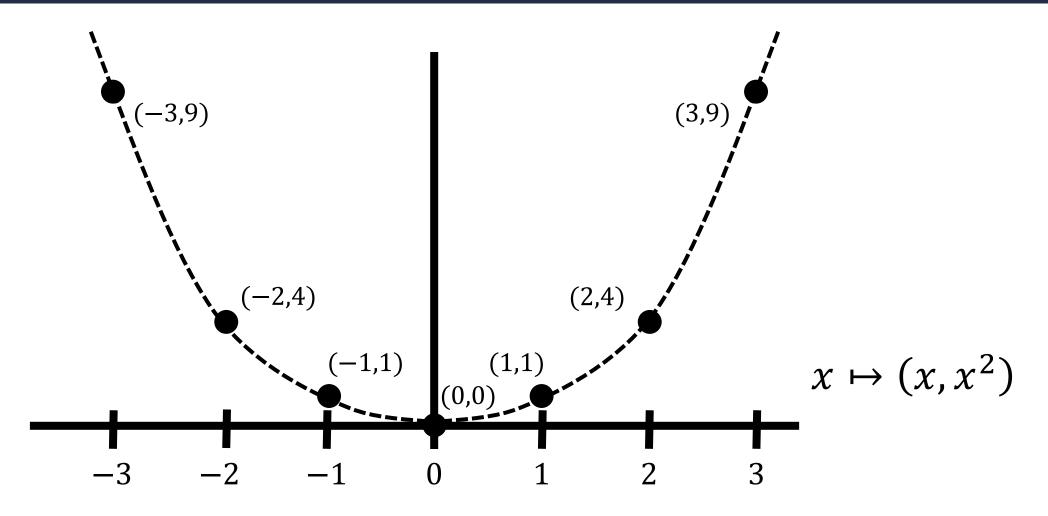
Observe: convex hull consists of a subset of points in a prescribed order



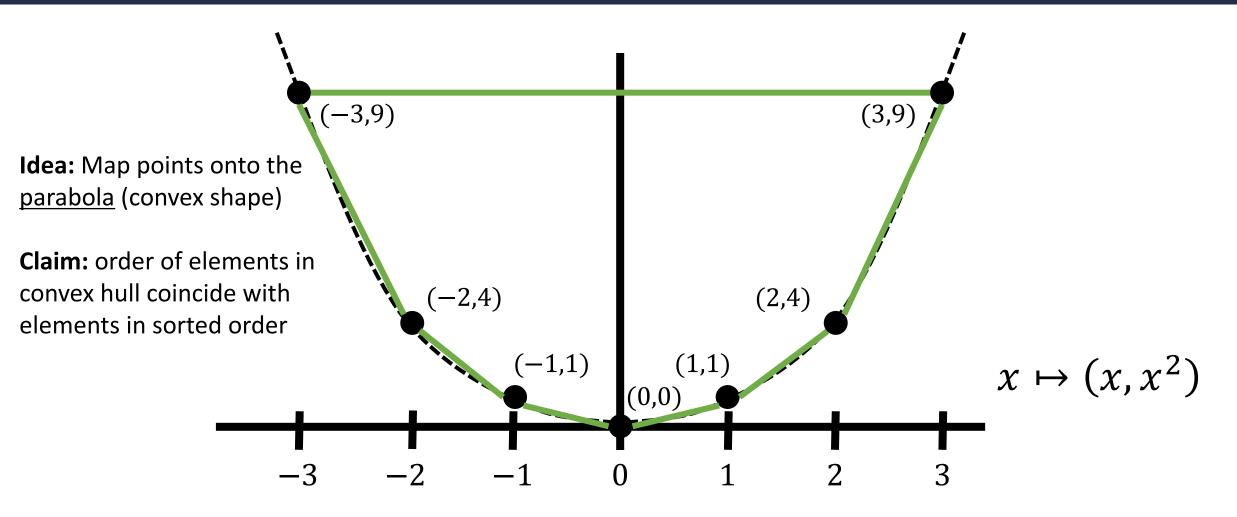
Observe: convex hull consists of a subset of points in a prescribed order



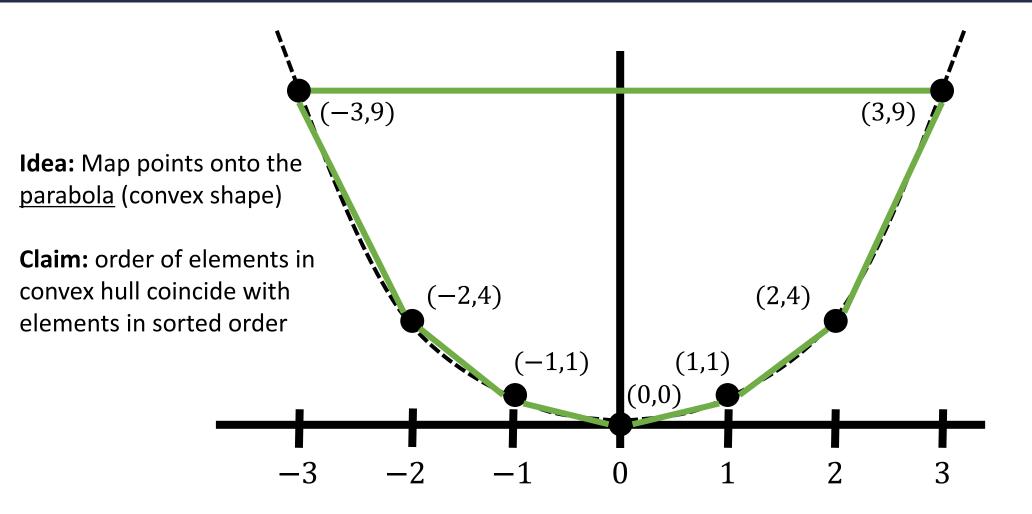
Observe: convex hull consists of a subset of points in a prescribed order



