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Warm Up

Given 5 points on the unit equilateral triangle, 
show there’s always a pair of distance ≤ "

#
apart

1

1

1



3

Warm Up

Given 5 points on the unit equilateral triangle, 
show there’s always a pair of distance ≤ "

#
apart

If points 𝑝", 𝑝# in same quadrant,
then 𝑑 𝑝", 𝑝# ≤ "

#

Given five points, two must 
share the same quadrant

Pigeonhole Principle!

1

1
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Today’s Keywords

Closest pair of points (HW2)
Matrix multiplication (if we have time)
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CLRS Readings: Chapter 4



Homework

HW1 due Thursday, September 12 Saturday, September 14, 11pm
• Start early!
• Written (use LaTeX!) – Submit both zip and pdf!
• Asymptotic notation
• Recurrences
• Divide and conquer

HW2 released today, due Thursday, September 19, 11pm
• Programming assignment (Python or Java)
• Divide and conquer (Closest pair of points)
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Recurrence Solving Techniques
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Tree

? Guess/Check

“Cookbook”

Substitution



Master Theorem

𝑇 𝑛 = 𝑎𝑇 ⁄𝑛 𝑏 + 𝑓(𝑛)
𝛿 = log5 𝑎

Requirement on 𝒇 Implication
Case 1 𝑓 𝑛 ∈ 𝑂 𝑛9:; for some constant 𝜀 > 0 𝑇 𝑛 ∈ Θ 𝑛9

Case 2 𝑓 𝑛 ∈ Θ 𝑛9 𝑇 𝑛 ∈ Θ 𝑛9 log 𝑛

Case 3

𝑓 𝑛 ∈ Ω 𝑛9A; for some constant 𝜀 > 0
AND

𝑎𝑓 B
5
≤ 𝑐𝑓(𝑛) for constant 𝑐 < 1 and 

sufficiently large 𝑛

𝑇 𝑛 ∈ Θ 𝑓 𝑛



Three Cases
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𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎#𝑓

𝑛
𝑏#

+ 𝑎F𝑓
𝑛
𝑏F

+⋯+ 𝑎H𝑓
𝑛
𝑏H

Case 1:
Most work happens 

at the leaves

Case 2:
Work happens  

consistently throughout

Case 3:
Most work happens 

at top of tree

𝑘 = log5 𝑛



Recurrence Solving Techniques
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Tree

? Guess/Check

“Cookbook”

Substitution



Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our 
other methods applies
Example:

𝑇 𝑛 = 2𝑇 𝑛 + log# 𝑛

Consider the following substitution: let 𝑛 = 2K (i.e.,𝑚 = log# 𝑛)

𝑆 𝑚 = 2𝑆
𝑚
2

+𝑚

𝑇 2K = 2𝑇 2
K
# + 𝑚 Rewrite recurrence in terms of 𝑚

Case 2 of Master Theorem⇒ 𝑆 𝑚 = Θ(𝑚 log𝑚)

Substitute back for 𝑇 and 𝑛⇒ 𝑇 𝑛 = Θ(log 𝑛 log log 𝑛)

Consider substitution 𝑆 𝑚 = 𝑇 2K



Robbie’s Yard
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There Has to be an Easier Way!

12



Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

1
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4
5

6

7

8

ROBO

M
ulcher

3000



Closest Pair of Points
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1
2

3

4
5

6

7

8

Given: A list of points

Return: Pair of points with 
smallest distance apart



Algorithm: Test every 
pair of points, return the 
closest

Closest Pair of Points: Naïve
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1
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5
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7

8

Given: A list of points

Return: Pair of points with 
smallest distance apart

𝑂(𝑛#)Running Time:
Goal: 𝑂 𝑛 log 𝑛



Closest Pair of Points: Divide and Conquer

1
2
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4
5
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7

8

Divide: How?
At median 𝑥 coordinate
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Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

Conquer: 

LeftPoints RightPoints

Recursively find closest pairs 
from LeftPoints and RightPoints

17

Divide: 
At median 𝑥 coordinate



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
Return smaller of left 
and right pairs Problem? ?

18

Conquer: 

Divide: 
At median 𝑥 coordinate

Recursively find closest pairs 
from LeftPoints and RightPoints



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 

?

Case 1: Closest pair is 
completely in LeftPoints or 
RightPoints

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

19



Spanning the Cut

1
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3

4
5

6
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8

LeftPoints RightPoints

𝑑P

𝑑Q

2𝑑
20

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

Compare all pairs of points within 
𝑑 = min{𝑑P, 𝑑Q} of the cut

How many are there?



Spanning the Cut

1
2

3

4
5
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7

8

LeftPoints RightPoints

𝑑P

𝑑Q

2𝑑
𝑇 𝑛 = 2𝑇

𝑛
2
+ Ω 𝑛# ∈ Ω 𝑛#
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Compare all pairs of points within 
𝑑 = min{𝑑P, 𝑑Q} of the cut

How many are there?

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

In the worst case, all of the points!



Spanning the Cut

1
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4
5

6
7

8

LeftPoints RightPoints

𝑑P

𝑑Q

2𝑑
𝑇 𝑛 = 2𝑇

𝑛
2
+ Ω 𝑛# ∈ Ω 𝑛#
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Compare all pairs of points within 
𝑑 = min{𝑑P, 𝑑Q} of the cut

How many are there?

