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Today’s Keywords

Reductions and lower bounds
Convex hull
Graham’s algorithm (Graham scan)
Jarvis’ algorithm (Jarvis march)
Chan’s algorithm
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CLRS Readings: Chapter 33.3



Homework

HW9, HW10C due Thursday, December 5, 11pm
• Graphs, Reductions
• Written (LaTeX)
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Final Exam

Monday, December 9, 7pm in Olsson 120
• Practice exam coming soon
• Review session likely the weekend before
• SDAC: Please sign-up for a time on December 9
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Reductions
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Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map instances of problem 
𝑨 to instances of 𝑩

Algorithm for 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

𝑌𝑋

𝑨 ≤ 𝑩: there is a reduction from 𝑨 to 𝑩

Problem 𝑨 Problem 𝑩



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
(denoted 𝐴 ≤ 𝐵)

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Understanding Reductions



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
(denoted 𝐴 ≤ 𝐵)

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Worst-Case Lower Bounds via Reductions

If we know that 𝐴 cannot be 
solved in polynomial time

Then problem 𝐵 also cannot 
be solved in polynomial time



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
(denoted 𝐴 ≤ 𝐵)

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Worst-Case Lower Bounds via Reductions

If we know that 𝐴 cannot be 
solved in 𝑂 𝑇 𝑛 time

Then, if there is a 𝑂 𝑇 𝑛
reduction from 𝐴 to 𝐵, then 𝐵

cannot be solved in O 𝑇 𝑛 time 



The Convex Hull Problem
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Problem: find the smallest convex polygon that bounds a shape (or more generally, a 
collection of points)

Example application: collision detection in computer graphics; also useful for solving 
other problems, especially in computational geometry (e.g., furthest pair of points)



The Convex Hull Problem
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Problem: given a set of 𝑛 points, find the smallest convex polygon such that 
every point is either on the boundary or the interior of the polygon

Convex polygon: all interior 
angles are less than 180∘

Equivalently: line drawn through 
polygon will intersect exactly twice



The Convex Hull Problem
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Problem: given a set of 𝑛 points, find the smallest convex polygon such that 
every point is either on the boundary or the interior of the polygon

Convex polygon: all interior 
angles are less than 180∘

Equivalently: line drawn through 
polygon will intersect exactly twiceNot convex!

> 180∘
> 180∘



The Convex Hull Problem
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Rubber band analogy: imagine the points are nails sticking out of a board and 
wrapping a rubber band to encompass the nails; convex hull is resulting shape

Rubber band



The Convex Hull Problem

13Observation: every point on the convex hull is one of the input points

Otherwise, can add a 
“shortcut” and 
reduce the area



A Brute Force Approach
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A Brute Force Approach
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Brute force approach: for every pair of points, check if

all other points are on the same side of the line

Observation: if there are points on 
both sides of the line, then the pair 

cannot be an edge in the convex hull

Run-time: 𝑂 𝑛1



Graham’s Algorithm
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Observation: Extremal points must be part of the convex hull (e.g., bottom-
most point, left-most point, etc.)

𝑢



Graham’s Algorithm
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𝑢

Consider the (polar) angle formed between base point 𝑢 and every other point 

𝜃

Polar Angle



Graham’s Algorithm
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H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Not convex anymore!

Scan the points in 
order of angle



Graham’s Algorithm
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𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Not convex anymore!
Scan the points in 

order of angle



Graham’s Algorithm
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Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Scan the points in 
order of angle



Graham’s Algorithm
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𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Observe: since points are sorted by 
angle, backtracking will never remove 

points from the convex hullF

C



Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in 
order of angle



Graham’s Algorithm
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1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

How to implement this?

B
A

C
Convex

Non-convex

Imagine driving from 𝐴 → 𝐵
• 𝐵 → 𝐶 is convex if need to take a “left turn” to reach 𝐶
• 𝐵 → 𝐶 is non-convex if need to take a “non-left turn”

Decide “left turn” vs. “right turn” by computing the sign of the 
(vector) cross product between �⃗�=> and �⃗�>?