Goal: need a way to map list of (numeric) values onto a convex hull instance

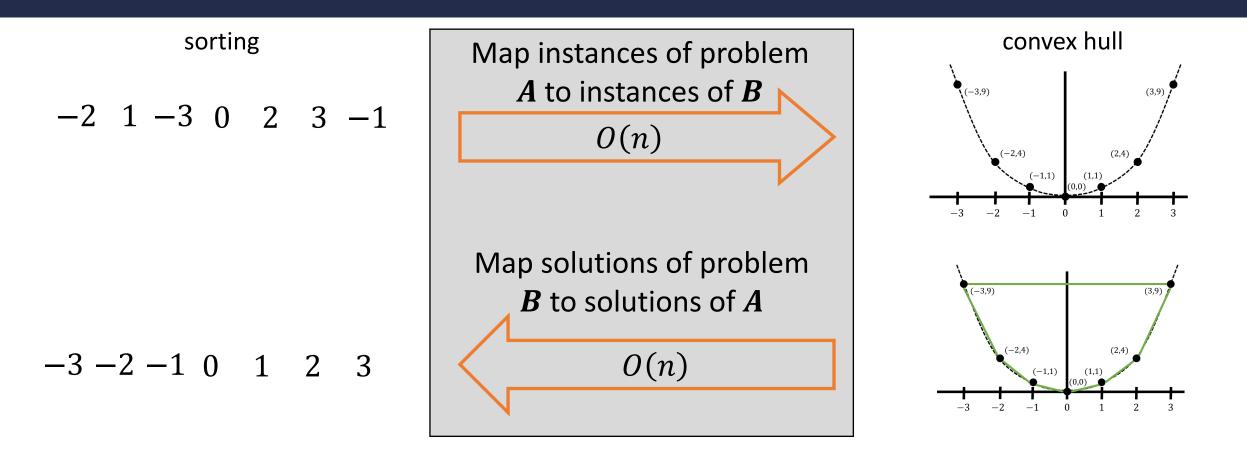


Goal: need a way to map list of (numeric) values onto a convex hull instance



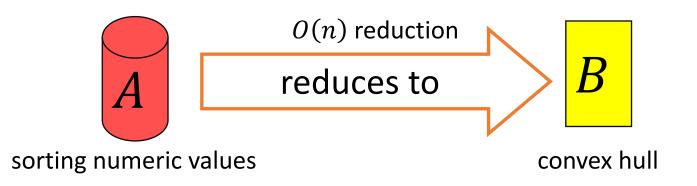
Conclusion: If we can solve convex hull, then we can sort numeric values

Convex Hull to Sorting Reduction



sorting numeric values \leq convex hull sorting numeric values can be reduced to convex hull in O(n) time

Lower Bound for Convex Hull



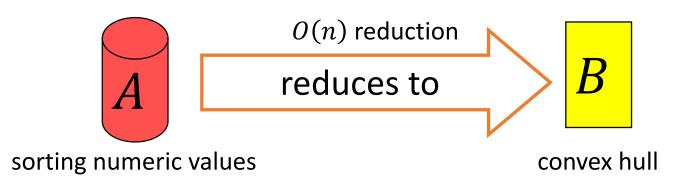
Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: $\Omega(n \log n)$ for comparison sorts

Our reduction is <u>not</u> a comparison sort algorithm, so cannot directly appeal to it

 $\Omega(n \log n)$ lower bound for sorting also holds in an "algebraic decision tree model" (i.e., decisions can be an <u>algebraic</u> function of inputs) Implies $\Omega(n \log n)$ lower bound for computing convex hull in this model

Lower Bound for Convex Hull



Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: $\Omega(n \log n)$ for comparison sorts

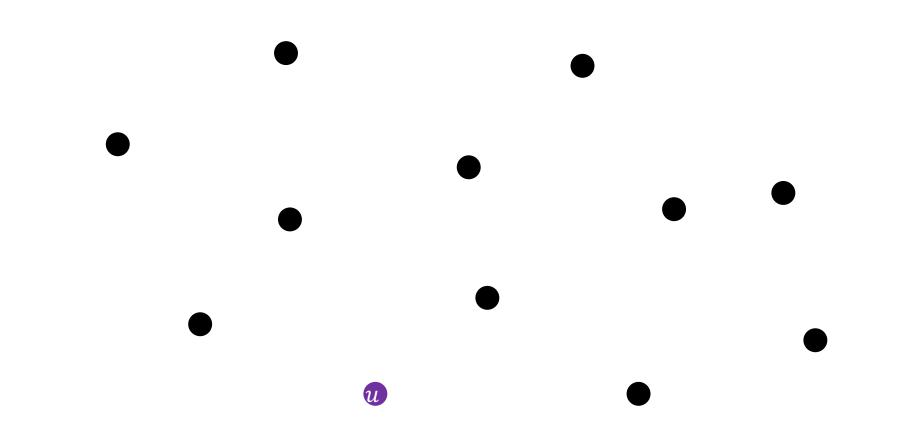
Our reduction is not a

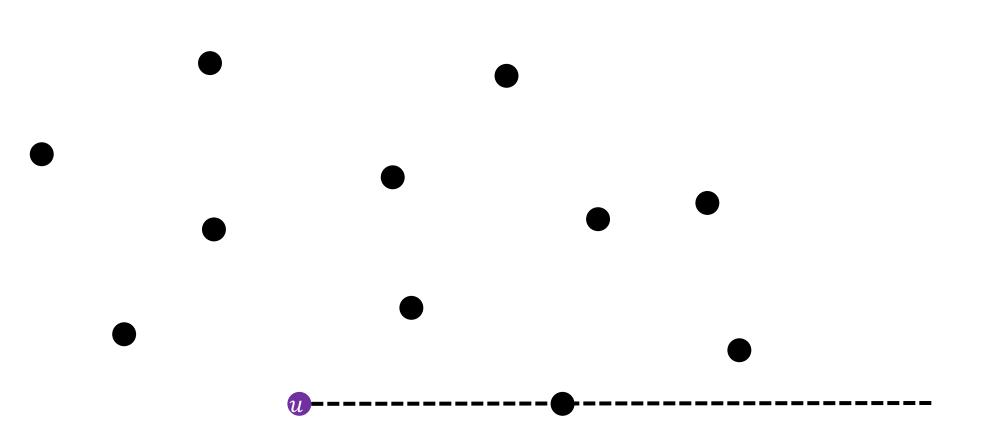
 $\Omega(n \log n)$ lower bound for s (i.e., decisions can be

