
CS 4102: Algorithms
Lecture 5: Master Theorem

David Wu
Fall 2019

1

1

2

Warm Up

Warm up
Given any 5 points on the unit square, show

there’s always a pair distance ≤ "
"

apart

1

1

1
2

1
22

2
If points 𝑝&, 𝑝" in same quadrant, then 𝑑 𝑝&, 𝑝" ≤ "

"

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

3

Warm Up

Today’s Keywords

Solving recurrences
Cookbook Method
Master Theorem
Substitution Method

4

CLRS Readings: Chapter 4

Homework

HW1 due Thursday, September 12 Saturday, September 14, 11pm
• Start early!
• Written (use Latex!) – Submit both zip and pdf!
• Asymptotic notation
• Recurrences
• Divide and Conquer

5

Recurrence Solving Techniques

6

(induction)

Tree

? Guess/Check

“Cookbook”

Substitution

Induction (Review)

7

Goal: ∀𝑘 ∈ ℕ, 𝑃(𝑘) holds

Base case(s): 𝑃 1 holds

Hypothesis: ∀𝑥 ≤ 𝑥1, 𝑃 𝑥 holds

Inductive step: 𝑃 1 ,… , 𝑃 𝑥1 ⇒ 𝑃 𝑥1 + 1

Guess and Check Blueprint

Show: 𝑇 𝑛 = 𝑂(𝑔 𝑛)
Consider: 𝑔∗ 𝑛 = 𝑐 ⋅ 𝑔(𝑛) for some constant 𝑐
Goal: show ∃𝑛1 such that ∀𝑛 > 𝑛1, 𝑇 𝑛 ≤ 𝑔∗(𝑛)
• (definition of big-O)

Technique: Induction
• Base cases:

• Show 𝑇 1 ≤ 𝑔∗ 1 (sometimes, may need to consider additional base cases)
• Hypothesis:

• ∀𝑛 ≤ 𝑥1, 𝑇 𝑛 ≤ 𝑔∗(𝑛)
• Inductive step:

• Show that 𝑇 𝑥1 + 1 ≤ 𝑔∗ 𝑥1 + 1

8

Need to ensure that in inductive
step, can either appeal to a base

case or to the inductive hypothesis

Recurrence Solving Techniques

9

Tree

? Guess/Check

“Cookbook”

Substitution

Observation

Divide: 𝐷(𝑛) time
Conquer: Recurse on smaller problems of size 𝑠&, … , 𝑠A
Combine: 𝐶(𝑛) time
Recurrence:

• 𝑇 𝑛 = 𝐷 𝑛 + ∑D∈[A] 𝑇(𝑠D) + 𝐶(𝑛)

Many divide and conquer algorithms have recurrences are of form:
• 𝑇(𝑛) = 𝑎 ⋅ 𝑇(𝑛/𝑏) + 𝑓(𝑛)

Mergesort: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛
Divide and Conquer Multiplication: 𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛
Karatsuba Multiplication: 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

10

𝑎 and 𝑏 are constants

General Recurrence

11

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)

𝑛 𝑓(𝑛)

𝑓
𝑛
𝑏

𝑓
𝑛
𝑏𝑓

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

𝑓
𝑛
𝑏" 𝑓

𝑛
𝑏" 𝑓

𝑛
𝑏" 𝑓

𝑛
𝑏"…𝑛

𝑏"
𝑛
𝑏"

𝑛
𝑏"

𝑛
𝑏"

𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1) 𝑓(1)

… … … … … …

1 1 1 1 1 1 1…

…

… …

1

𝑎

𝑎"

𝑎A

Cost of
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏"

Number of
subproblems

𝑘 levels

𝑓 ⁄𝑛 𝑏A

General Recurrence

12

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓(𝑛)
3. Use asymptotic notation to simplify

How many levels?
Problem size at 𝑘PQ level:

Base case:

At level 𝑘, it should be the case that RST = 1

𝑛 = 𝑏A ⇒ 𝑘 = logS 𝑛

𝑛
𝑏A

𝑛 = 1

1

𝑎

𝑎"

𝑎A

Cost of
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏"

𝑓 ⁄𝑛 𝑏A

Number of
subproblems

General Recurrence

13

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓(𝑛)
3. Use asymptotic notation to simplify

1

𝑎

𝑎"

𝑎A

Cost of
subproblem

𝑓(𝑛)

𝑓 ⁄𝑛 𝑏

𝑓 ⁄𝑛 𝑏"

𝑓 ⁄𝑛 𝑏A

Number of
subproblems

What is the cost?

