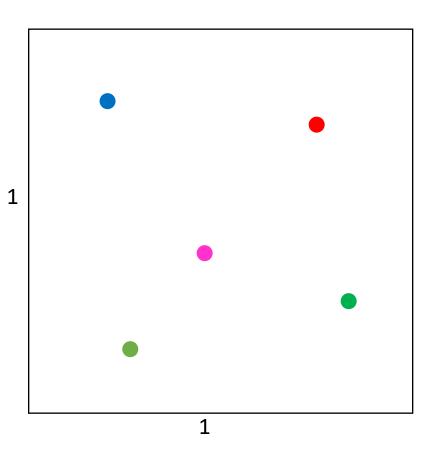
CS 4102: Algorithms Lecture 5: Master Theorem

David Wu Fall 2019

Warm Up

<u>Warm up</u>

Given any 5 points on the unit square, show there's always a pair distance $\leq \frac{\sqrt{2}}{2}$ apart

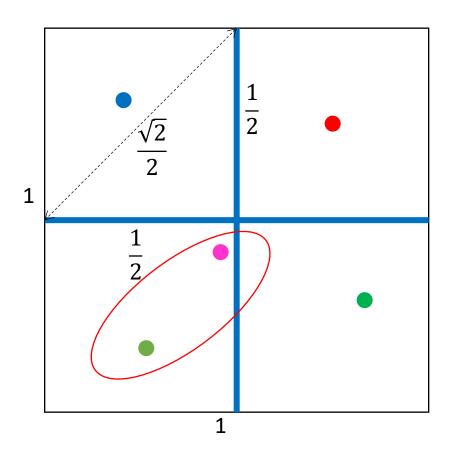


Warm Up

If points p_1, p_2 in same quadrant, then $d(p_1, p_2) \le \frac{\sqrt{2}}{2}$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!



Today's Keywords

- Solving recurrences
- Cookbook Method
- Master Theorem
- Substitution Method

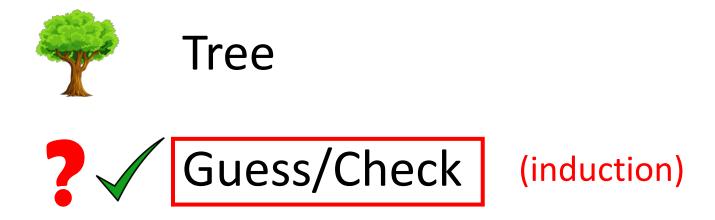
CLRS Readings: Chapter 4

Homework

HW1 due Thursday, September 12 Saturday, September 14, 11pm

- Start early!
- Written (use Latex!) Submit both **zip** and **pdf**!
- Asymptotic notation
- Recurrences
- Divide and Conquer

Recurrence Solving Techniques



"Cookbook"

Substitution

Induction (Review)

Goal:	$\forall k \in \mathbb{N}, P(k) \text{ holds}$
Base case(s):	P(1) holds
Hypothesis:	$\forall x \leq x_0, P(x) \text{ holds}$
Inductive step:	$P(1), \dots, P(x_0) \Rightarrow P(x_0 + 1)$

Guess and Check Blueprint

Show: T(n) = O(g(n))

Consider: $g_*(n) = c \cdot g(n)$ for some constant c

Goal: show $\exists n_0$ such that $\forall n > n_0$, $T(n) \leq g_*(n)$

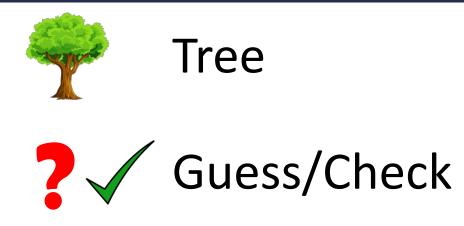
• (definition of big-O)

Technique: Induction

- Base cases:
 - Show $T(1) \le g_*(1)$ (sometimes, may need to consider <u>additional</u> base cases)
- Hypothesis:
 - $\forall n \leq x_0, T(n) \leq g_*(n)$
- Inductive step:
 - Show that $T(x_0 + 1) \le g_*(x_0 + 1)$

Need to ensure that in inductive step, can either appeal to a <u>base</u> <u>case</u> or to the <u>inductive hypothesis</u>

Recurrence Solving Techniques



Substitution

Observation

Divide: D(n) time

Conquer: Recurse on smaller problems of size s_1, \ldots, s_k

Combine: C(n) time

Recurrence:

• $T(n) = D(n) + \sum_{i \in [k]} T(s_i) + C(n)$

Many divide and conquer algorithms have recurrences are of form:

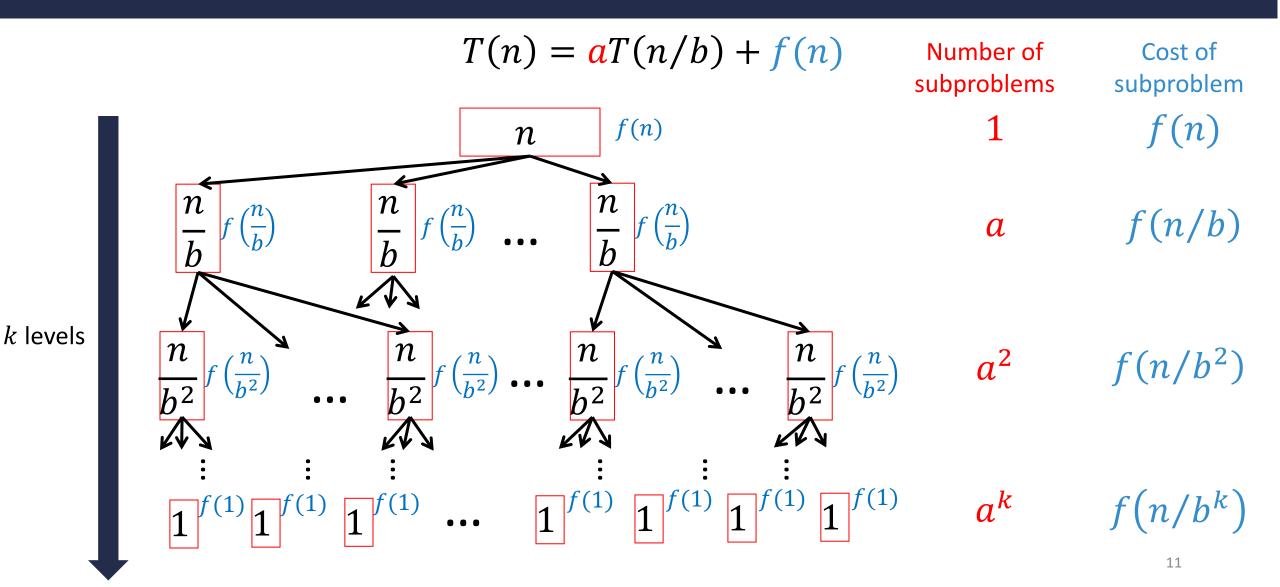
• $T(n) = a \cdot T(n/b) + f(n)$ and b are constants

Mergesort: T(n) = 2T(n/2) + n

Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n

Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

General Recurrence



General Recurrence

3. Use asymptotic notation to simplify T(n) = aT(n/b) + f(n)	Number of subproblems 1	Cost of subproblem $f(n)$
How many levels?		
Problem size at k^{th} level: $\frac{n}{b^k}$	a	f(n/b)
Base case: $n = 1$		
At level k, it should be the case that $\frac{n}{b^k} = 1$	a ²	$f(n/b^2)$
$n = b^k \Rightarrow k = \log_b n$	a^k	$f(n/b^k)$

General Recurrence

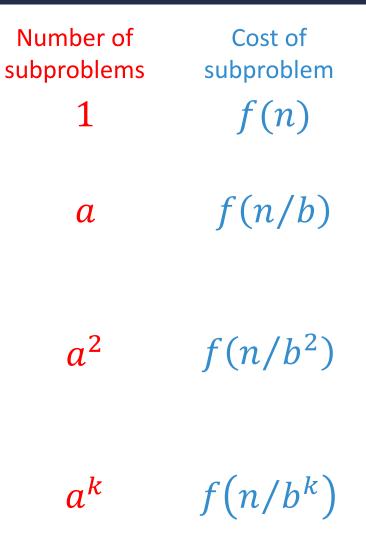
3. Use asymptotic notation to simplify T(n) = aT(n/b) + f(n)

$$k = \log_b n$$

What is the cost?