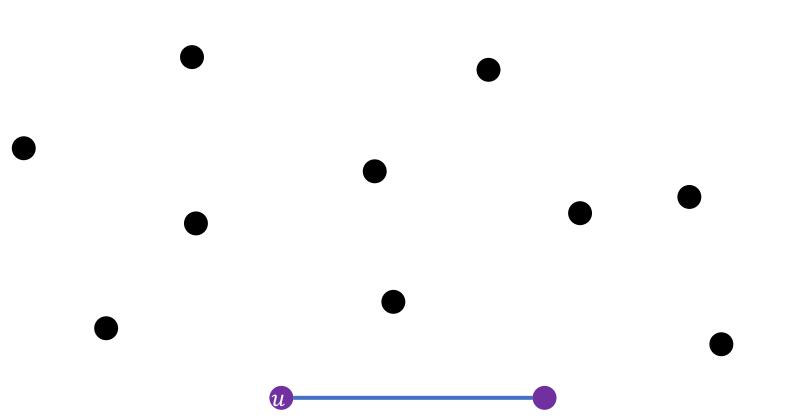
In fact, this lower bound holds even for algorithms that just identify the set of points on the convex hull (and not necessarily their order)!

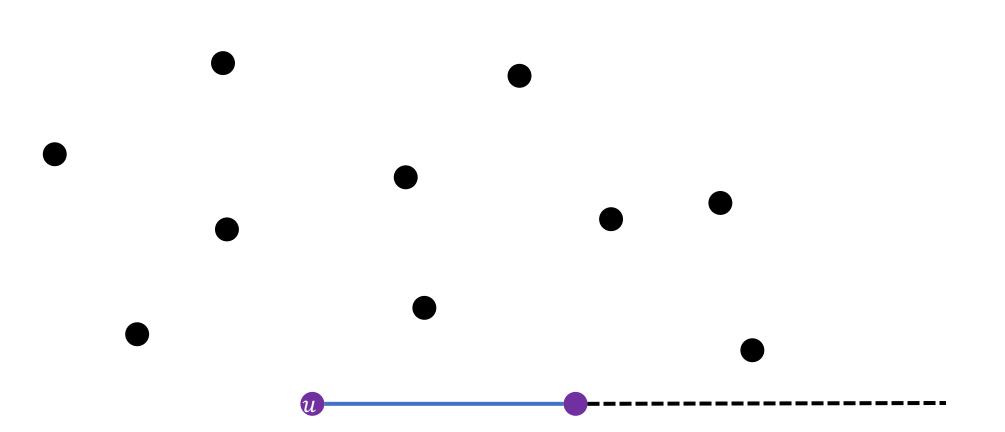
e model"

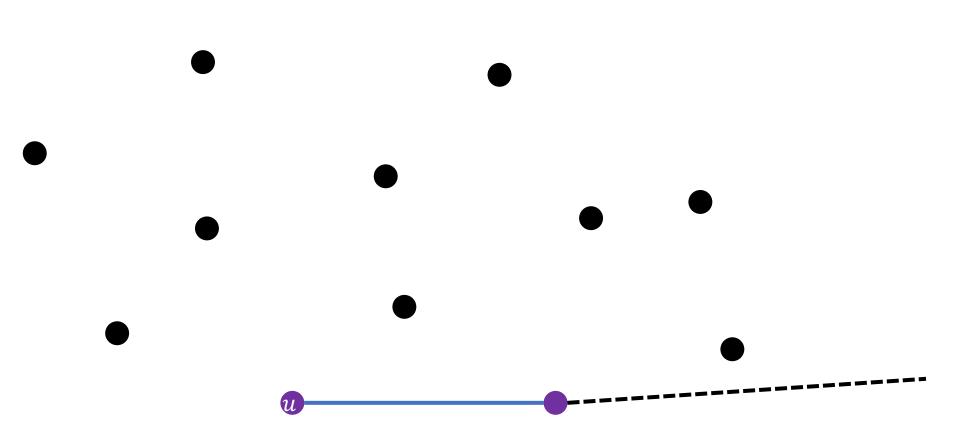
Implies $\Omega(n \log n)$ lower bound for computing convex hull in this model

