CS 4102: Algorithms

Lecture 5: Master Theorem

David Wu
Fall 2019

Warm up ¢

Given any 5 points on the unit square, show

. 2
there’s always a pair distance < g apart

If points pq, p, in same quadrant, then d(pq,p;) < g A2 2 O
2

Given 5 points, two must share the same quadrant 1]~

Pigeonhole Principle!

Today’s Keywords

Solving recurrences
Cookbook Method
Master Theorem

Substitution Method

CLRS Readings: Chapter 4

HW1 due Fhursday-September12 Saturday, September 14, 11pm
e Start early!

e Written (use Latex!) — Submit both zip and pdf!
* Asymptotic notation

* Recurrences

* Divide and Conquer

Recurrence Solving Techniques

Tree

?/‘Guess/Check‘ (induction)

“Cookbook”

Substitution

Induction (Review)

Goal: Vk € N, P(k) holds
Base case(s): P(1) holds
Hypothesis: Vx < x4, P(x) holds

Inductive step: P(1),..,P(xy) = P(xy + 1)

Guess and Check Blueprint

Show: T(n) = 0(g(n))
Consider: g,.(n) = c - g(n) for some constant ¢

Goal: show dn, such that vn > n,, T(n) < g.(n)
 (definition of big-O)

Technique: Induction
* Base cases:

* Show T (1) < g.(1) (sometimes, may need to consider additional base cases)

* Hypothesis:

* Vn<x,T(n) < g.(n) Need to ensure that in inductive
* Inductive step: step, can either appeal to a base

e Showthat T(xo + 1) < g.(xo + 1) case or to the inductive hypothesis

Recurrence Solving Techniques

Tree

?/ Guess/Check

| “Cookbook” |

Substitution

Observation

Divide: D(n) time
Conquer: Recurse on smaller problems of size sq, ..., Sk

Combine: C(n) time
e Tm) =D(n) + + C(n)

Many divide and conquer algorithms have recurrences are of form:

* T(n) =a-T(n/b)+f(n) a and b are constants

Mergesort: T(n) = 2T(n/2) + n
Divide and Conquer Multiplication: T(n) = 4T(n/2) + 5n
Karatsuba Multiplication: T(n) = 3T(n/2) + 8n

10

General Recurrence

T(Tl) = aT(n/b) + f(n) Number of Cost of

subproblems subproblem
n | rm 1 f(n)
a f(n/b)

k levels

@ @ f(/b?)

f(@@) ak f(n/b"")

General Recurrence

3. Use asymptotic notation to simplify Number of Cost of
T(n) — aT(n/b) + f(n) subproblems subproblem
1 f(n)
How many levels?
n
Problem size at k™ level: X a f(n/b)

Basecase: n=1

a® f(n/b?)

At level k, it should be the case that bik =1

n=>bk=>k=1log,n

a” f(n/b*)

General Recurrence

3. Use asymptotic notation to simplify Number of Cost of
T(n) — aT(n/b) + f(n) subproblems subproblem

1 fn)

k =log,n
a f(n/b)
What is the cost?
Cost at level i: a'- f (E)
| b a? f(n/b?)
logp n

Total cost: T(n) = z a f(%) ak f(n/bk)

=0

Three Cases

7 = 0+)+ () + 21 () -+t (1)

k =log,n
Case 1: (] Ve D
Most work happens
at the leaves
(8 /)
Case 2:
Work happens
consistently throughout
4)
Case 3:
Most work happens
at top of tree D
_ J D 14

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € O(n‘s_e) for some constant € > 0 T(n) € G)(n5)

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘g)
Case 2 f(n) € G)(n5) T(n) € @(n5 log n)

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a
| Requirementonf | Implication
Casel f(n) € 0(n5_8) for some constant & > 0 T(n) € G)(nS)
Case 2 f(n) € 0(n®) T(n) € O(n° logn)
f(n) e Q(n5+8) for some constante > 0
AND
T(n) € 0(f(n))

Case 3
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

Proof of Case 1

T(n) =aT(n/b) + f(n) 0 = log, a
We will show weaker version of Case 1:
if f(n) € O(n‘g_g) for some constant € > 0, thenT(n) € 0(n5) = O(nlogb a)