Cost at level *i*: $a^i \cdot f\left(\frac{n}{b^i}\right)$

Total cost:
$$T(n) = \sum_{i=0}^{\log_b n} a^i \cdot f\left(\frac{n}{b^i}\right)$$



Three Cases

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + a^{3}f\left(\frac{n}{b^{3}}\right) + \dots + a^{k}f\left(\frac{n}{b^{k}}\right)$$

$$k = \log_{b} n$$
Case 1:
Most work happens
at the leaves
$$Case 2:$$
Work happens
consistently throughout
$$Case 3:$$
Most work happens
at top of tree
$$14$$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$

Master Theorem

$$T(n) = aT(n/b) + f(n)$$

$$\delta = \log_b a$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$T(n) = aT(n/b) + f(n) \qquad \qquad \delta = \log_b a$$

We will show weaker version of Case 1:

if $f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) \in O(n^{\delta}) = O(n^{\log_b a})$

There exists constants c, n_0 such that for all $n > n_0$, $f(n) \le cn^{\delta - \varepsilon}$

Similar argument applies to show that $T(n) = \Omega(n^{\log_b a})$

We will consider $n \ge n_0$

$$T(n) = aT(n/b) + f(n)$$
 $\delta = \log_b a$

We will show weaker version of Case 1:

if $f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) \in O(n^{\delta}) = O(n^{\log_b a})$

$$T(n) = f(n) + af\left(\frac{n}{b}\right) + a^{2}f\left(\frac{n}{b^{2}}\right) + a^{3}f\left(\frac{n}{b^{3}}\right) + \dots + a^{k}f\left(\frac{n}{b^{k}}\right)$$

$$\leq c\left(n^{\delta-\varepsilon} + a\left(\frac{n}{b}\right)^{\delta-\varepsilon} + a^{2}\left(\frac{n}{b^{2}}\right)^{\delta-\varepsilon} + \dots + a^{k}\left(\frac{n}{b^{k}}\right)^{\delta-\varepsilon}\right) \qquad n > n_{0} \Rightarrow f(n) \leq cn^{\delta-\varepsilon}$$

$$= cn^{\delta-\varepsilon}\left(1 + a\left(\frac{1}{b}\right)^{\delta-\varepsilon} + a^{2}\left(\frac{1}{b^{2}}\right)^{\delta-\varepsilon} + \dots + a^{k}\left(\frac{1}{b^{k}}\right)^{\delta-\varepsilon}\right)$$

$$T(n) = aT(n/b) + f(n) \qquad \delta = \log_{b} a$$

$$T(n) \leq cn^{\delta-\varepsilon} \left(1 + a\left(\frac{1}{b}\right)^{\delta-\varepsilon} + a^{2}\left(\frac{1}{b^{2}}\right)^{\delta-\varepsilon} + \dots + a^{k}\left(\frac{1}{b^{k}}\right)^{\delta-\varepsilon}\right)$$

$$= cn^{\delta-\varepsilon} \left(1 + \left(\frac{a}{b^{\delta-\varepsilon}}\right) + \left(\frac{a}{b^{\delta-\varepsilon}}\right)^{2} + \dots + \left(\frac{a}{b^{\delta-\varepsilon}}\right)^{k}\right)$$

$$= cn^{\delta-\varepsilon} \left(1 + \left(\frac{ab^{\varepsilon}}{b^{\delta}}\right) + \left(\frac{ab^{\varepsilon}}{b^{\delta}}\right)^{2} + \dots + \left(\frac{ab^{\varepsilon}}{b^{\delta}}\right)^{k}\right)$$

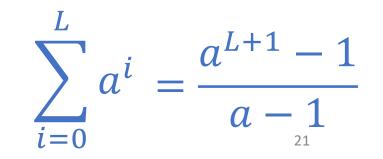
$$= cn^{\delta-\varepsilon} \left(1 + \left(\frac{ab^{\varepsilon}}{a}\right) + \left(\frac{ab^{\varepsilon}}{a}\right)^{2} + \dots + \left(\frac{ab^{\varepsilon}}{a}\right)^{k}\right)$$

$$b^{\delta} = b^{\log_{b} a} = a$$

$$T(n) = aT(n/b) + f(n)$$
$$T(n) \le cn^{\delta-\varepsilon} \left(1 + \left(\frac{ab^{\varepsilon}}{a}\right) + \left(\frac{ab^{\varepsilon}}{a}\right)^{2} + \dots + \left(\frac{ab^{\varepsilon}}{a}\right)^{k}\right)$$
$$= cn^{\delta-\varepsilon} \left(1 + b^{\varepsilon} + b^{2\varepsilon} + \dots + b^{k\varepsilon}\right)$$

$$= cn^{\delta-\varepsilon} \left(\sum_{i=0}^k (b^{\varepsilon})^i \right)$$

$$= cn^{\delta-\varepsilon} \frac{(b^{\varepsilon})^{k+1} - 1}{b^{\varepsilon} - 1}$$



