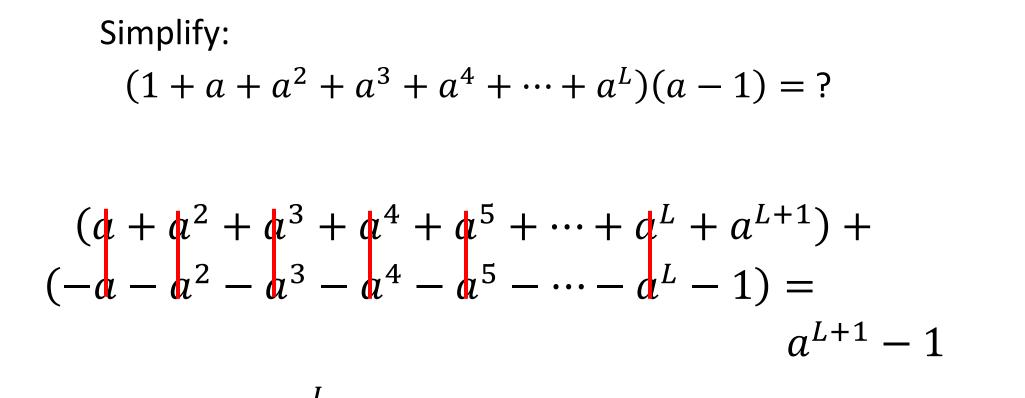
CS 4102: Algorithms Lecture 3: Karatsuba, Tree Method

David Wu Fall 2019

Warm Up



$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

2

Today's Keywords

Divide and Conquer

Recurrences

Merge Sort

Karatsuba

Tree Method

CLRS Readings: Chapter 4

Homeworks

HW0 due Today, 11pm

• Submit 2 attachments (zip and pdf)

HW1 due Thursday, September 12, 11pm

- Start early!
- Written (use Latex!) Submit both **zip** and **pdf**!
- Asymptotic notation
- Recurrences
- Divide and Conquer

Homework Help Algorithm

Algorithm: How to ask a question about homework (efficiently)

- 1. Check to see if your question is already on Piazza
- 2. If it is not on Piazza, ask on Piazza
- 3. Look for other questions you know the answer to, and provide answers to any that you see
- 4. TA office hours
- 5. Instructor office hours
- 6. Email, set up a meeting

Office Hours



Divide and Conquer

[CLRS Chapter 4]

Divide:

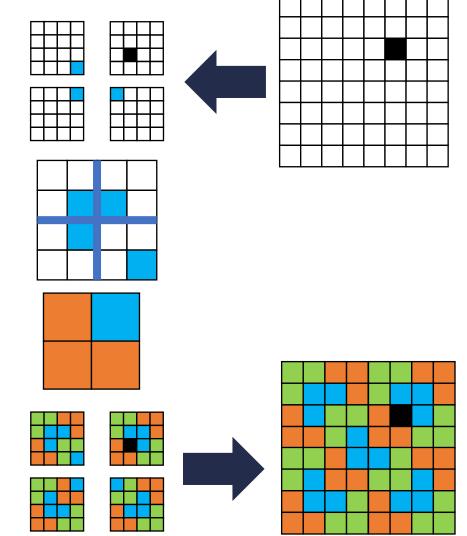
 Break the problem into multiple subproblems, each smaller instances of the original

Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)

Combine:

 Merge solutions to subproblems to obtain solution for original problem



Analyzing Divide and Conquer

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

•
$$T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$$

Recurrence Solving Techniques

"Cookbook" MAGIC!

Substitution

substitute in to simplify

Merge Sort

Divide:

• Break *n*-element list into two lists of n/2 elements

Conquer:

- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)

Combine:

• Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list

Inputs:

- 2 sorted lists (L_1 , L_2)
- 1 output list (*L*_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \le L_2[0]:

L_{out}.append(L_1.pop())

Else:

L_{out}.append(L_2.pop())

L_{out}.append(L_1)