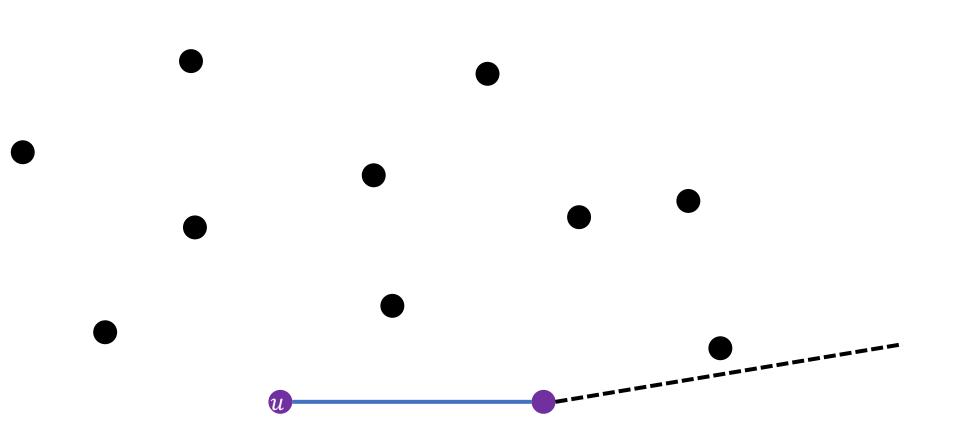


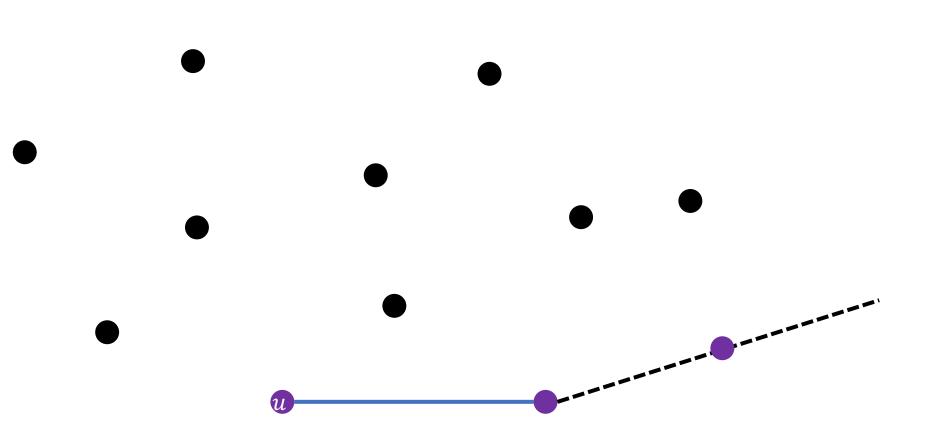


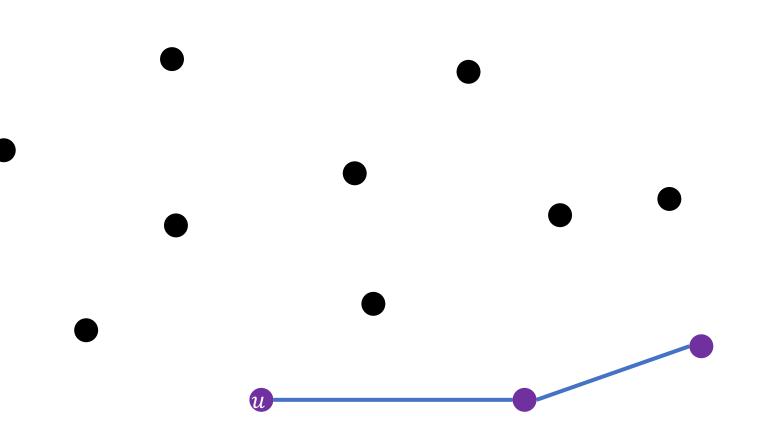


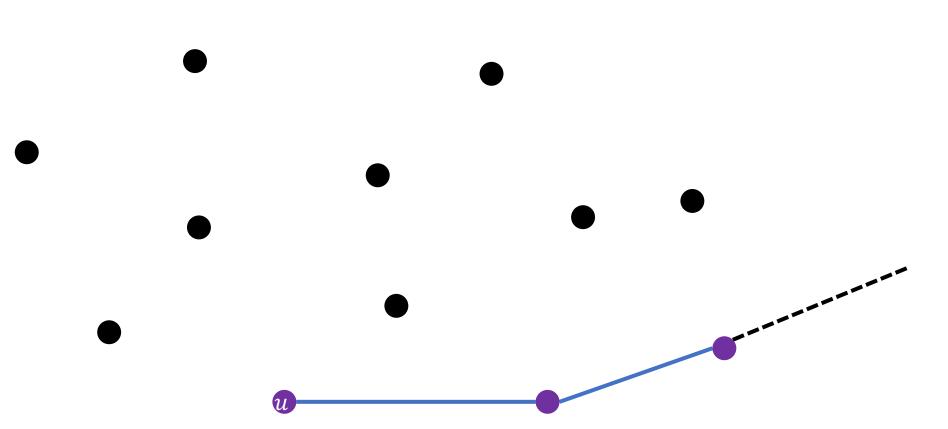


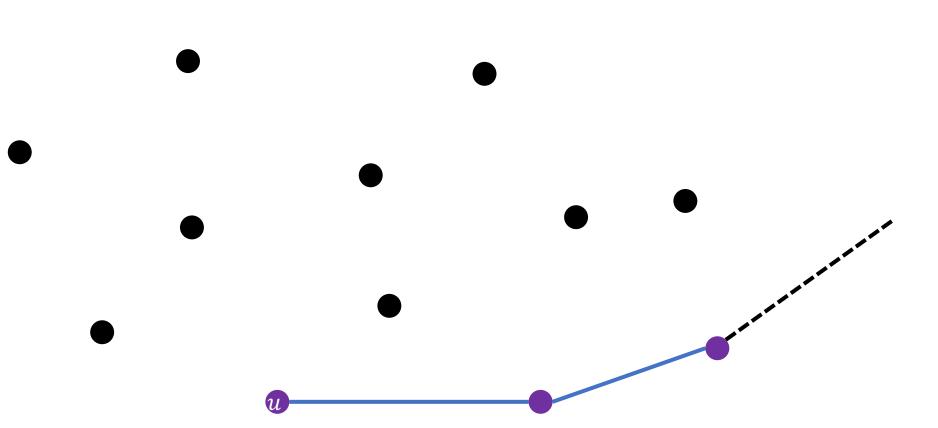


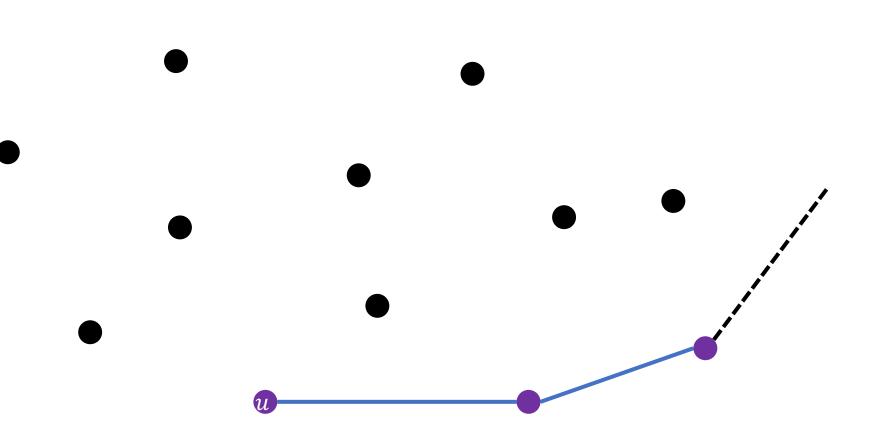


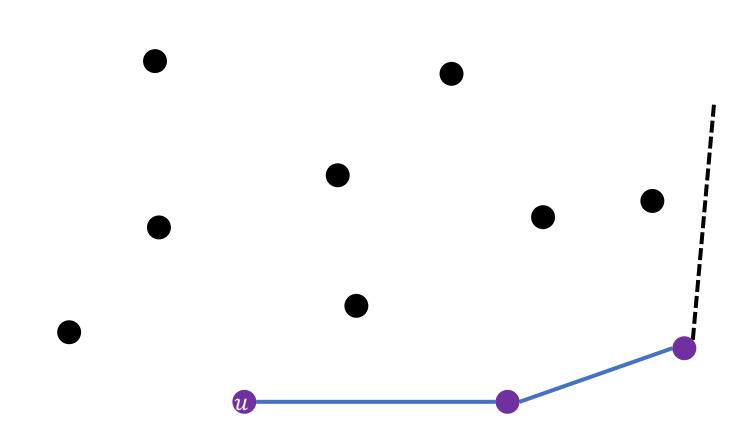


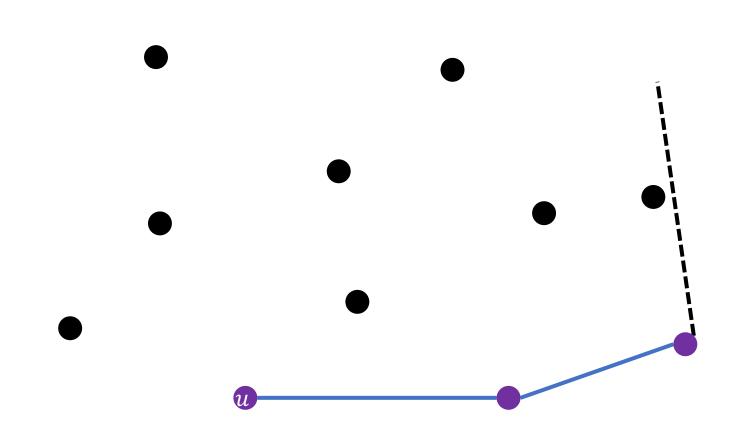


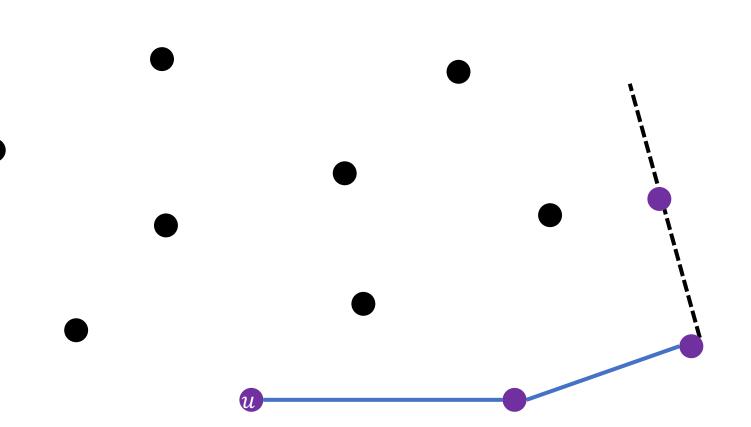