 $\delta = \log_b a$

$$T(n) = aT(n/b) + f(n)$$
 $\delta = \log_b a$

$$T(n) \leq cn^{\delta-\varepsilon} \frac{(b^{\varepsilon})^{k+1} - 1}{b^{\varepsilon} - 1}$$
$$= cn^{\delta-\varepsilon} \frac{(b^k)^{\varepsilon} \cdot b^{\varepsilon} - 1}{b^{\varepsilon} - 1}$$
$$= cn^{\delta-\varepsilon} \frac{n^{\varepsilon} \cdot b^{\varepsilon} - 1}{b^{\varepsilon} - 1}$$
$$= \frac{cb^{\varepsilon}}{b^{\varepsilon} - 1} n^{\delta} - \frac{c}{b^{\varepsilon} - 1} n^{\delta-\varepsilon}$$

$$k = \log_b n \Rightarrow b^k = n$$

$$T(n) = aT(n/b) + f(n) \qquad \qquad \delta = \log_b a$$

$$T(n) \leq cn^{\delta-\varepsilon} \frac{(b^{\varepsilon})^{k+1} - 1}{b^{\varepsilon} - 1}$$
$$= cn^{\delta-\varepsilon} \frac{(b^k)^{\varepsilon} \cdot b^{\varepsilon} - 1}{b^{\varepsilon} - 1}$$
$$= cn^{\delta-\varepsilon} \frac{n^{\varepsilon} \cdot b^{\varepsilon} - 1}{b^{\varepsilon} - 1}$$

$$=\frac{cb^{\varepsilon}}{b^{\varepsilon}-1}n^{\delta}-\frac{c}{b^{\varepsilon}-1}n^{\delta-\varepsilon}$$

 $\in O\bigl(n^\delta\bigr)$

$$k = \log_b n \Rightarrow b^k = n$$

b, *c*, *ε* are all <u>constants</u>

$$T(n) = 2T(n/2) + n$$
 [Merge Sort]

 $T(n) = aT(n/b) + f(n) \qquad \qquad \delta = \log_b a$

$$T(n) = 2T(n/2) + n$$
 [Merge Sort]

Step 1: Compute $\delta = \log_b a = \log_2 2 = 1$

Step 2: Compare n^{δ} and f(n) $f(n) = n \in \Theta(n^{\delta})$

Step 3: Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = 1$$
 $T(n) = 2T(n/2) + n$ [Merge Sort]

 $f(n) = n \in \Theta(n^{\delta})$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = 1 \qquad T(n) = 2T(n/2) + n \qquad \text{[Merge Sort}$$

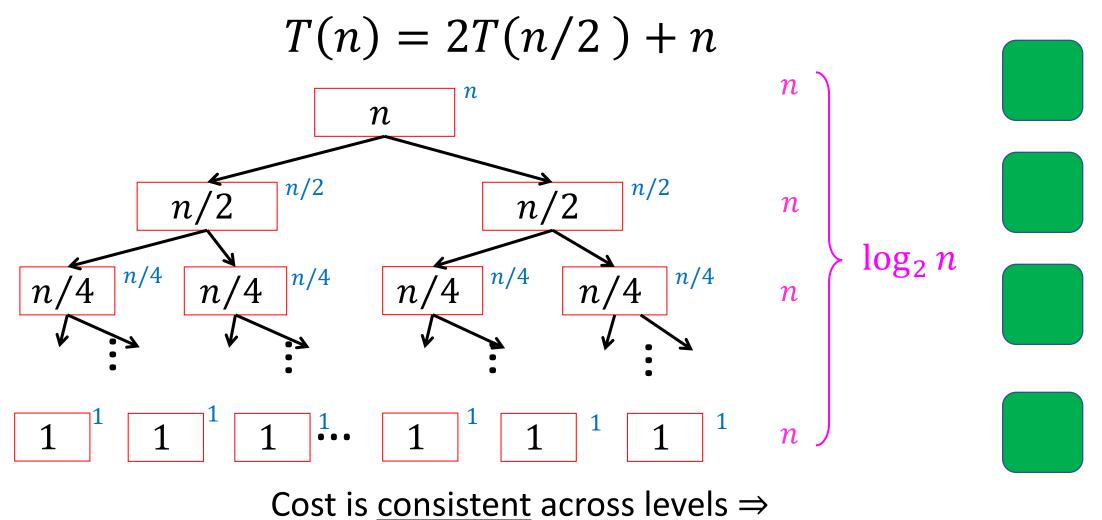
$$f(n) = n \in \Theta(n^{\delta}) \qquad T(n) = \Theta(n \log n)$$