L_{out}.append(L_2)
```

Analyzing Merge Sort

- 1. Break into smaller subproblems
- 2. Use recurrence relation to express recursive running time
- 3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small problems, size $\frac{n}{2}$

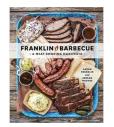
Combine: *n* comparisons

Recurrence:

• T(n) = 2T(n/2) + n

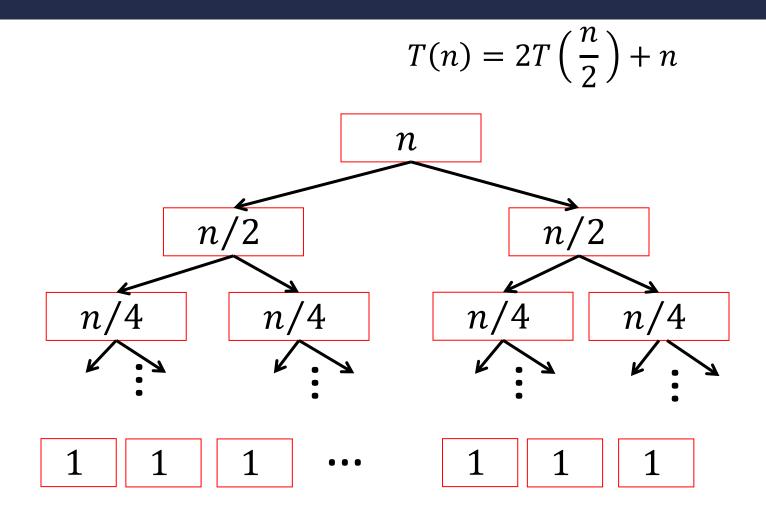
Recurrence Solving Techniques

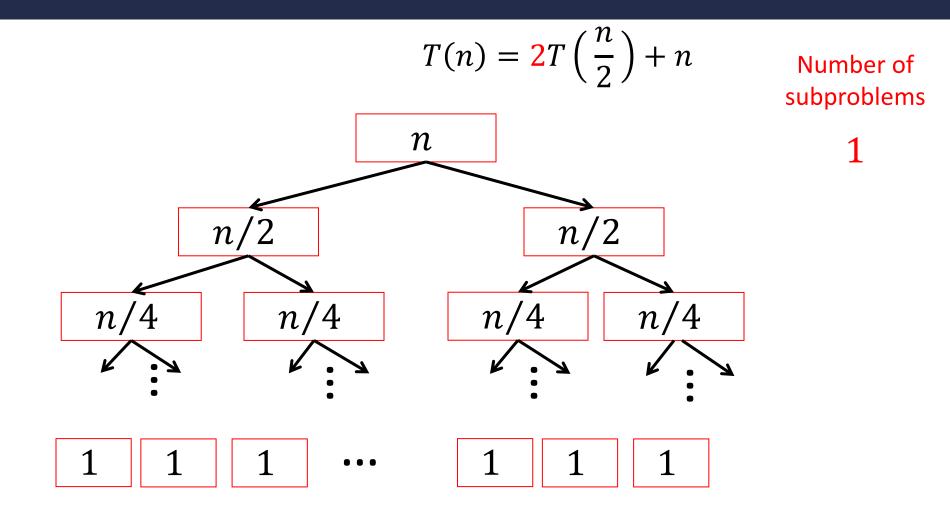
? Guess/Check

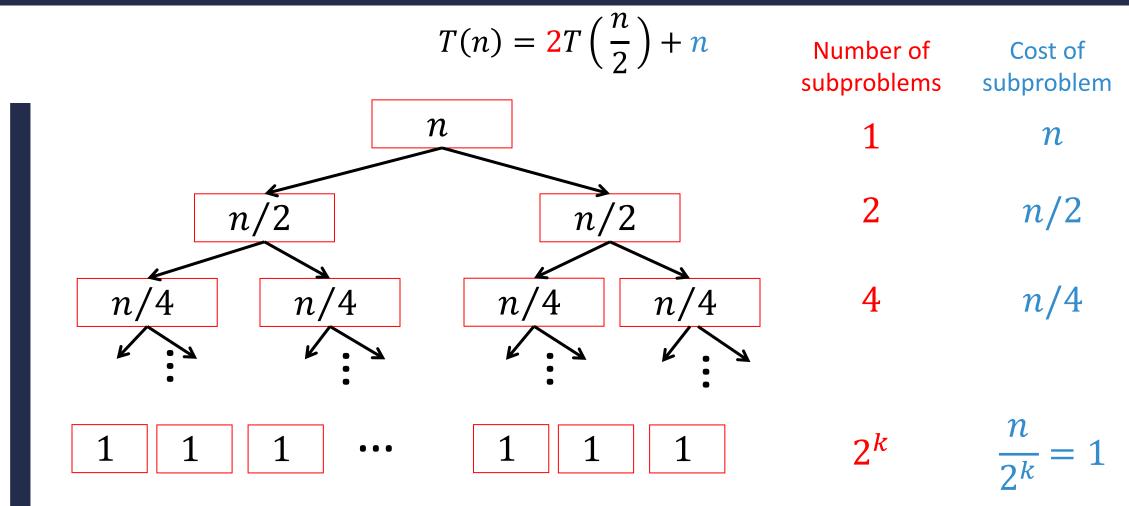


"Cookbook"

Substitution







k levels

3. Use asymptotic notation to simplify T(n) = 2T(n/2) + n	Number of subproblems	Cost of subproblem
How many levels?	1	n
Problem size at k^{th} level: $\frac{n}{2^k}$	2	<i>n</i> /2
Base case: $n = 1$	4	<i>n</i> /4
At level k, it should be the case that $\frac{n}{2^k} = 1$		
$n = 2^k \Rightarrow k = \log_2 n$	2 ^{<i>k</i>}	$\frac{n}{2^k} = 1$

3. Use asymptotic notation to simplify T(n) = 2T(n/2) + n	Number of subproblems	Cost of subproblem
$k = \log_2 n$	1	n
108210	2	<i>n</i> /2
What is the cost?	4	
Cost at level <i>i</i> : $2^i \cdot \frac{n}{2^i} = n$	4	<i>n</i> /4
Total cost: $T(n) = \sum_{n=1}^{\log_2 n} n = n \sum_{n=1}^{\log_2 n} 1 = n \log_2 n$	2 ^{<i>k</i>}	$\frac{n}{2^k} = 1$
$\overline{i=0} \qquad \overline{i=0} = \Theta(n \log n)$	<i>n</i>)	

Multiplication

Want to multiply large numbers together

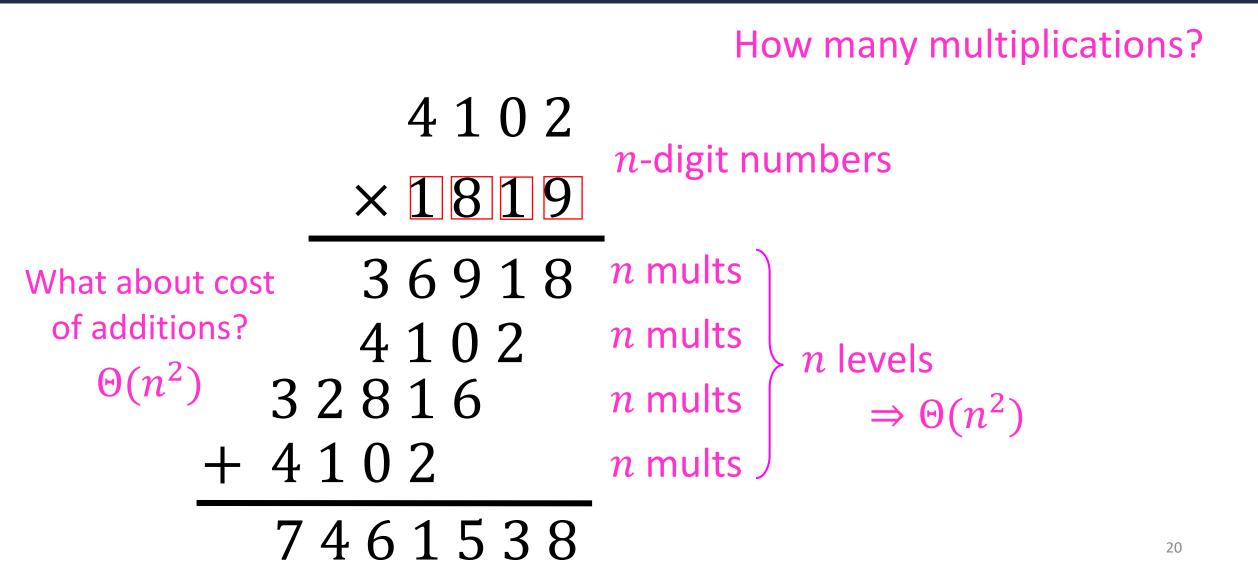
How do we measure input size?