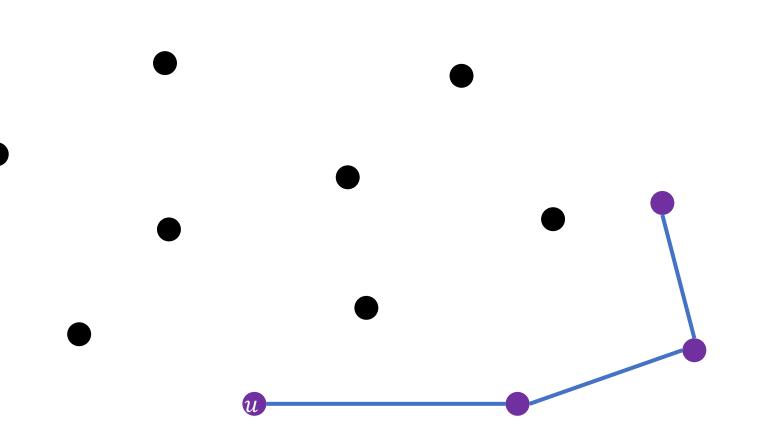


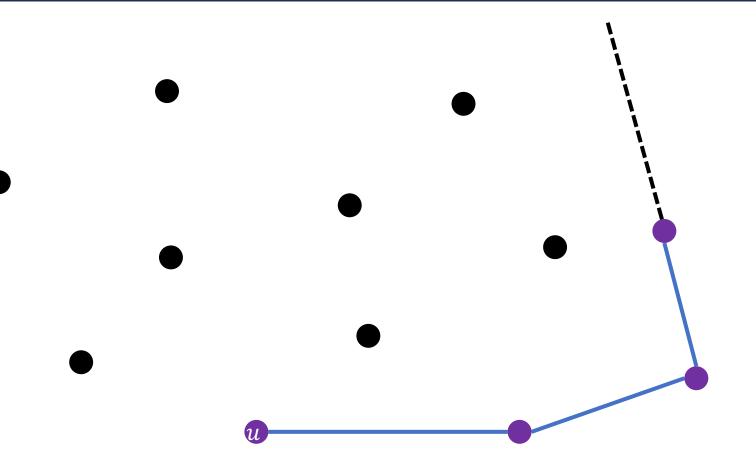


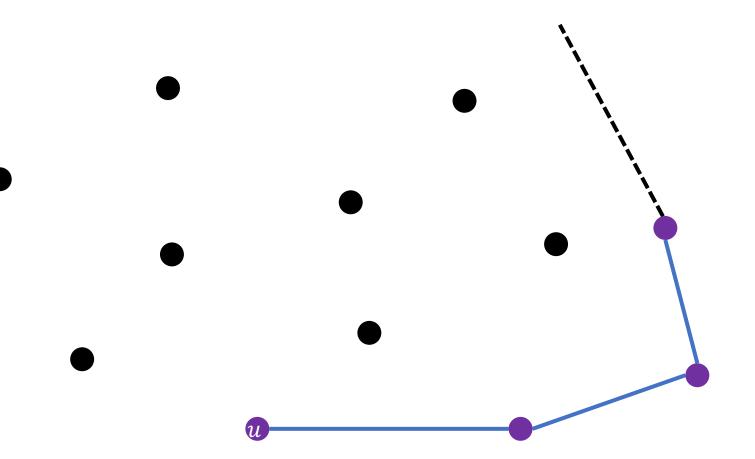


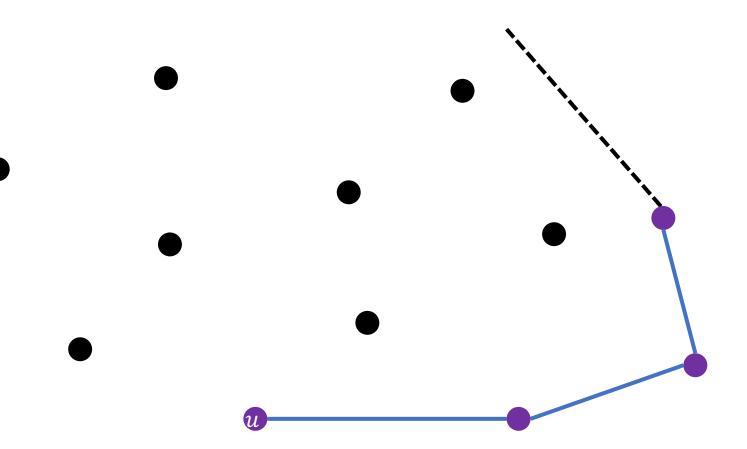


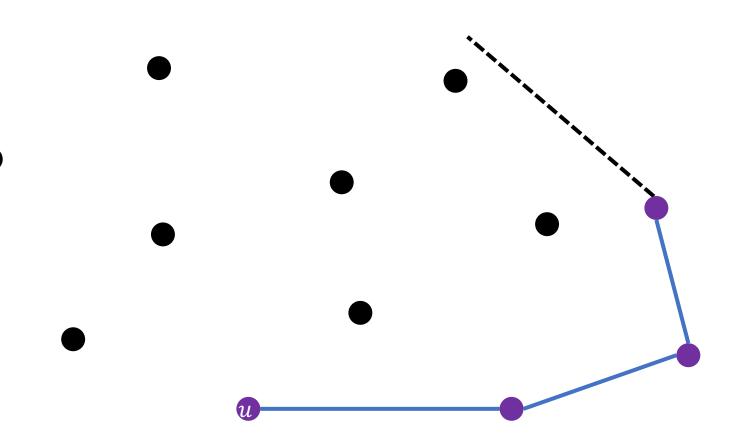


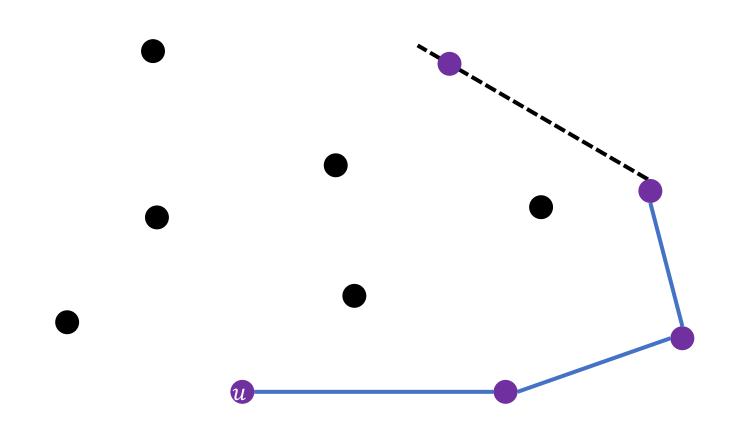


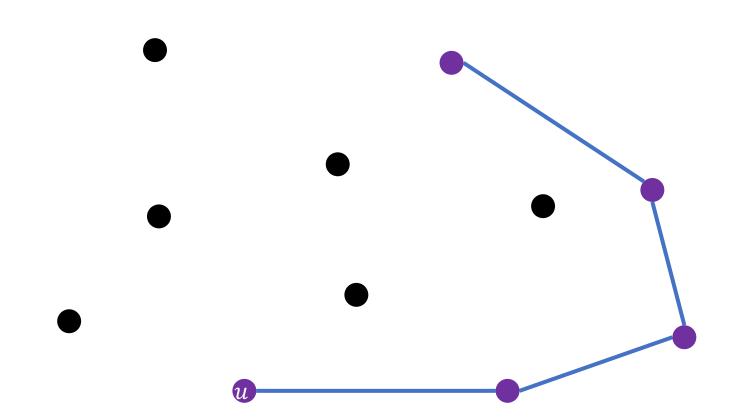


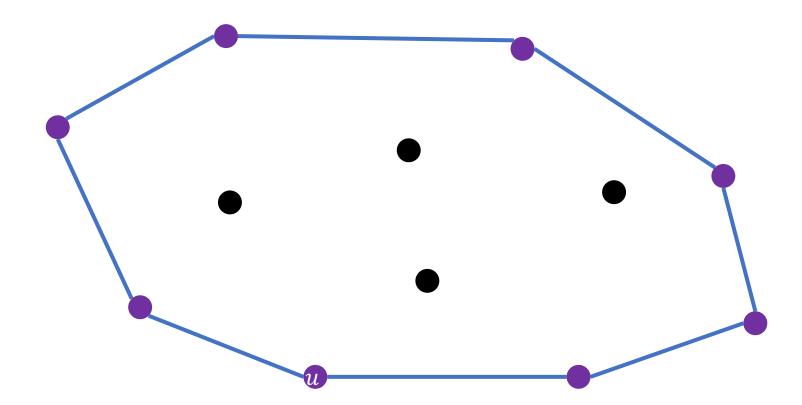


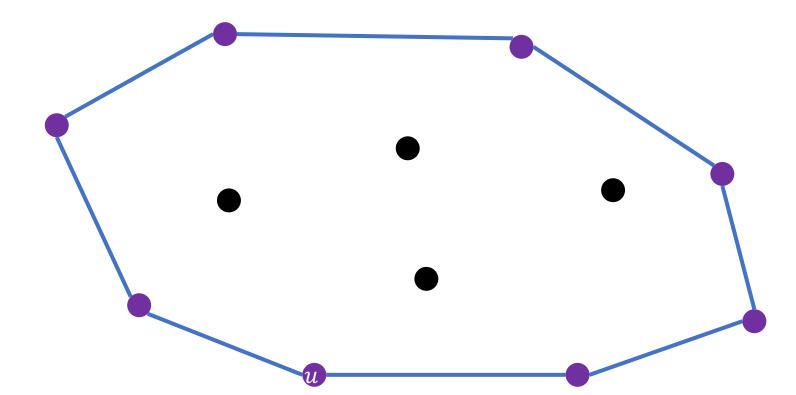




