
CS 4102: Algorithms
Lecture 8: Quickselect, Median of Medians

David Wu
Fall 2019

Warm Up

2

Guess the solution to this recurrence:

𝑇 𝑛 = 𝑇
𝑛
5 + 𝑇

7𝑛
10 + 𝑐 ⋅ 𝑛

where 𝑐 ≥ 1
is a constant

Warm Up

3

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛

𝑛
5 +

7𝑛
10 =

9𝑛
10 < 𝑛

If this was 𝑇 /0
12

, then can
use Master’s Theorem to

conclude Θ 𝑛

Guess: Θ 𝑛
Suffices to show 𝑂 𝑛 since non-recursive cost is already Ω 𝑛

Warm Up

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛
Claim: 𝑇 𝑛 ≤ 10𝑐𝑛

Base Case: 𝑇 0 = 0
𝑇 1 = 1 ≤ 10𝑐 which is true since 𝑐 ≥ 1

Strictly speaking, we can handle any
𝑐 > 0, but assuming 𝑐 ≥ 1 to

simplify the analysis here

Warm Up

5

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛
Inductive hypothesis: ∀𝑛 ≤ 𝑥2 : 𝑇 𝑛 ≤ 10𝑐𝑛

𝑇 𝑥2 + 1

Inductive step:

≤
1
5 +

7
10 10𝑐 𝑥2 + 1 + 𝑐(𝑥2 + 1)

= 9𝑐 𝑥2 + 1 + 𝑐 𝑥2 + 1 = 10𝑐(𝑥2 + 1)

= 𝑇
1
5
𝑥2 + 1 + 𝑇

7
10

𝑥2 + 1 + 𝑐(𝑥2 + 1)

Today’s Keywords

Divide and Conquer
Sorting
Quicksort
Median
Order Statistic
Quickselect
Median of Medians

6

CLRS Readings: Chapter 7

Homework

HW2 due today (September 19), 11pm
• Programming assignment (Python or Java)
• Divide and conquer (Closest pair of points)

HW3 released tonight
• Divide and conquer algorithms
• Written (use LaTeX!) – Submit both zip and pdf!

7

Quickselect Algorithm

Algorithm to compute the 𝑖th order statistic
• 𝑖th smallest element in the list
• 1st order statistic: minimum
• 𝑛th order statistic: maximum
• ⁄(𝑛 2)th order statistic: median

8

Quickselect Algorithm

Finds 𝑖th order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index 𝑖

Divide: select pivot element 𝑝, Partition(𝑝)
Conquer:
• if 𝑖 = index of 𝑝, then we are done and return 𝑝
• if 𝑖 < index of 𝑝 recurse left. Otherwise, recurse right (with index 𝑖 − 𝑝)

Combine: Nothing!
9

Partition Procedure (Divide Step)

Input: an unordered list, a pivot 𝑝

10

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all ≥ 𝑝 on right

5 7 3 1 2 4 6 8 12 10 9 11

Conquer Step

11

2 5 7 3 6 4 1 8 9 10 11 12

All elements < 𝑝 All elements > 𝑝

Correct position of 𝑝

Recurse on sublist that contains index 𝑖
(add index of the pivot to 𝑖 if recursing right)

How to Choose the Pivot?

12

Good choice: Θ 𝑛

Bad choice: Θ 𝑛@

Good Pivot

Decent pivot: both sides of Pivot >30%

13

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

Fast way to select a “good” pivot
Guarantees pivot is greater than ≈30% of elements and less than ≈30%
of the elements

Main idea: break list into blocks, find the median of each blocks, use the
median of those medians

14

Median of Medians

1. Break list into blocks of size 5

15

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Median of Medians

16

<
<

<
<

<
<

<
<

<
<

<
<

< <
<

<
<

<
<

<
<

< <

Each chunk sorted, chunks ordered by their medians

MedianofMedians
is larger than all

of these

𝑛
5

5

3 1
@ ⋅

0
C − 2 ≥ D0

12 − 6 elements

Median of Medians

17

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

⁄𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Number of lists to the “left” Exclude list on the endpoint,
and “middle” list

3 1
@ ⋅

0
C − 2 ≥ D0

12 − 6 elements

Median of Medians

18

MedianofMedians
is larger than all

of these

Elements smaller than
MedianofMedians:

3 1
@ ⋅

0
C − 2 ≥ D0

12 − 6 elements

⁄𝑛 5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Elements greater than
MedianofMedians:

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

19

𝑀 𝑛 + Θ(𝑛)

median of medians algorithm

partition algorithm

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right (with index 𝑖 − 𝑝)

Combine: Nothing!

20

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

𝑀 𝑛 + Θ(𝑛)

Median of Medians

1. Break list into blocks of size 5

21

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛
5

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right

Combine: Nothing!

22

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑀 𝑛 + Θ(𝑛)

Quickselect

Divide: select an element 𝑝 using Median of Medians, Partition(𝑝)

Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left. Else
recurse right

Combine: Nothing!

23

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7𝑛

10

𝑆 𝑛 ≤ 𝑆
7𝑛

10
+ 𝑆

𝑛
5
+ Θ(𝑛) = Θ(𝑛)

Phew! Back to Quicksort

24

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

Phew! Back to Quicksort

25

2 5 1 3 6 4 7 8 10 9 11 12

Using Quickselect, always pivot about the median

Divide: Select a pivot element, and partition about the pivot

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + Θ(𝑛)

𝑇 𝑛 = Θ(𝑛 log 𝑛)

A Worthwhile Choice?

Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) worst-case run-time
Approach has very large constants
• If you really want Θ(𝑛 log 𝑛), better off using MergeSort

More efficient approach: Random pivot
• Very small constant (very fast algorithm)
• Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

26

Quicksort Running Time

27

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)

If the pivot is always (⁄𝑛 10)th order statistic:

Quicksort Running Time

28

𝑛

𝑇(𝑛) = 𝑇 ⁄𝑛 10 + 𝑇 ⁄9𝑛 10 + Θ(𝑛)

⁄𝑛 10 ⁄9𝑛 10

⁄𝑛 100 ⁄9𝑛 100 ⁄9𝑛 100 ⁄81𝑛 100

… … … …

1
1

1 1

1

1
1

1

Θ 𝑛

Θ(log 𝑛)

Θ 𝑛

Θ 𝑛

Quicksort Running Time

29

𝑇(𝑛) = 𝑇(𝑛/10) + 𝑇(9𝑛/10) + Θ(𝑛)
= Θ 𝑛 log 𝑛

If the pivot is always (⁄𝑛 10)th order statistic:

This is true if the pivot is any ⁄𝑛 𝑘 NO order statistic for any
constant 𝑘 > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get Θ 𝑛 log 𝑛 running time)

Quicksort Running Time

Then we shorten by 𝑑 each time

30

1 5 2 3 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

= Θ(𝑛@)

What’s the probability of this occurring (for a random pivot)?

Probability of Always Choosing 𝒅𝐭𝐡 Order Statistic

We must consistently select pivot from within the first 𝑑 terms

31

Probability first pivot is among 𝑑 smallest: T
0

Probability second pivot is among 𝑑 smallest: T
0UT

Probability all pivots are among 𝑑 smallest:

𝑑
𝑛
×

𝑑
𝑛 − 𝑑

×
𝑑

𝑛 − 2𝑑
×⋯×

𝑑
2𝑑

×1 = 𝑛
𝑑
×

𝑛
𝑑
− 1 ×⋯×1

U1
=

1
𝑛
𝑑 !

Very small probability!

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

We will focus on counting the number of comparisons
For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot
• Element 𝑖 only compared to element 𝑗 if one of them was the

pivot

32

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

33

1 2 3 4 5 6 7 8 9 10 11 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
– Why?
– Every sorting algorithm must compare adjacent elements

Otherwise I would not know their order

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

34

1 2 3 4 5 6 7 8 9 10 11 12

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2
12

Assuming pivot is chosen
uniformly at random

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in right sublist and will be
processed in future invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1,… , 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in right sublist and will be
processed in future invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1,… , 𝑛

[𝑝 + 1,… , 𝑛] denotes the right
sublist (in some order) that we are

recursively sorting

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

Case 2: Pivot greater than 𝑗
Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in left sublist and will be
processed in future invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 1, … , 𝑝

Case 3.1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
Then 𝑖 and 𝑗 are in different sublists and will never be
compared

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

Case 3.2: Pivot is either 𝑖 or 𝑗
Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗
Case 1: Pivot less than 𝑖

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1,… , 𝑛

Case 2: Pivot greater than 𝑗
Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 1, … , 𝑝

Case 3: Pivot in 𝑖, 𝑖 + 1,… , 𝑗
Pr we compare 𝑖 and 𝑗 = Pr 𝑖 or 𝑗 is selected as pivot =

2
𝑗 − 𝑖 + 1

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

Probability of comparing element 𝑖 with element 𝑗:

Pr we compare 𝑖 and 𝑗 =
2

𝑗 − 𝑖 + 1

41

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

Probability of comparing element 𝑖 with element 𝑗:

Pr we compare 𝑖 and 𝑗 =
2

𝑗 − 𝑖 + 1

Expected number of comparisons:

42

Substitution:
𝑘 = 𝑗 − 𝑖

s
tu1

0U1

s
vutw1

0
2

𝑗 − 𝑖 + 1 = s
tu1

0U1

s
xu1

0Ut
2

𝑘 + 1
< 2s

tu1

0U1

s
xu1

0Ut
1
𝑘
< 2s

tu1

0U1

s
xu1

0
1
𝑘

1
𝑘 + 1

<
1
𝑘

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

43

Substitution:
𝑘 = 𝑗 − 𝑖

s
tu1

0U1

s
vutw1

0
2

𝑗 − 𝑖 + 1 = s
tu1

0U1

s
xu1

0Ut
2

𝑘 + 1
< 2s

tu1

0U1

s
xu1

0Ut
1
𝑘
< 2s

tu1

0U1

s
xu1

0
1
𝑘

1
𝑘 + 1 <

1
𝑘

Useful fact: s
xu1

0
1
𝑘
= Θ(log 𝑛)

Intuition (not proof!):

s
xu1

0
1
𝑘
≈ y

1

0 1
𝑥
𝑑𝑥 = ln 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

44

s
tu1

0U1

s
vutw1

0
2

𝑗 − 𝑖 + 1 = s
tu1

0U1

s
xu1

0Ut
2

𝑘 + 1
< 2s

tu1

0U1

s
xu1

0Ut
1
𝑘
< 2s

tu1

0U1

s
xu1

0
1
𝑘

= 2s
tu1

0U1

Θ(log 𝑛) = Θ 𝑛 log 𝑛

Useful fact: s
xu1

0
1
𝑘
= Θ(log 𝑛)