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

In the worst case, all of the points!

Do we need to test every 
pair of points in the 
boundary region?



Spanning the Cut

1
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5
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8

LeftPoints RightPoints

𝑑P

𝑑Q

2𝑑
23

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

Observation: We don’t need 
to test all pairs!

Only need to test points within 
distance 𝑑 of each another



Reducing Search Space
2 ⋅ 𝑑

𝑑
2

𝑑
2

Divide the boundary into 
squares with dimension ⁄𝑑 2

How many points can be in a 
square?

24

Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

at most 1

𝑑
2



Reducing Search Space

Divide the boundary into 
squares with dimension ⁄𝑑 2
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Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

2 ⋅ 𝑑

7
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

How many squares can contain a 
point < 𝑑 away and with smaller 
𝑦-coordinate?

at most 15



Reducing Search Space

Divide the boundary into 
squares with dimension ⁄𝑑 2
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Case 2: Closest pair spans our 
“cut”

Need to test points across the 
cut

2 ⋅ 𝑑

7
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

How many squares can contain a 
point < 𝑑 away and with smaller 
𝒚-coordinate?

at most 15

Why only consider points 
with smaller 𝑦-coordinate?



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

boundary points



Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

boundary points

Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Looks like another 𝑂 𝑛 log 𝑛
algorithm – combine step is still 

too expensive



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 𝑦-

coordinate

Sorting boundary points by 𝑦-
coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

boundary points



Listing Points in the Boundary

1
2

3

4
5

6

7

8

30

LeftPoints:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝑑",[
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), 𝑑b,c
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Boundary Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Construct list of points in the boundary
• Sort boundary points by 𝑦-coordinate
• Compare each point in boundary to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

boundary points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the boundary 
(sorted by 𝑦-coordinate)

• Compare each point in boundary to 15 
points above it and save the closest pair

• Output closest pair among left, right, and 
boundary points



Closest Pair of Points: Divide and Conquer

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the boundary 
(sorted by 𝑦-coordinate)

• Compare each point in boundary to 15 
points above it and save the closest pair

• Output closest pair among left, right, and 
boundary points

Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem: 
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)



Matrix Multiplication

33

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛F)

𝑛

𝑛



Matrix Multiplication Divide and Conquer
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎j 𝑎k
𝑎l 𝑎"m 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏j 𝑏k
𝑏l 𝑏"m 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

Divide:



Matrix Multiplication Divide and Conquer
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎j 𝑎k
𝑎l 𝑎"m 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐴"," 𝐴",#

𝐴#," 𝐴#,#

𝐴𝐵 =
𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏j 𝑏k
𝑏l 𝑏"m 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

𝐵"," 𝐵",#

𝐵#," 𝐵#,#

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

# Cost of 
additions

Combine:



Matrix Multiplication Divide and Conquer
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𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

#

𝑇 𝑛 = 8𝑇
𝑛
2
+ 𝑛#

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛#

𝑛nopq r = 𝑛nops k = 𝑛F
Case 1!

𝑇 𝑛 = Θ(𝑛F)
Can we do better?



Matrix Multiplication D&C

37

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎j 𝑎k
𝑎l 𝑎"m 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐴"," 𝐴",#

𝐴#," 𝐴#,#

𝐴𝐵 =
𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏j 𝑏k
𝑏l 𝑏"m 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

𝐵"," 𝐵",#

𝐵#," 𝐵#,#

Idea: Use a Karatsuba-like technique on this



Strassen’s Algorithm

38

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎j 𝑎k
𝑎l 𝑎"m 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐴"," 𝐴",#

𝐴#," 𝐴#,#
𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏j 𝑏k
𝑏l 𝑏"m 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

𝐵"," 𝐵",#

𝐵#," 𝐵#,#
Calculate:
𝑄" = 𝐴"," + 𝐴#,# (𝐵"," + 𝐵#,#)
𝑄# = 𝐴#," + 𝐴#,# 𝐵","
𝑄F = 𝐴","(𝐵",# − 𝐵#,#)
𝑄b = 𝐴#,#(𝐵#," − 𝐵",")

𝑄c = 𝐴#," − 𝐴"," (𝐵"," + 𝐵",#)
𝑄[ = 𝐴"," + 𝐴",# 𝐵#,#

𝑄j = 𝐴",# − 𝐴#,# (𝐵#," + 𝐵#,#)

𝐴𝐵 = 𝑄" + 𝑄b − 𝑄[ + 𝑄j 𝑄F + 𝑄[
𝑄# + 𝑄b 𝑄" − 𝑄# + 𝑄F + 𝑄c

Find 𝐴𝐵:

7 Multiplications 18 Additions

𝑇 𝑛 = 7𝑇
𝑛
2
+ 18

𝑛#

4



Strassen’s Algorithm
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𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛#

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛#

𝑛nopq r = 𝑛nops j ≈ 𝑛#.kmj
Case 1!

𝑇 𝑛 = Θ 𝑛nops j ≈ Θ(𝑛#.kmj)
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𝑛F

𝑛nops j



Is This the Fastest?

41

Best possible is still unknown

Trivial lower bound: Ω 𝑛#