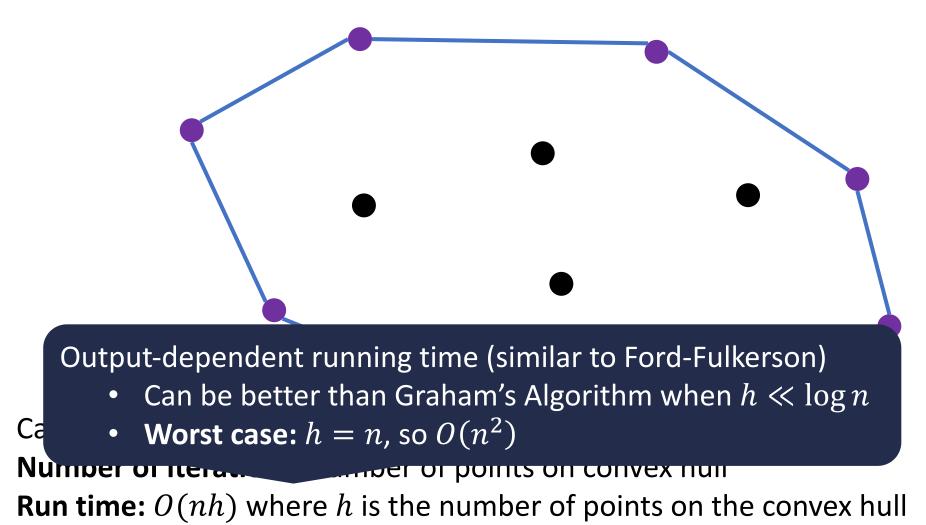


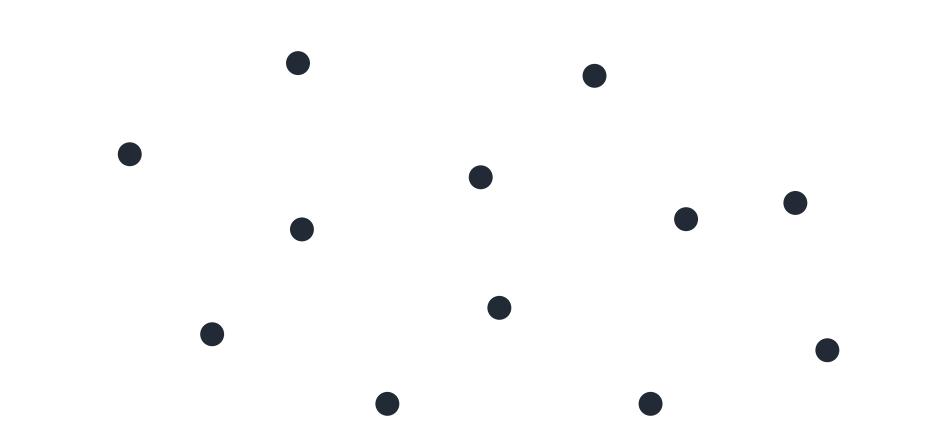


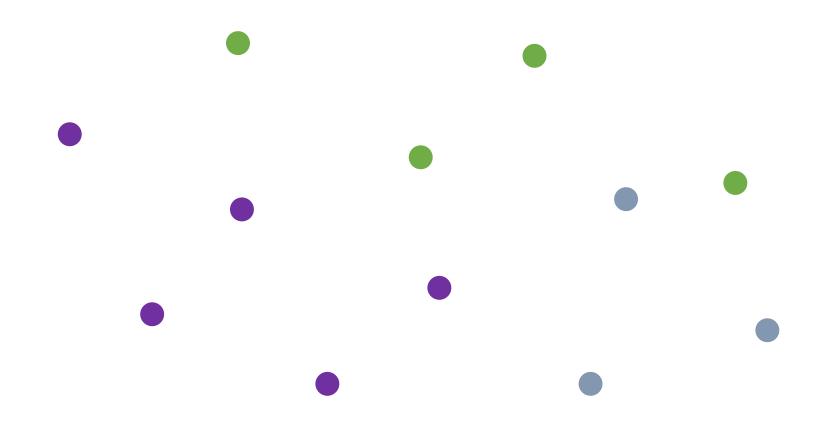




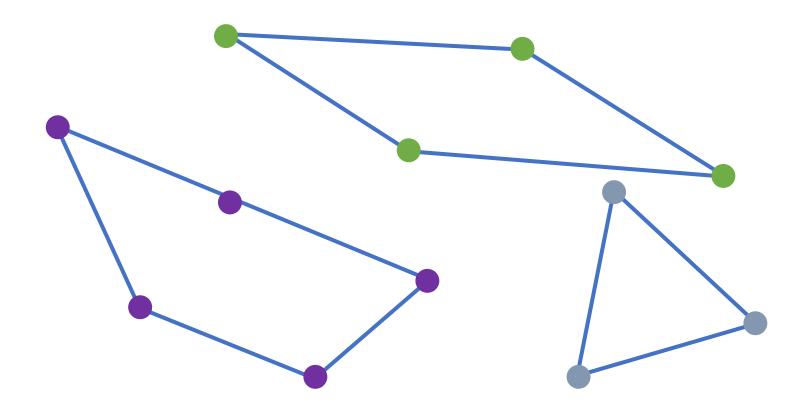
Can find the "next" point using a linear scan (i.e., point with <u>largest</u> angle) **Number of iterations:** number of points on convex hull **Run time:** O(nh) where h is the number of points on the convex hull