Cost at level 𝑖: 𝑎D ⋅ 𝑓
𝑛
𝑏D

Total cost: 𝑇 𝑛 = Y
DZ1

[\]^ R

𝑎D ⋅ 𝑓
𝑛
𝑏D

𝑘 = logS 𝑛

Three Cases

14

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎"𝑓

𝑛
𝑏"

+ 𝑎_𝑓
𝑛
𝑏_

+⋯+ 𝑎A𝑓
𝑛
𝑏A

Case 1:
Most work happens

at the leaves

Case 2:
Work happens

consistently throughout

Case 3:
Most work happens

at top of tree

𝑘 = logS 𝑛

Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = logS 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = logS 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = logS 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Proof of Case 1

18

We will show weaker version of Case 1:
if 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0, then 𝑇 𝑛 ∈ 𝑂 𝑛c = 𝑂 𝑛[\]^ l

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

Similar argument applies to
show that 𝑇 𝑛 = Ω 𝑛[\]^ l

There exists constants 𝑐, 𝑛1
such that for all 𝑛 > 𝑛1,

𝑓 𝑛 ≤ 𝑐𝑛cde

We will consider 𝑛 ≥ 𝑛1

Proof of Case 1

19

We will show weaker version of Case 1:
if 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0, then 𝑇 𝑛 ∈ 𝑂 𝑛c = 𝑂 𝑛[\]^ l

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎"𝑓

𝑛
𝑏"

+ 𝑎_𝑓
𝑛
𝑏_

+⋯+ 𝑎A𝑓
𝑛
𝑏A

≤ 𝑐 𝑛cde + 𝑎
𝑛
𝑏

cde
+ 𝑎"

𝑛
𝑏"

cde
+ ⋯+ 𝑎A

𝑛
𝑏A

cde
𝑛 > 𝑛1 ⇒ 𝑓 𝑛 ≤ 𝑐𝑛cde

= 𝑐𝑛cde 1 + 𝑎
1
𝑏

cde
+ 𝑎"

1
𝑏"

cde
+ ⋯+ 𝑎A

1
𝑏A

cde

Proof of Case 1

20

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

𝑇 𝑛 ≤ 𝑐𝑛cde 1 + 𝑎
1
𝑏

cde
+ 𝑎"

1
𝑏"

cde
+ ⋯+ 𝑎A

1
𝑏A

cde

= 𝑐𝑛cde 1 +
𝑎

𝑏cde
+

𝑎
𝑏cde

"
+ ⋯+

𝑎
𝑏cde

A

= 𝑐𝑛cde 1 +
𝑎𝑏e

𝑏c
+

𝑎𝑏e

𝑏c

"

+ ⋯+
𝑎𝑏e

𝑏c

A

𝑏c = 𝑏[\]^ l = 𝑎= 𝑐𝑛cde 1 +
𝑎𝑏e

𝑎
+

𝑎𝑏e

𝑎

"

+ ⋯+
𝑎𝑏e

𝑎

A

Proof of Case 1

21

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

𝑇 𝑛 ≤ 𝑐𝑛cde 1 +
𝑎𝑏e

𝑎
+

𝑎𝑏e

𝑎

"

+ ⋯+
𝑎𝑏e

𝑎

A

= 𝑐𝑛cde 1 + 𝑏e + 𝑏"e + ⋯+ 𝑏Ae

= 𝑐𝑛cde Y
DZ1

A

𝑏e D

= 𝑐𝑛cde
𝑏e Aj& − 1
𝑏e − 1

Y
DZ1

o

𝑎D =
𝑎oj& − 1
𝑎 − 1

Proof of Case 1

22

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

𝑇 𝑛 ≤ 𝑐𝑛cde
𝑏e Aj& − 1
𝑏e − 1

𝑘 = logS 𝑛 ⇒ 𝑏A = 𝑛

= 𝑐𝑛cde
𝑏A

e
⋅ 𝑏e − 1

𝑏e − 1

= 𝑐𝑛cde
𝑛e ⋅ 𝑏e − 1
𝑏e − 1

=
𝑐𝑏e

𝑏e − 1𝑛
c −

𝑐
𝑏e − 1𝑛

cde

Proof of Case 1

23

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

𝑇 𝑛 ≤ 𝑐𝑛cde
𝑏e Aj& − 1
𝑏e − 1

𝑘 = logS 𝑛 ⇒ 𝑏A = 𝑛

= 𝑐𝑛cde
𝑏A

e
⋅ 𝑏e − 1

𝑏e − 1

= 𝑐𝑛cde
𝑛e ⋅ 𝑏e − 1
𝑏e − 1

∈ 𝑂 𝑛c 𝑏, 𝑐, 𝜀 are all constants

=
𝑐𝑏e

𝑏e − 1𝑛
c −

𝑐
𝑏e − 1𝑛

cde

Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

24𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

[Merge Sort]

Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

25𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

Step 1: Compute 𝛿 = logS 𝑎 = log" 2 = 1

Step 2: Compare 𝑛c and 𝑓(𝑛)

𝑓 𝑛 = 𝑛 ∈ Θ 𝑛c

Step 3: Check table

[Merge Sort]

Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

26

𝑓 𝑛 = 𝑛 ∈ Θ 𝑛c
𝛿 = 1 [Merge Sort]

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 1

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

27

𝑓 𝑛 = 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 = Θ(𝑛 log 𝑛)
𝛿 = 1 [Merge Sort]

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 1 (Visually)

𝑛

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛/2 𝑛/2

𝑛/4 𝑛/4 𝑛/4 𝑛/4

1 1 1 11 1

𝑛

𝑛

𝑛

𝑛

log" 𝑛

28

Cost is consistent across levels ⇒
Cost increases by log factor (≈ number of levels)

Master Theorem Example 2

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

29𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

Master Theorem Example 2

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

30𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

Step 1: Compute 𝛿 = logS 𝑎 = log" 4 = 2

Step 2: Compare 𝑛c and 𝑓(𝑛)

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛"d& = 𝑂 𝑛cd&

Step 3: Check table

Master Theorem Example 2

31

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛cd&
𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛𝛿 = 2

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 2

32

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛cd& 𝑇 𝑛 = Θ(𝑛")

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛𝛿 = 2

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 2 (Visually)

𝑛 5𝑛

5𝑛
2

5

5𝑛
2

5𝑛
2

𝑛
2

𝑛
2

𝑛
2

𝑛
2

5𝑛
2

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

5𝑛
4

…𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

𝑛
4

5𝑛
4

5 5 5 5 5 5 5 5 5 5 5 5 5

… … … … … … …

1 1 1 1 1 1 1 1 1 1 1 1 1 1…

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2[\]r R ⋅ 5𝑛
⋮

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

Master Theorem Example 2 (Visually)

5𝑛

4
2
⋅ 5𝑛

16
4
⋅ 5𝑛

2[\]r R ⋅ 5𝑛
⋮

𝑇 𝑛 = 4𝑇 ⁄𝑛 2 + 5𝑛

Cost is increasing with the recursion depth
(due to large number of subproblems)

Most of the work happening in the leaves

Master Theorem Example 3

𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

35𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

[Karatsuba]

Master Theorem Example 3

𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛

36𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

[Karatsuba]

Step 1: Compute 𝛿 = logS 𝑎 = log" 3

Step 2: Compare 𝑛c and 𝑓(𝑛)

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛[\]r _de for constant 𝜀 > log" 3 − 1 > 0
Step 3: Check table

Master Theorem Example 3

37

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛cde
𝛿 = log" 3 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛 [Karatsuba]

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 3

38

𝑓 𝑛 = 5𝑛 ∈ 𝑂 𝑛cde
𝛿 = log" 3 𝑇 𝑛 = 3𝑇 ⁄𝑛 2 + 8𝑛 [Karatsuba]

𝑇 𝑛 = Θ(𝑛[\]r _)
Requirement on 𝒇 Implication

Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

Master Theorem Example 4

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

39𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

Master Theorem Example 4

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

40𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛) 𝛿 = logS 𝑎

Step 1: Compute 𝛿 = logS 𝑎 = log" 2 = 1

Step 2: Compare 𝑛c and 𝑓(𝑛)

𝑓 𝑛 = 15𝑛_ ∈ Ω 𝑛_d" = Ω 𝑛cd"

Step 3: Check table

Master Theorem Example 4

41

𝑓 𝑛 = 15𝑛_ ∈ Ω 𝑛cj"

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

𝛿 = 1 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

Master Theorem Example 4

42

𝑓 𝑛 = 15𝑛_ ∈ Ω 𝑛cj"