$$\boxed{\text{Requirement on } f} \qquad \boxed{\text{Implication}}$$

$$\boxed{\text{Case 2}} \qquad f(n) \in \Theta(n^{\delta}) \qquad T(n) \in \Theta(n^{\delta} \log n)$$

$$\boxed{\text{Case 3}} \qquad f(n) \in O(n^{\delta}) \qquad T(n) \in O(n^{\delta} \log n)$$

Master Theorem Example 1 (Visually)



Cost increases by log factor (\approx number of levels)

$$T(n) = 4T(n/2) + 5n$$

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$T(n) = 4T(n/2) + 5n$$

- **Step 1:** Compute $\delta = \log_b a = \log_2 4 = 2$
- Step 2: Compare n^{δ} and f(n) $f(n) = 5n \in O(n^{2-1}) = O(n^{\delta-1})$
- Step 3: Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = 2 \qquad T(n) = 4T(n/2) + 5n$$
$$f(n) = 5n \in O(n^{\delta - 1})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta+\varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

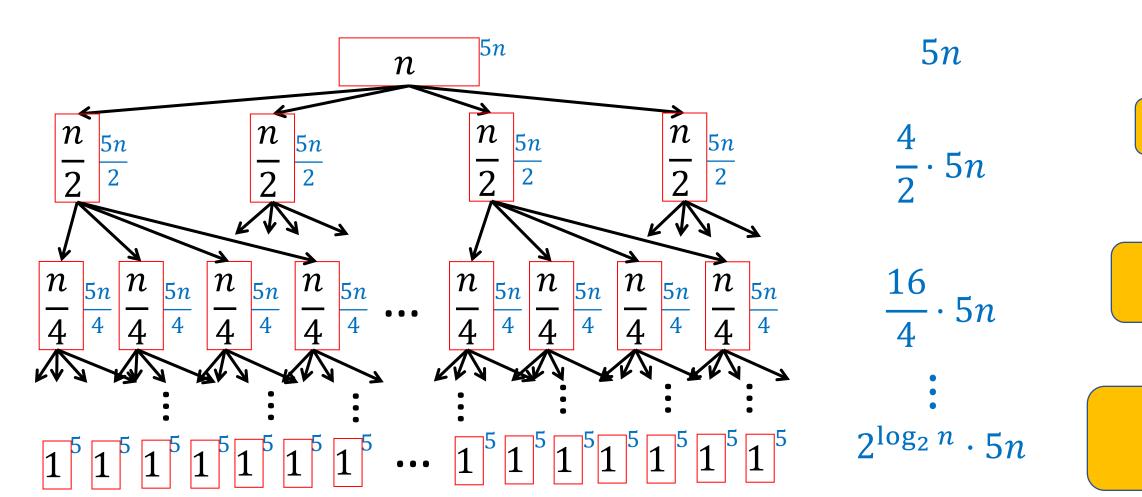
$$\delta = 2 \qquad T(n) = 4T(n/2) + 5n$$

$$f(n) = 5n \in O(n^{\delta - 1}) \qquad T(n) = \Theta(n^2)$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 3		$T(n) \in \Theta(f(n))$

Master Theorem Example 2 (Visually)

T(n) = 4T(n/2) + 5n

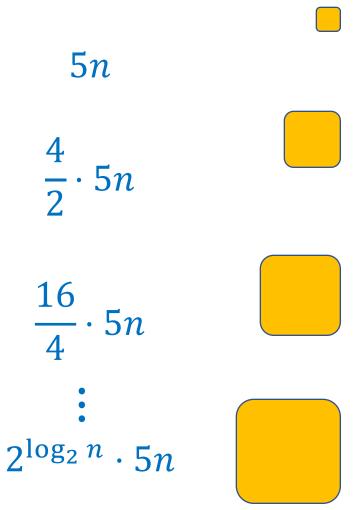


Master Theorem Example 2 (Visually)

$$T(n) = 4T(n/2) + 5n$$

Cost is <u>increasing</u> with the recursion depth (due to large number of subproblems)