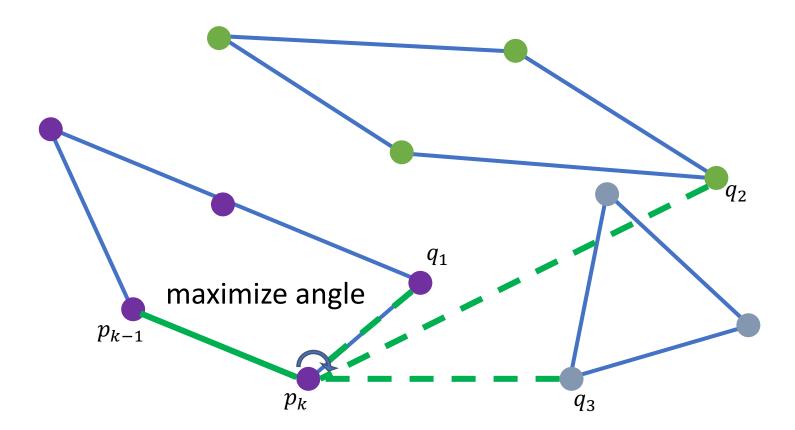




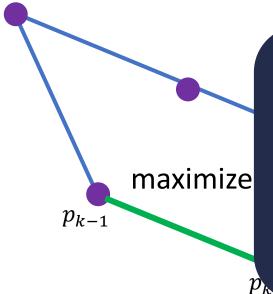
Divide into smaller subsets



Use Graham's Algorithm to **conquer** the smaller subsets



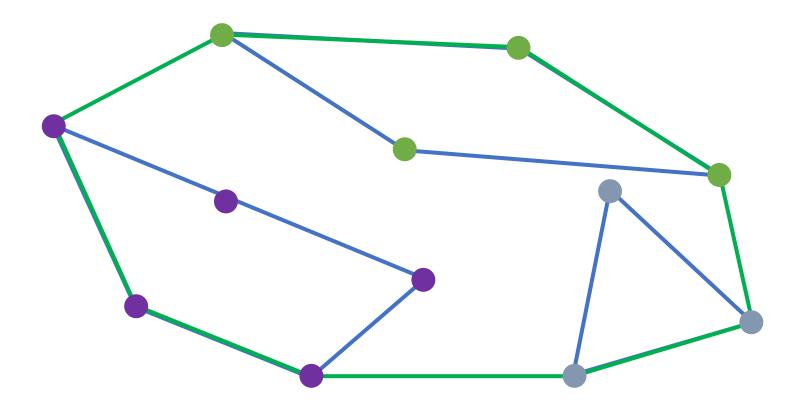
Use Jarvis' Algorithm to combine the solutions to the smaller subsets



Recall that Jarvis' algorithm does a linear scan to find the point with maximum angle

Since we have the smaller convex hulls, this can be done by doing a linear scan over each small convex hull and binary searching within the hull

Use Jarvis' Algorithm to **combine** the solutions to the smaller subsets



Use Jarvis' Algorithm to **combine** the solutions to the smaller subsets **Running time:** $O(n \log h) - optimal!$