�⃗�=>

�⃗�>?



Graham’s Algorithm
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1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

Which data structure to use?
Need to be able to insert elements and remove in order of most-recent insertion

Can implement both operations in constant-time using a stack



Graham’s Algorithm

38

1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

Correctness?
See CLRS 33.3



Running Time of Graham’s Algorithm
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1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)
𝑂(1)
𝑂(𝑛 log 𝑛)

𝑂(1)

Running time: 𝑂(𝑛 log 𝑛)



Graham’s Algorithm
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1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

We have essentially reduced the problem of
computing a convex hull to the problem of sorting!

𝑂(𝑛)
𝑂(1)
𝑂(𝑛 log 𝑛)

𝑂(1)



Convex Hull to Sorting Reduction
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points sorted by angle
convex hull

𝑂 𝑛

𝑂 𝑛

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

convex hull ≤ sorting
convex hull can be reduced to sorting in 𝑂 𝑛 time

convex hull sorting



Running Time of Graham’s Algorithm
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1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)
𝑂(1)
𝑂(𝑛 log 𝑛)

𝑂(1)

Running time of Graham’s algorithm: same as best sorting algorithm

𝑂 𝑛 log 𝑛

Can we do better (without going through sorting)?



Running Time of Graham’s Algorithm
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1. Let 𝑝5 be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝5 to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝5
4. For each of the points 𝑝9 in sorted order:

• Try adding 𝑝9 to the convex hull 𝐶
• If adding 𝑝9 makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)
𝑂(1)
𝑂(𝑛 log 𝑛)

𝑂(1)

Running time of Graham’s algorithm: same as best sorting algorithmTrivial lower bound: Ω 𝑛

Can we do better (without going through sorting)?



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
(denoted 𝐴 ≤ 𝐵)

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Worst-Case Lower Bounds via Reductions

44



reduces to   

Algorithm for B

yields

Algorithm for A

Implication: 𝐴 is no more difficult than 𝐵
(denoted 𝐴 ≤ 𝐵)

Opening a door
Lighting a fire

𝐵

𝑋𝑌

𝐴
Problem A Problem B

Worst-Case Lower Bounds via Reductions

If we know that 𝐴 cannot be 
solved in 𝑂 𝑇 𝑛 time

Then, if there is a 𝑂 𝑇 𝑛
reduction from 𝐴 to 𝐵, then 𝐵

cannot be solved in 𝑂 𝑇 𝑛 time 
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Opening a door
Lighting a fire

Sorting to Convex Hull Reduction

Observe: convex hull consists of a subset of points in a prescribed order
46



Opening a door
Lighting a fire

Sorting to Convex Hull Reduction

6

7

8

1

3

2

5

4

Can we use
this to sort?

Observe: convex hull consists of a subset of points in a prescribed order
47



Opening a door
Lighting a fire

Sorting to Convex Hull Reduction

6

7

8

1

3

2

5

4

Can we use
this to sort?

Want order of points in convex hull 
to be the order of elements in 

sorted order

To get full sorted ordering, convex 
hull should contain all of the points 

(i.e., values in the set)

Observe: convex hull consists of a subset of points in a prescribed order
48



Opening a door
Lighting a fire

Sorting to Convex Hull Reduction

−3 −2 −1 0 1 2 3

49
Goal: need a way to map list of (numeric) values onto a convex hull instance

(−2,4)

(−1,1) (1,1)

(2,4)

(0,0)

(−3,9) (3,9)

𝑥 ↦ 𝑥, 𝑥M



Opening a door
Lighting a fire

Sorting to Convex Hull Reduction

−3 −2 −1 0 1 2 3
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Goal: need a way to map list of (numeric) values onto a convex hull instance

(−3,9)

(−2,4)

(−1,1) (1,1)

(2,4)

(3,9)

(0,0)

Idea: Map points onto the 
parabola (convex shape)

