
CS 4102: Algorithms
Lecture 3: Karatsuba, Tree Method

David Wu
Fall 2019

Warm Up

Simplify:
1 + 𝑎 + 𝑎$ + 𝑎% + 𝑎& +⋯+ 𝑎(𝑎 − 1 = ?

2

𝑎 + 𝑎$ + 𝑎% + 𝑎& + 𝑎+ +⋯+ 𝑎(+ 𝑎(,- +
−𝑎 − 𝑎$ − 𝑎% − 𝑎& − 𝑎+ −⋯− 𝑎(− 1 =

𝑎(,- − 1

.
/01

(

𝑎/ =
𝑎(,- − 1
𝑎 − 1

Today’s Keywords

Divide and Conquer
Recurrences
Merge Sort
Karatsuba
Tree Method

3

CLRS Readings: Chapter 4

Homeworks

HW0 due Today, 11pm
• Submit 2 attachments (zip and pdf)

HW1 due Thursday, September 12, 11pm
• Start early!
• Written (use Latex!) – Submit both zip and pdf!
• Asymptotic notation
• Recurrences
• Divide and Conquer

4

Homework Help Algorithm

Algorithm: How to ask a question about homework (efficiently)
1. Check to see if your question is already on Piazza
2. If it is not on Piazza, ask on Piazza
3. Look for other questions you know the answer to, and provide answers to

any that you see
4. TA office hours
5. Instructor office hours
6. Email, set up a meeting

Office Hours

Rice 442

Divide and Conquer

Divide:
• Break the problem into multiple

subproblems, each smaller instances of the
original

Conquer:
• If the suproblems are “large”:

• Solve each subproblem recursively
• If the subproblems are “small”:

• Solve them directly (base case)

Combine:
• Merge solutions to subproblems to obtain

solution for original problem

[CLRS Chapter 4]

Analyzing Divide and Conquer

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠-, … , 𝑠9
Combine: 𝐶(𝑛) time
Recurrence:
• 𝑇 𝑛 = 𝐷 𝑛 + ∑/∈[9] 𝑇(𝑠/) + 𝐶(𝑛)

Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

get a picture of recursion

guess and use induction to prove

MAGIC!

substitute in to simplify

Merge Sort

Divide:
• Break 𝑛-element list into two lists of ⁄A $ elements

Conquer:
• If 𝑛 > 1:

• Sort each sublist recursively
• If 𝑛 = 1:

• List is already sorted (base case)

Combine:
• Merge together sorted sublists into one sorted list

Merge

Combine: Merge sorted sublists into one sorted list
Inputs:

• 2 sorted lists (𝐿-, 𝐿$)
• 1 output list (𝐿DEF)

While (𝐿- and 𝐿$ not empty):
If 𝐿- 0 ≤ 𝐿$[0]:

𝐿DEF.append(𝐿-.pop())
Else:

𝐿DEF.append(𝐿$.pop())
𝐿DEF.append(𝐿-)
𝐿DEF.append(𝐿$)

Analyzing Merge Sort

1. Break into smaller subproblems
2. Use recurrence relation to express recursive running time
3. Use asymptotic notation to simplify

Divide: 0 comparisons

Conquer: recurse on 2 small problems, size A
$

Combine: 𝑛 comparisons
Recurrence:
• 𝑇 𝑛 = 2𝑇(⁄𝑛 2) + 𝑛

Recurrence Solving Techniques

Tree

? Guess/Check

“Cookbook”

Substitution

Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

Number of
subproblems

1

Tree Method

𝑛

𝑇 𝑛 = 2𝑇
𝑛
2

+ 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑘 levels

Number of
subproblems

1

2

4

29

Cost of
subproblem

𝑛

𝑛/2

𝑛/4

𝑛
29

= 1

Tree Method

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛
3. Use asymptotic notation to simplify

How many levels?
Problem size at 𝑘MN level:

Base case:

At level 𝑘, it should be the case that A$O = 1

𝑛 = 29 ⇒ 𝑘 = log$ 𝑛

𝑛
29

𝑛 = 1

Number of
subproblems

1

2

4

29

Cost of
subproblem

𝑛

𝑛/2

𝑛/4

𝑛
29

= 1

Tree Method

𝑇 𝑛 = 2𝑇 𝑛/2 + 𝑛
3. Use asymptotic notation to simplify

𝑘 = log$ 𝑛

What is the cost?

Cost at level 𝑖: 2/ ⋅
𝑛
2/
= 𝑛

Total cost: 𝑇 𝑛 = .
/01

VWXY A

𝑛

= Θ 𝑛 log 𝑛

= 𝑛 .
/01

VWXY A

1 = 𝑛 log$ 𝑛

Number of
subproblems

1

2

4

29

Cost of
subproblem

𝑛

𝑛/2

𝑛/4

𝑛
29

= 1

Multiplication

Want to multiply large numbers together

19

4 1 0 2
× 1 8 1 9

𝑛-digit numbers

number of digits

number of elementary operations
(single-digit multiplications)

How do we measure input size?