Most of the work happening in the leaves



$$T(n) = 3T(n/2) + 8n$$
 [Karatsuba]

 $T(n) = aT(n/b) + f(n) \qquad \qquad \delta = \log_b a$

$$T(n) = \frac{3}{n}(n/2) + \frac{8n}{n}$$
 [Karatsuba]

Step 1: Compute $\delta = \log_b a = \log_2 3$

Step 2: Compare n^{δ} and f(n)

 $f(n) = 5n \in O(n^{\log_2 3-\varepsilon})$ for constant $\varepsilon > \log_2 3 - 1 > 0$ **Step 3:** Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = \log_2 3 \qquad T(n) = 3T(n/2) + 8n \qquad [Karatsuba]$$
$$f(n) = 5n \in O(n^{\delta - \varepsilon})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = \log_2 3 \qquad T(n) = 3T(n/2) + 8n \qquad [Karatsuba]$$
$$f(n) = 5n \in O(n^{\delta - \varepsilon}) \qquad T(n) = \Theta(n^{\log_2 3})$$

	Requirement on <i>f</i>	Implication	
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$	
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$	

$$T(n) = 2T(n/2) + 15n^3$$

 $T(n) = aT(n/b) + f(n) \qquad \qquad \delta = \log_b a$

$$T(n) = 2T(n/2) + 15n^3$$

- **Step 1:** Compute $\delta = \log_b a = \log_2 2 = 1$
- Step 2: Compare n^{δ} and f(n) $f(n) = 15n^3 \in \Omega(n^{3-2}) = \Omega(n^{\delta-2})$
- Step 3: Check table

 $T(n) = aT(n/b) + f(n) \qquad \delta = \log_b a$

$$\delta = 1$$
 $T(n) = 2T(n/2) + 15n^3$

$$f(n) = 15n^3 \in \Omega(n^{\delta+2})$$

	Requirement on <i>f</i>	Implication
Case 1	$f(n) \in O(n^{\delta-\varepsilon})$ for some constant $\varepsilon > 0$	$T(n) \in \Theta(n^{\delta})$
Case 2	$f(n) \in \Theta(n^{\delta})$	$T(n) \in \Theta(n^{\delta} \log n)$
Case 3	$f(n) \in \Omega(n^{\delta + \varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n	$T(n) \in \Theta(f(n))$

$$\delta = 1 \qquad T(n) = 2T(n/2) + 15n^3$$

$$f(n) = 15n^3 \in \Omega(n^{\delta+2})$$
Requirement on f Implication
$$Case 1 \quad f(n) \in O(n^{\delta-\epsilon}) \text{ for some constant } \epsilon > 0 \quad T(n) \in O(n^{\delta})$$

Case 3 $f(n) \in \Omega(n^{\delta+\varepsilon}) \text{ for some constant } \varepsilon > 0$ AND $af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$ sufficiently large n

$$\delta = 1 \qquad T(n) = 2T(n/2) + 15n^3$$
$$f(n) = 15n^3 \in \Omega(n^{\delta+2})$$

Important: For Case 3, need to additionally check that $2f(n/2) \le cf(n)$ for constant $c \ge 1$ and sufficiently large n

$$2f(n/2) = 30(n/2)^3 = \frac{30}{8}n^3 \le \frac{1}{4}(15n^3)$$

$$\delta = 1 \qquad T(n) = 2T(n/2) + 15n^3$$

$$f(n) = 15n^3 \in \Omega(n^{\delta+2}) \qquad T(n) = \Theta(n^3)$$

$$\boxed{\text{Requirement on } f} \qquad \boxed{\text{Implication}}$$

$$\boxed{\text{Case 1}} \quad f(n) \in O(n^6) \text{ for some constant } \varepsilon > 0 \qquad T(n) \in O(n^6)$$