What do we "count" for run time?

number of digits

number of <u>elementary</u> operations (single-digit multiplications)

"Schoolbook" Multiplication



"Schoolbook" Multiplication

Can we do		How many multiplications?
better?	4102	a digit pupp le pro
	×1819	<i>n</i> -digit numbers
What about cost	36918	<i>n</i> mults
of additions?	4102	n mults > n levels
$\Theta(n^2)$ 3 2	816	<i>n</i> mults $(\Rightarrow \Theta(n^2))$
+ 41	02	<i>n</i> mults
74	61538	21

1. Break into smaller subproblems

$$a \quad b = 10^{\frac{n}{2}} a + b$$

$$\times c \quad d = 10^{\frac{n}{2}} c + d$$

$$= 10^{n} (a \times c) + 10^{\frac{n}{2}} (a \times d + b \times c) + (b \times d)$$

Divide:

• Break *n*-digit numbers into four numbers of *n*/2 digits each (call them *a*, *b*, *c*, *d*)

Conquer:

- If n > 1:
 - Recursively compute *ac*, *ad*, *bc*, *bd*
- If n = 1: (i.e. one digit each)
 - Compute *ac*, *ad*, *bc*, *bd* directly (base case)

Combine:

• $10^n(ac) + 10^{n/2}(ad + bc) + bd$

For simplicity, assume that $n = 2^k$ is a power of 2

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

T(n)

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

$$T(n) = 4T\left(\frac{n}{2}\right)$$

Need to compute 4 multiplications, each of size n/2

2. Use recurrence relation to express recursive running time

$$10^{n}(ac) + 10^{n/2}(ad + bc) + bd$$

Recursively solve

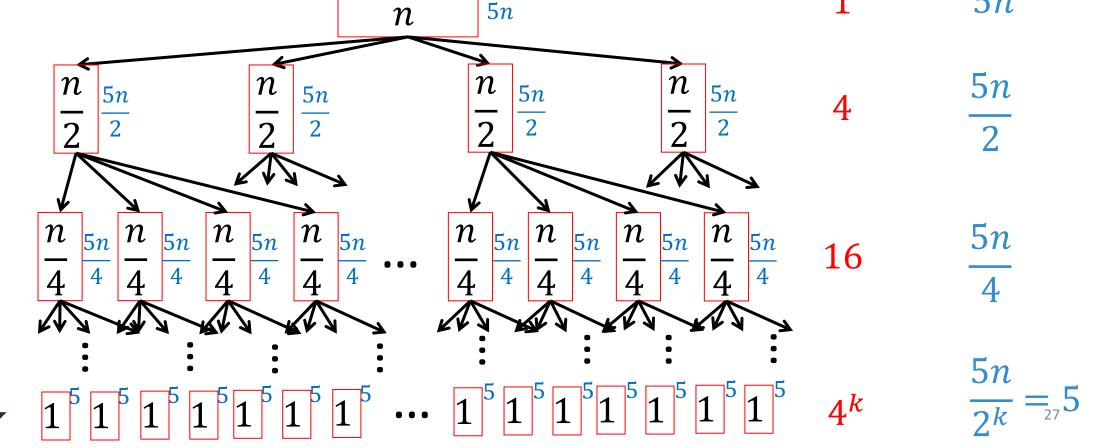
$$T(n) = 4T\left(\frac{n}{2}\right) + 5n$$