There exists constants ¢, n, Similar argument applies to

show that T(n) = Q(nlogb a)

such that for alln > n,,
f(n) < cn®¢

We will consider n = n,

18

Proof of Case 1

T(n) =aT(n/b) + f(n) 0 = log, a
We will show weaker version of Case 1:
if f(n) € 0(n5_8) for some constant & > 0, then T(n) € 0(n5) = O(nlogb a)

700 = o0+ af () (35) a7 (35 + -+ 7 3

so(weraf) +a(g) +era(E)) nmmes st

19

Proof of Case 1

T(n) =aT(n/b) + f(n) 0 = log, a

1720~ 1 6—¢ 1 6—¢
5~ K
T(n) < cn°® 1+a(E) + a’ (b_z) +-4a (b_k) >

e 2 e\ k
|(a2) _|_..._|_<a2>> po = plogra — 4

20

Proof of Case 1

T(n) =aT(n/b) + f(n) 0 = log, a
&) 2 & k
T(n) < cn®¢ (1 + <ab >+ (ab) + ot (ab))
a a a
= cn®¢(1 + b + b% + -+ + b*¥)
k
— Cnd—e((bE)i>
2

k+1
o—¢ (bg) -1
b¢ — 1

L+1_1

= Cn
a—1

21

i
QN-
|l
Q

Proof of Case 1

T(n) =aT(n/b) + f(n) 0 = log, a
T(n) <cn¢ (b2:+_11_ !
RNLTE
N "Eb'gbiI 1 k =log,n=>bfk=n
- b€Cb—g1"5 _bec— e

22

Proof of Case 1

T(n) =aT(n/b) + f(n) 0 = log, a
T(n) <cn¢ (b2:+_11_ !
S
N "Eb'gbiI 1 k =log,n=>bfk=n

€ 0(n?%) b, ¢, € are all constants

23

Master Theorem Example 1

T(n) =2T(n/2) +n [Merge Sort]

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 1

T(n) =2T(n/2)+n [Merge Sort]

Step 1: Compute o =log, a =log, 2 =1

Step 2: Compare n° and f(n)

f(n)=ne @(n‘s)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 1

5 =1 T(n)=2T(n/2) +n [Merge Sort]
f(n) =ne @(n5)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 1

5 =1 T(n)=2T(n/2) +n [Merge Sort]
f(n) =n € 6(n’) T(n) = 0(nlogn)

- Requirement on f Implication

Case 2 f(n) € @(n5) T(n) € @(n5 log n)

Master Theorem Example 1 (Visually)

T(n) =2T(n/2)+n

n n)
n
n/2 "2 n/2 e n
"n//4\l 4 ‘(/4\ n/4
n/4 n/4 " n/4 n/4 n

1

1 ! L. 1 1

1 1 1 1 1 n J

1

Cost is consistent across levels =
Cost increases by log factor (= number of levels)

28

Master Theorem Example 2

T(n) =4T(n/2) + 5n

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 2

T(n) =4T(n/2) + 5n

Step 1: Compute 0 = log, a = log, 4 = 2

Step 2: Compare n° and f(n)
f(n) =5n€0(n*™") = 0(n°)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 2

5 =2 T(n) =4T(n/2) + 5n
f(n) =5n € 0(n°1)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 2

5 =2 T(n) =4T(n/2) + 5n
f(n) =5n€ 0(n°1) T(n) = 0(n%)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘S)

Master Theorem Example 2 (Visually)

T(n) = 4T(n/2) + 5n

()

n o1 5n
o]

> n
s, 0

2 n

: : : : . |

1/l a 15151515151515 29821 . 5n D

Master Theorem Example 2 (Visually)

T(n) =4T(n/2) + 5n

O
. . . . 5n
Cost is increasing with the recursion depth
(due to large number of subproblems) 4 - D
— 0 n
Most of the work happening in the leaves
o,
2 n

Master Theorem Example 3

T(n) =3T(n/2) + 8n [Karatsubal]

