CS 4102: Algorithms

Lecture 6: Closest Pair of Points

David Wu
Fall 2019

Given 5 points on the unit equilateral triangle,
: . 1
show there’s always a pair of distance < > apart

Given 5 points on the unit equilateral triangle,
: . 1
show there’s always a pair of distance < > apart

If points p;, », in same quadrant,
then d(pq, p2) < %

Given five points, two must
share the same quadrant

Pigeonhole Principle!

3

Today’s Keywords

Closest pair of points (HW?2)
Matrix multiplication (if we have time)

CLRS Readings: Chapter 4

HW1 due Fhursday-September12 Saturday, September 14, 11pm
e Start early!

e Written (use LaTeX!) — Submit both zip and pdf!
* Asymptotic notation

* Recurrences

* Divide and conquer

HW?2 released today, due Thursday, September 19, 11pm
* Programming assignment (Python or Java)
* Divide and conquer (Closest pair of points)

Recurrence Solving Techniques

Tree

?/ Guess/Check

| “Cookbook” |

Substitution

Master Theorem

T(n) =aT(n/b) + f(n)

6 =log, a
| Requirementonf | Implication
Casel f(n) € 0(n5_8) for some constant & > 0 T(n) € G)(nS)
Case 2 f(n) € 0(n®) T(n) € O(n° logn)
f(n) e Q(n5+8) for some constante > 0
AND
T(n) € 0(f(n))

Case 3
af (%) < cf(n) for constant ¢ < 1 and

sufficiently large n

Three Cases

7 = 0+)+ () + 21 () -+t (1)

k =log,n
Case 1: (] Ve D
Most work happens
at the leaves
(8 /)
Case 2:
Work happens
consistently throughout
4)
Case 3:
Most work happens
at top of tree D
- /] 8

Recurrence Solving Techniques

Tree

?/ Guess/Check

“Cookbook”

Substitution |

Substitution Method

Idea: Take a “difficult” recurrence and re-express it such that one of our
other methods applies

Example:
T(n) =2T(/n) +log, n

Consider the following substitution: let n = 2™ (i.e., m = log, n)

m
T(2™) = 2T (27) +m Rewrite recurrence in terms of m
S(m) = 28 (%) +m Consider substitution S(m) = T(2™)
= S(m) = 0(mlogm) Case 2 of Master Theorem

= T(n) = O(lognloglogn) Substitute back for T and n

’s Yard

Robbie

There Has to be an Easier Way!

Constraints: Trees and Plants

How wide can the robot be?

Objective: find closest pair of trees

Closest Pair of Points

Given: A list of points @ @

Return: Pair of points with
smallest distance apart @

14

Closest Pair of Points: Naive

Given: A list of points @% ___ 20

Return: Pair of points with @
smallest distance apart @

Algorithm: Test every
pair of points, return the
closest @

Running Time: 0(n?*) ©
Goal: O(nlogn)

Closest Pair of Points: Divide and Conquer

Divide: How? ® ©)
At median x coordinate

Closest Pair of Points: Divide and Conquer

Divide: ® @

At median x coordinate

Conquer: ®
Recursively find closest pairs ®

from LeftPoints and RightPoints

N

17 LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Divide: ® @

At median x coordinate

Conquer: ®
Recursively find closest pairs ®

from LeftPoints and RightPoints

Combine:
Return smaller of left
and right pairs Problem? ©)

18 LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Combine: ®

Case 1: Closest pair is
completely in LeftPoints or

RightPoints ®
Case 2: Closest pair spans our
llcutﬂ

Need to test points across the
cut

19 LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our
“cut

”

Need to test points across the
cut

Compare all pairs of points within
d = min{d;, dp} of the cut

How many are there?

20

®

LeftPoints

RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ @
“cut”
Need to test points across the < @
cut @
Compare all pairs of points within)
d = min{d;, dp} of the cut
How many are there? @ ©
In the worst case, all of the points!
T(n) = 27 (5) + 0(?) € A(n?) 9y ®
5 LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ @
llcutﬂ
Need to test points across the @
cut G
Compare all AANE need to test every)
d = min{d,, pair of points in the ®
How many a boundary region? ©
In the worst case, all of the points!
n
T(n) = 2T (=) + Q(n®) € Q(n?
(W) = 2T (5) + 0(m?) € a(n?) @, ®
. LeftPoints RightPoints

Spanning the Cut

Case 2: Closest pair spans our @ Q@
llcutﬂ
Need to test points across the @
cut G
Observation: We don’t need)
to test all pairs! ®
@

Only need to test points within
distance d of each another ®

2| ®©

23 LeftPoints RightPoints

Reducing Search Space

Case 2: Closest pair spans our 4—2 . d >
llcutﬂ 5
Need to test points across the
cut = =

Divide the boundary into
squares with dimension d /2

d
How many points can be in a 7 |
square? atmostl SUSUINSUS SUNUSSN WU S——
d 4 |

Reducing Search Space

Case 2: Closest pair spans our
llcutﬂ

Need to test points across the
cut

Divide the boundary into
squares with dimension d /2

How many squares can contain a
point < d away and with smaller

y-coordinate?
s at most 15

Reducing Search Space

Case 2: Closest pair spans our 42—>
llcutﬂ |

Need to test pOintS across the """"""""""""
cut

Why only consider points

with smaller y-coordinate?

point < d away and with smaller

y-coordinate?
26 at most 15

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair @
of points in each list @

Combine:

e Construct list of points in the boundary

* Sort boundary points by y-coordinate

 Compare each point in boundary to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and @
boundary points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate @

Looks like another O(nlogn)

algorithm — combine step is still ® @
too expensive

Combine:

e Construct list of points in poundary

* Sort boundary points by y-coordinate

 Compare each point in boundary to 15 points
above it and save the closest pair

* OQutput closest pair among left, right, and @
boundary points

LeftPoints RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

Construct list of points in the boundary

Sort boundary points by y-coordinate

Compare each point in boundary to 15 points

above it and save the closest pair —
Output closest pair among left, right, and

boundary points

Solution: Maintain additional

information in the recursion

* Minimum distance among pairs of
points in the list

* List of points sorted according to y-
coordinate

Sorting boundary points by y-
coordinate now becomes a merge

Listing Points in the Boundary

LeftPoints:
Closest Pair: (1,5), d; 5
Sorted Points: [3,7,5,1]

RightPoints:
Closest Pair: (4,6), d4 ¢
Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]
Boundary Points: [8,7,6,5,2]

Both of these lists can be computed

by a single pass over the lists

LeftPoints

®

RightPoints

Closest Pair of Points: Divide and Conquer

Initialization: Sort points by x-coordinate Initialization: Sort points by x-coordinate
Divide: Partition points into two lists of points Divide: Partition points into two lists of points
based on x-coordinate based on x-coordinate

Conquer: Recursively compute the closest pair Conquer: Recursively compute the closest pair
of points in each list of points in each list

Combine: ‘ Combine:

Construct list of points in the boundary * Merge sorted list of points by y-coordinate
Sort boundary points by y-coordinate and construct list of points in the boundary
Compare each point in boundary to 15 points (sorted by y-coordinate)

above it and save the closest pair * Compare each point in boundary to 15
Output closest pair among left, right, and points above it and save the closest pair
boundary points e Qutput closest pair among left, right, and

boundary points

Closest Pair of Points: Divide and Conquer

. o O(nlogn)
What is the running time?
O(nlogn) o)
2T(n/2)
T(n)
O(n)
T(n) =2T(n/2) +06O(n)
O(n)
Case 2 of Master’s Theorem: (1)

T(n) = 0(nlogn)

Initialization: Sort points by x-coordinate

Divide: Partition points into two lists of points
based on x-coordinate

Conquer: Recursively compute the closest pair
of points in each list

Combine:

* Merge sorted list of points by y-coordinate
and construct list of points in the boundary
(sorted by y-coordinate)

 Compare each point in boundary to 15
points above it and save the closest pair

e Qutput closest pair among left, right, and
boundary points

Matrix Multiplication

n
1 2 31 [2] [4] |6
nij4 5 6|X]|8| 10| 12
7 8 91 114] (16| (18
2+ 16+ 42 4

+20+48 6+ 24+ 54

60 72 384
132 162 192

204 252 300
Run time? 0(n°) .

Matrix Multiplication Divide and Conquer

Multiply nXn matrices (A and B)
Divide:

34

Matrix Multiplication Divide and Conquer

Multiply nXn matrices (A and B)

A1 J Aq Bq4 J B4,
A=\ ; < B =) .
i Az q J i Az] B; 1] \ B, |
Combine:
AB = [A1,1B1,1 +A12B21 A11Bi2 t A1,232,2]
Ap1B11 +Az2B71 Az1Bi + A28,

Runtime? T(n)=8T (g) +| 4 (g) ggzltt(i);ns

35

Matrix Multiplication Divide and Conquer

T(n) = 8T (E) + 4 (E)

2

2
n
2

2

T(n)=8T()+n2

a=8,b=2f(n) =n?
Case 1!
nlogr a — pl0g28 — 4,3

T(n) = 6(n°)
Can we do better?

36

Matrix Multiplication D&C

Multiply nXn matrices (A and B)

AB =

ldea: Use a Karatsuba-like technique on this

37

Strassen’s Algorithm

-

Multiply nXn matrices (A and B

A1 J Aq B4 J B4,
A= > | B
A2,1 J | AZ)Z] Bz)l] B2,2
Calculate: Find AB:
=(41;+ A Bi{+B
O=(tatAea)Brat B | 10,40 —0s+0Q; Qs+ 0s
Q2 = (A2 + 422)B1s 1 e+ Q1 — Q2+ Q3 + Qs
3 = A1,1(B1,2 - Bz,z)
Qs = A22(B21 — B11) 7 Multiplications 18 Additions
Qs = (411 + A12)B2> 5
Qs = (A1 — A11)(By1 + B12) T(n) =7T (E) + 18 v
Q7 = (A12 — A22)(B21 + Ba3) 2 4 .

Strassen’s Algorithm

T(n) = 7T(Z) | an

9
a=7b=2f(n) =§n2
Case 1!

nlogb a — nlogz 7 ~ 12807

T(Tl) — @(nlogz 7) ~ @(le'807)

39

-1000000

-800000 /

‘600000 /

INNEREREREERRRRRRARERE RRRRRARRRRERE VAR /
NENEENANERNNERNANRANEAEN //

-200000
log, 7

\\
\
\

— -—ap'_-‘-":’éo 40 50 60 70 80 90 100-

Is This the Fastest?

naive
29 - Best possible is still unknown
I Strassen Pan 2
28 ¢ vy Trivial lower bound: Q(n<)
2.7
2.6 -
i Schonhage
2.5 i Coppersmith, Winograd Strassen
2.4 i Coppersmith, Winograd Stothers
Williams
I TR S N T T Y N B | TR B T R | IR Year 41
1950 1960 1970 1980 1990 2000 2010