Need to compute 4 multiplications, each of size n/2

2 shifts and 3 additions on *n*-bit values

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

Number of Cost of subproblems subproblems 5n



k levels

3. Use asymptotic notation to simplify Number of Cost of T(n) = 4T(n/2) + 5nsubproblems subproblem 1 5*n* How many levels? Problem size at k^{th} level: $\frac{n}{2^k}$ $\frac{5n}{2}$ 4 Base case: n = 1At level k, it should be the case that $\frac{n}{2^k} = 1$ <u>5</u>*n* 16 $n = 2^{\kappa} \Rightarrow k = \log_2 n$ $\frac{5n}{2^k} = 5$ $\mathbf{4}^{k}$

3. Use asymptotic notation to simplify T(n) = 4T(n/2) + 5n

$$k = \log_2 n$$

What is the cost?

Cost at level *i*:
$$4^i \cdot \frac{5n}{2^i} = 2^i \cdot 5n$$

Total cost:
$$T(n) = \sum_{i=0}^{\log_2 n} 2^i \cdot 5n = 5n \sum_{i=0}^{\log_2 n} 2^i$$

Number of Cost of subproblems subproblem 5n1 5*n* 4 $\overline{2}$ 5*n* 16 5*n* $\mathbf{4}^{k}$

3. Use asymptotic notation to simplify

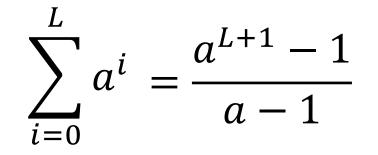
T

$$(n) = 4T(n/2) + 5n$$
$$\log_2 n$$

$$=5n \sum_{i=0}^{i} 2^i$$

$$= 5n \cdot \frac{2^{\log_2 n+1} - 1}{2 - 1}$$

$$= 5n(2n-1) = \Theta(n^2)$$



No better than the schoolbook method!

3. Use asymptotic notation to simplify

$$T(n) = 4T(n/2) + 5n$$
$$= 5n \sum^{\log_2 n} 2^i$$

 $\sum_{i=0}$

$$\sum_{i=0}^{L} a^{i} = \frac{a^{L+1} - 1}{a - 1}$$

$$= 5n \cdot \frac{2^{\log_2 n+1} - 1}{2 - 1}$$

$$= 5n(2n-1) = \Theta(n^2)$$

Is there a $o(n^2)$ algorithm for multiplication?