Claim: order of elements in 
convex hull coincide with 
elements in sorted order

𝑥 ↦ 𝑥, 𝑥M



Opening a door
Lighting a fire

Sorting to Convex Hull Reduction

−3 −2 −1 0 1 2 3

51
Conclusion: If we can solve convex hull, then we can sort numeric values

(−3,9)

(−2,4)

(−1,1) (1,1)

(2,4)

(3,9)

(0,0)

Idea: Map points onto the 
parabola (convex shape)

Claim: order of elements in 
convex hull coincide with 
elements in sorted order



Convex Hull to Sorting Reduction
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𝑂 𝑛

𝑂 𝑛

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

sorting numeric values ≤ convex hull
sorting numeric values can be reduced to convex hull in 𝑂 𝑛 time

sorting convex hull

−3−2 −101 2 3

−1−3 30−2 1 2



reduces to   

Opening a door
Lighting a fire

𝐵𝐴
sorting numeric values convex hull

Lower Bound for Convex Hull
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𝑂 𝑛 reduction

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Ω 𝑛 log 𝑛 for comparison sorts
Our reduction is not a comparison sort algorithm, so cannot directly appeal to it

Ω(𝑛 log 𝑛) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)

Implies Ω 𝑛 log 𝑛 lower bound for computing convex hull in this model



reduces to   

Opening a door
Lighting a fire

𝐵𝐴
sorting numeric values convex hull

Lower Bound for Convex Hull
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𝑂 𝑛 reduction

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Ω 𝑛 log 𝑛 for comparison sorts
Our reduction is not a comparison sort algorithm

Ω(𝑛 log 𝑛) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)

Implies Ω 𝑛 log 𝑛 lower bound for computing convex hull in this model

In fact, this lower bound holds even for algorithms 
that just identify the set of points on the convex 

hull (and not necessarily their order)!



Jarvis’ Algorithm (Gift Wrapping Method)

55

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢



Jarvis’ Algorithm (Gift Wrapping Method)
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Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢
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Idea: Start with extremal point and “wrap” points in counter-clockwise fashion
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Idea: Start with extremal point and “wrap” points in counter-clockwise fashion
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Jarvis’ Algorithm (Gift Wrapping Method)
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𝑢

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion



Jarvis’ Algorithm (Gift Wrapping Method)
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𝑢

Can find the “next” point using a linear scan (i.e., point with largest angle)
Number of iterations: number of points on convex hull
Run time: 𝑂(𝑛ℎ) where ℎ is the number of points on the convex hull



Jarvis’ Algorithm (Gift Wrapping Method)
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𝑢

Can find the “next” point using a linear scan
Number of iterations: number of points on convex hull
Run time: 𝑂(𝑛ℎ) where ℎ is the number of points on the convex hull

Output-dependent running time (similar to Ford-Fulkerson)
• Can be better than Graham’s Algorithm when ℎ ≪ log 𝑛
• Worst case: ℎ = 𝑛, so 𝑂 𝑛M



Chan’s Algorithm
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Chan’s Algorithm

80

Divide into smaller subsets



Chan’s Algorithm
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Use Graham’s Algorithm to conquer the smaller subsets



Chan’s Algorithm

82

Use Jarvis’ Algorithm to combine the solutions to the smaller subsets

𝑝QR5

𝑝Q

𝑞5

𝑞M

𝑞1

maximize angle



Chan’s Algorithm
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Use Jarvis’ Algorithm to combine the solutions to the smaller subsets

𝑝QR5

𝑝Q

𝑞5

𝑞M

𝑞1

maximize angle

Recall that Jarvis’ algorithm does a linear scan to 
find the point with maximum angle

Since we have the smaller convex hulls, this can 
be done by doing a linear scan over each small 
convex hull and binary searching within the hull



Chan’s Algorithm
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Use Jarvis’ Algorithm to combine the solutions to the smaller subsets
Running time: 𝑂 𝑛 log ℎ − optimal!