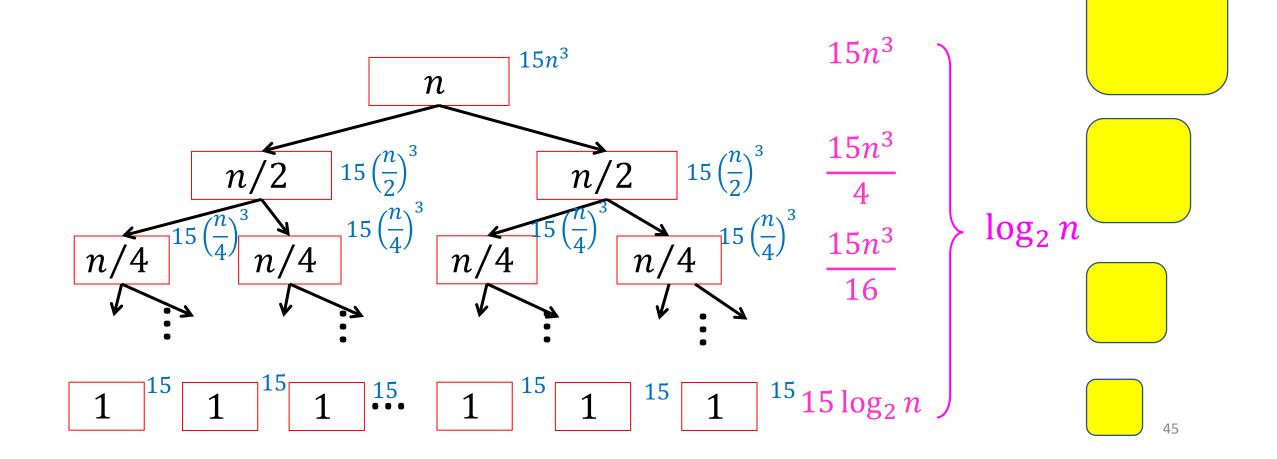
$$\boxed{\text{Case 3}} \quad f(n) \in \Omega(n^{\delta+\varepsilon}) \text{ for some constant } \varepsilon > 0 \qquad T(n) \in \Theta(f(n))$$

$$af\left(\frac{n}{b}\right) \leq cf(n) \text{ for constant } c < 1 \text{ and}$$

$$sufficiently \text{ large } n$$

Master Theorem Example 3 (Visually)

 $T(n) = 2T(n/2) + 15n^3$

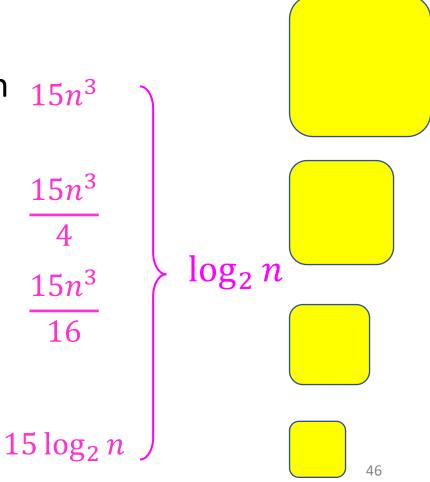


Master Theorem Example 3 (Visually)

$$T(n) = 2T(n/2) + 15n^3$$

Cost is <u>decreasing</u> with the recursion depth $15n^{3}$ (due to high *non-recursive* cost)

Most of the work happening at the top



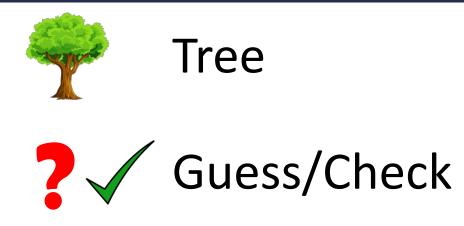
 $15n^{3}$

4

 $15n^{3}$

16

Recurrence Solving Techniques



"Cookbook"