What do we “count” for run time?

“Schoolbook” Multiplication

20

4 1 0 2
× 1 8 1 9
3 6 9 1 8
4 1 0 2

3 2 8 1 6
4 1 0 2
7 4 6 1 5 3 8

+

How many multiplications?

𝑛-digit numbers

𝑛 mults
𝑛 mults
𝑛 mults
𝑛 mults

𝑛 levels
⇒ Θ(𝑛$)

What about cost
of additions?
Θ(𝑛$)

“Schoolbook” Multiplication

21

4 1 0 2
× 1 8 1 9
3 6 9 1 8
4 1 0 2

3 2 8 1 6
4 1 0 2
7 4 6 1 5 3 8

+

How many multiplications?

𝑛-digit numbers

𝑛 mults
𝑛 mults
𝑛 mults
𝑛 mults

𝑛 levels
⇒ Θ(𝑛$)

What about cost
of additions?
Θ(𝑛$)

Can we do
better?

()

()

Divide and Conquer Multiplication

22

1. Break into smaller subproblems

4 1 0 2
× 1 8 1 9

𝑎 𝑏
𝑐 𝑑

𝑎 𝑏+= 10
A
$

𝑐 𝑑+= 10
A
$

()

𝑎 𝑐×10A

𝑎 𝑑10
A
$ × 𝑏 𝑐×+

𝑏 𝑑×

+

+
=

Divide and Conquer Multiplication

Divide:
• Break 𝑛-digit numbers into four numbers of 𝑛/2 digits each

(call them 𝑎, 𝑏, 𝑐, 𝑑)

Conquer:
• If 𝑛 > 1:

• Recursively compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑
• If 𝑛 = 1: (i.e. one digit each)

• Compute 𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑 directly (base case)

Combine:
• 10A 𝑎𝑐 + 10A/$ 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

23

For simplicity, assume
that 𝑛 = 29 is a

power of 2

Divide and Conquer Multiplication

24

10A 𝑎𝑐 + 10A/$ 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛

2. Use recurrence relation to express recursive running time

Divide and Conquer Multiplication

25

10A 𝑎𝑐 + 10A/$ 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications,
each of size 𝑛/2

= 4𝑇
𝑛
2

Divide and Conquer Multiplication

26

10A 𝑎𝑐 + 10A/$ 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

Recursively solve

𝑇 𝑛

2. Use recurrence relation to express recursive running time

Need to compute 4 multiplications,
each of size 𝑛/2

2 shifts and 3 additions
on 𝑛-bit values

= 4𝑇
𝑛
2 + 5𝑛

Divide and Conquer Multiplication

27

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛
3. Use asymptotic notation to simplify

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

Number of
subproblems

1

4

16

49

𝑘 levels

Cost of
subproblem

5𝑛

5𝑛
2

5𝑛
4

5𝑛
29

= 5

Divide and Conquer Multiplication

28

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛
3. Use asymptotic notation to simplify

Number of
subproblems

1

4

16

49

Cost of
subproblem

5𝑛

5𝑛
2

5𝑛
4

5𝑛
29

= 5

How many levels?
Problem size at 𝑘MN level:

Base case:

At level 𝑘, it should be the case that A$O = 1

𝑛 = 29 ⇒ 𝑘 = log$ 𝑛

𝑛
29

𝑛 = 1

Divide and Conquer Multiplication

29

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛
3. Use asymptotic notation to simplify

Number of
subproblems

1

4

16

49

Cost of
subproblem

5𝑛

5𝑛
2

5𝑛
4

5𝑛
29

= 5

𝑘 = log$ 𝑛

What is the cost?

Cost at level 𝑖: 4/ ⋅
5𝑛
2/

= 2/ ⋅ 5𝑛

Total cost: 𝑇 𝑛 = .
/01

VWXY A

2/ ⋅ 5𝑛 = 5𝑛 .
/01

VWXY A

2/

Divide and Conquer Multiplication

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

= 5𝑛 .
/01

VWXY A

2/

= 5𝑛 ⋅
2VWXY A,- − 1

2 − 1

= 5𝑛 2𝑛 − 1 = Θ(𝑛$)
No better than the

schoolbook method!

.
/01

(

𝑎/ =
𝑎(,- − 1
𝑎 − 1

Divide and Conquer Multiplication

𝑇 𝑛 = 4𝑇 𝑛/2 + 5𝑛

3. Use asymptotic notation to simplify

= 5𝑛 .
/01

VWXY A

2/

= 5𝑛 ⋅
2VWXY A,- − 1

2 − 1

= 5𝑛 2𝑛 − 1 = Θ(𝑛$)
Is there a 𝑜(𝑛$)

algorithm for
multiplication?

.
/01

(

𝑎/ =
𝑎(,- − 1
𝑎 − 1