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 3

T(n)=3T(n/2)+ 8n [Karatsubal]

Step 1: Compute § = log, a = log- 3
Step 2: Compare n° and f(n)

f(n) =5n € 0(n'°8237¢) for constant € > log, 3 —1 > 0
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 3

§ = log, 3 T(n)=3T(n/2)+ 8n [Karatsubal]
f(n) = 5n € 0(n°¢)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 3

§ = log, 3 T(n)=3T(n/2)+ 8n [Karatsubal]
f(n) =5n € 0(n°~*) T(n) = ©(n'°82 %)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(n‘S)

Master Theorem Example 4

T(n) =2T(n/2) + 15n3

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 4

T(n) =2T(n/2) + 15n°

Step 1: Compute o =log, a =log, 2 =1

Step 2: Compare n° and f(n)
f(n) = 15n3 € Q(n372) = Q(n°?)
Step 3: Check table

T(n) =aT(n/b) + f(n) 6 =log, a

Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

- Requirement on f Implication

Casel f(n) € 0(n5_8) for some constant € > 0 T(n) € G)(nS)
Case 2 f(n) € @(n5) T(n) € @(n5 log n)
f(n) € Q(n5+8) for some constant e > 0

- . AND
ase
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

- Requirement on f Implication

f(n) € Q(n5+8) for some constant e > 0
AND

Case 3
af (g) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 4

5 =1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?)

Important: For Case 3, need to additionally check that
2f(n/2) < cf(n) for constant ¢ = 1 and sufficiently large n

2f(n/2) =30(n/2)° = ?nfﬂ < %(151’13)

Master Theorem Example 4

5=1 T(n) =2T(n/2) + 15n°
f(n) = 15n3 € Q(n°*?) T(n) = 0(n>)

- Requirement on f Implication

f(n) € Q(n5+8) for some constant e > 0
AND

Case 3
af (g) < cf(n) for constant ¢ < 1 and

sufficiently large n

T(n) € 0(f(n))

Master Theorem Example 3 (Visually)

T(n) =2T(n/2) + 15n3

M\ 15 (g) 5 Z) Z ’ 15n3 > 10g2 n

Master Theorem Example 3 (Visually)

T(n) =2T(n/2) + 15n3

Cost is decreasing with the recursion depth (5,3
(due to high non-recursive cost)

-
-
. 15n3
Most of the work happening at the top i D

15n3 > logz n
16

15log, n D

Recurrence Solving Techniques

Tree

?/ Guess/Check

“Cookbook”

Substitution |

47

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies

Example:
P T(n) = 2T(Hn) +log, n

48

k levels

Tree Method

T(n) = 2T(\n) + log, n

log, n

Number of
subproblems

1

Cost of

subproblem

log, n

log, n
2
log, n
4

log, n

49

Tree Method

T(n) =2THn) + log, n Number of Cost of

subproblems subproblem
Each iteration, problem size 1 lng n
How many levels? goes from n to n'/2

A 5 log, n

Problem size at k™ level: p1/2 5
Base case: n = 2 A log, n

. 119k 4

At level k, it should be the case thatn /2% =2

n/2* — 9 => —log,n=1 K log, n

2k 2 ok

= 2* =log,n = k = log, log,n

Tree Method

T(n) =2THn) + log, n Number of Cost of

subproblems subproblem
1 log, n
k = log, log, n

gz gz , lng n

What is the cost? z
. log;n log, n

Cost at level i: 2 - T log, n 4 42
logz lng n Zk 10g2 n

Total cost: T(n) = z log, n = log, nlog, log, n 2k

1=0

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies

Example:
T(n) =2T(/n) +log, n

Consider the following substitution: let n = 2™ (i.e., m = log, n)

m
T(2™) = 2T (27) +m Rewrite recurrence in terms of m
S(m) = 28 (%) +m Consider substitution S(m) = T(2™)
= S(m) = 0(mlogm) Case 2 of Master Theorem

= T(n) = O(lognloglogn) Substitute back for T and n

Recurrence Solving Techniques

Tree

?/ Guess/Check
“Cookbook”

Substitution

53