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

𝛿 = 1 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

Master Theorem Example 4

43

𝑓 𝑛 = 15𝑛_ ∈ Ω 𝑛cj"
𝛿 = 1

Important: For Case 3, need to additionally check that
2𝑓 ⁄𝑛 2 ≤ 𝑐𝑓(𝑛) for constant 𝑐 ≥ 1 and sufficiently large 𝑛

2𝑓 ⁄𝑛 2 = 30 ⁄𝑛 2 _ =
30
8 𝑛_ ≤

1
4 15𝑛_

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

Master Theorem Example 4

44

𝑓 𝑛 = 15𝑛_ ∈ Ω 𝑛cj"

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛cde for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛c

Case 2 𝑓 𝑛 ∈ Θ 𝑛c 𝑇 𝑛 ∈ Θ 𝑛c log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛cje for some constant 𝜀 > 0
AND

𝑎𝑓 R
S
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛

𝛿 = 1
𝑇 𝑛 = Θ(𝑛_)

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

Master Theorem Example 3 (Visually)

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …
1 1 1 … 1 1 1

15𝑛_

15
𝑛
2

_
15

𝑛
2

_

15
𝑛
4

_
15

𝑛
4

_
15

𝑛
4

_

15
𝑛
4

_

15 15 15 1515 15

15𝑛_

15𝑛_

4
15𝑛_

16

15 log" 𝑛

log" 𝑛

45

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

Master Theorem Example 3 (Visually)

15𝑛_

15𝑛_

4
15𝑛_

16

15 log" 𝑛

log" 𝑛

46

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 15𝑛_

Cost is decreasing with the recursion depth
(due to high non-recursive cost)

Most of the work happening at the top

Recurrence Solving Techniques

47

Tree

? Guess/Check

“Cookbook”

Substitution

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies

Example:
𝑇 𝑛 = 2𝑇 𝑛 + log" 𝑛

48

Tree Method

𝑇 𝑛 = 2𝑇 𝑛 + log" 𝑛

49

𝑛

𝑛 𝑛

𝑛 𝑛 𝑛 𝑛

… … … …

2 2 2 … 2 2 2

log" 𝑛

1
2 log" 𝑛

1
2 log" 𝑛

1
4 log" 𝑛

1
4 log" 𝑛

1
4 log" 𝑛

1
4 log" 𝑛

1 1 1 11 1

1

2

4

2A

Cost of
subproblem

log" 𝑛

log" 𝑛
2

log" 𝑛
4

Number of
subproblems

log" 𝑛
2A

𝑘 levels

Tree Method

How many levels?
Problem size at 𝑘PQ level:

Base case:

At level 𝑘, it should be the case that 𝑛&/"T = 2

𝑛 ⁄& "T = 2

𝑛&/"T

𝑛 = 2

𝑇 𝑛 = 2𝑇 𝑛 + log" 𝑛

1

2

4

2A

Cost of
subproblem

log" 𝑛

log" 𝑛
2

log" 𝑛
4

Number of
subproblems

log" 𝑛
2A

Each iteration, problem size
goes from 𝑛 to 𝑛&/"

⇒ 𝑘 = log" log" 𝑛⇒ 2A = log" 𝑛

⇒
1
2A
log" 𝑛 = 1

Tree Method

𝑘 = log" log" 𝑛

What is the cost?

Cost at level 𝑖: 2D ⋅
log" 𝑛
2D

= log" 𝑛

Total cost: 𝑇 𝑛 = Y
DZ1

[\]r [\]r R

log" 𝑛 = log" 𝑛 log" log" 𝑛

𝑇 𝑛 = 2𝑇 𝑛 + log" 𝑛

1

2

4

2A

Cost of
subproblem

log" 𝑛

log" 𝑛
2

log" 𝑛
4

Number of
subproblems

log" 𝑛
2A

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies
Example:

𝑇 𝑛 = 2𝑇 𝑛 + log" 𝑛

Consider the following substitution: let 𝑛 = 2t (i.e.,𝑚 = log" 𝑛)

𝑆 𝑚 = 2𝑆
𝑚
2

+𝑚

𝑇 2t = 2𝑇 2
t
" + 𝑚 Rewrite recurrence in terms of 𝑚

Case 2 of Master Theorem⇒ 𝑆 𝑚 = Θ(𝑚 log𝑚)

Substitute back for 𝑇 and 𝑛⇒ 𝑇 𝑛 = Θ(log 𝑛 log log 𝑛)

Consider substitution 𝑆 𝑚 = 𝑇 2t

Recurrence Solving Techniques

53

Tree

? Guess/Check

“Cookbook”

Substitution