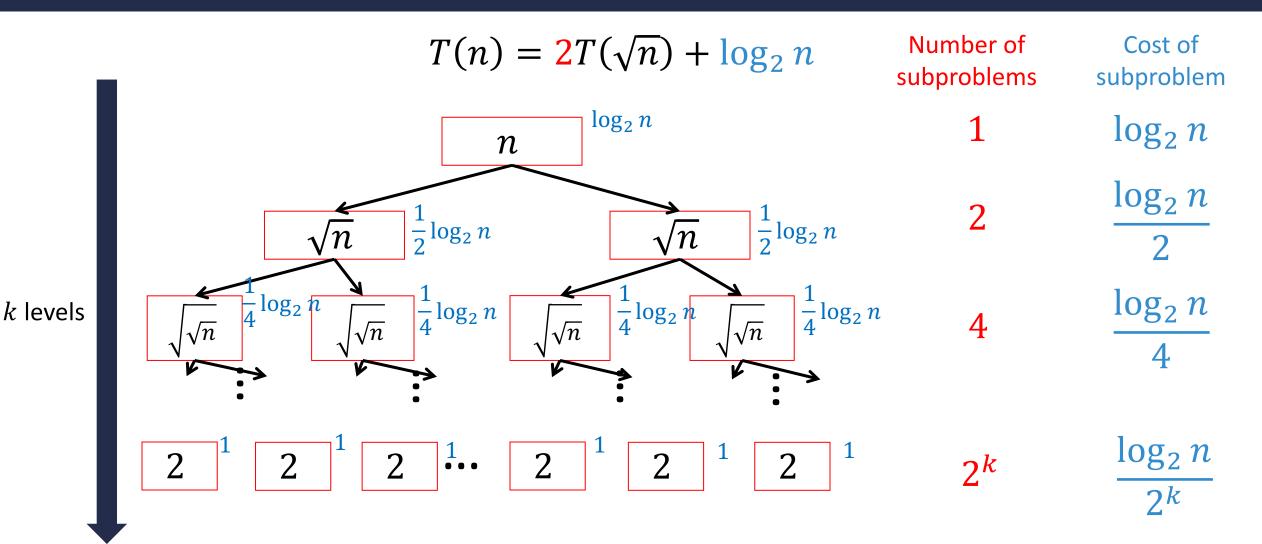
Substitution Method

Idea: Take a "difficult" recurrence and re-express it such that one of our other methods applies

Example:

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

Tree Method



Tree Method

Т	$T(n) = 2T(\sqrt{n}) + \log_2 n$	Number of subproblems	Cost of subproblem
How many levels?	Each iteration, problem size goes from n to $n^{1/2}$	1	$\log_2 n$
Problem size at k^{th} level: $n^{1/2^k}$		2	$\frac{\log_2 n}{2}$
Base case: $n = 2$		4	$\frac{\log_2 n}{4}$
At level k , it should be the d		4	
$n^{1/2^k} = 2 \Rightarrow \frac{1}{2^k} \log_2 n = 1$		2 ^{<i>k</i>}	$\frac{\log_2 n}{2^k}$
$\Rightarrow 2^k = \log_2 n =$	$\Rightarrow k = \log_2 \log_2 n$		

Tree Method

	$T(n) = 2T(\sqrt{n}) + \log_2 n$	Number of subproblems	Cost of subproblem
, , ,		1	$\log_2 n$
$k = \log_2 \log_2 n$ What is the cost?		2	$\frac{\log_2 n}{2}$
Cost at level <i>i</i> : $2^i \cdot \frac{10}{2}$	$\frac{\log_2 n}{2^i} = \log_2 n$	4	$\frac{\log_2 n}{4}$
Total cost: $T(n) =$	$\sum_{i=0}^{g_2 \log_2 n} \log_2 n = \log_2 n \log_2 \log_2$	2 ^k n	$\frac{\log_2 n}{2^k}$

Substitution Method

Idea: Take a "difficult" recurrence and re-express it such that one of our other methods applies

Example:

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

Consider the following substitution: let $n = 2^m$ (i.e., $m = \log_2 n$)

$$T(2^{m}) = 2T\left(2^{\frac{m}{2}}\right) + m$$
$$S(m) = 2S\left(\frac{m}{2}\right) + m$$
$$\Rightarrow S(m) = \Theta(m\log m)$$
$$\Rightarrow T(n) = \Theta(\log n \log \log n)$$

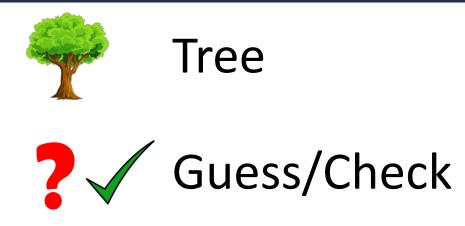
Rewrite recurrence in terms of m

Consider substitution $S(m) = T(2^m)$

Case 2 of Master Theorem

Substitute back for T and n

Recurrence Solving Techniques



"Cookbook"

Substitution