CS 4102: Algorithms

Lecture 8: Quickselect, Median of Medians

David Wu
Fall 2019

Guess the solution to this recurrence:

T(n)=T(g)+T(—)+c-n

wherec = 1

IS @ constant

Tm)=Tn/5)+T(7n/10)+c-n

If this was T (3—3), then can

use Master’s Theorem to
conclude O(n)

Guess: O(n)
Suffices to show O(n) since non-recursive cost is already Q(n)

3

T(n)=Tn/5)+T(7n/10)+c-n

Claim: T(n) < 10cn

Base Case: T(0) =0
T(1) =1 < 10c which is true sincec > 1

Strictly speaking, we can handle any

¢ > 0, butassumingc = 1 to
simplify the analysis here

T(n)=Tn/5)+T(7n/10)+c-n

Inductive hypothesis: Vn < x, : T(n) < 10cn

Inductive step:

1 7
T(xog+1) =T(§(xo+1))+T(1—0(x0+1)>+c(x0+1)

1 7
<

= 9C(x0 + 1) + C(xo + 1) = 10C(XO + 1)

Today’s Keywords

Divide and Conquer
Sorting

Quicksort

Median

Order Statistic
Quickselect

Median of Medians

CLRS Readings: Chapter 7

HW?2 due today (September 19), 11pm
* Programming assignment (Python or Java)
* Divide and conquer (Closest pair of points)

HW3 released tonight
* Divide and conquer algorithms
e Written (use LaTeX!) — Submit both zip and pdf!

Quickselect Algorithm

Algorithm to compute the it order statistic
* jth smallest element in the list
* 1st order statistic: minimum
* nth order statistic: maximum
* (n/2)t™ order statistic: median

Quickselect Algorithm

Finds it" order statistic

General idea: choose a pivot element, partition around the pivot, and
recurse on sublist containing index i

Divide: select pivot element p, Partition(p)

Conquer:
* if i = index of p, then we are done and return p
* if i <index of p recurse left. Otherwise, recurse right (with index i — p)

Combine: Nothing!

Partition Procedure (Divide Step)

Input: an unordered list, a2 pivot p

. 5 7 3 112 (10| 1 2 4 9 6 | 11

Goal: All elements on left, all = p on right

10

Conquer Step

|
All elements < p All elements > p

Correct position of p

Recurse on sublist that contains index i
(add index of the pivot to i if recursing right)

11

How to Choose the Pivot?

Good choice: O(n)

Bad choice: ®@(n?)

Good Pivot

Decent pivot: both sides of Pivot >30%

T
TTT

>30%

O Select Pivot from
r this range

>30% 13

Median of Medians

Fast way to select a “good” pivot

Guarantees pivot is greater than =30% of elements and less than =30%
of the elements

Main idea: break list into blocks, find the median of each blocks, use the
median of those medians

14

Median of Medians

1. Break list into blocks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)
[]

15

Median of Medians

Each chunk sorted, chunks ordered by their medians

N

MedianofMedians
is larger than all
Of these A A A A A

n
5 s

Median of Medians

MedianofMedians
is larger than all
of these A A A A A

y
[n/5]

Elements smaller than 1 [n 3n
3([5'&”—2 = 1o

MedianofMedians: 10

Number of lists to the “left”

— 6 elements

Exclude list on the endpoint,

17

and “middle” list

Median of Medians

MedianofMedians
is larger than all
of these

Elements smaller than
MedianofMedians:
Elements greater than
MedianofMedians:

AN N\ AN AN

A N\ N\ AN AN

< J<Bl<[]<
A JAN JAN AN AN
A N\ N\ AN AN
\]

|
[n/5]

3(1~2 —2)23—n—6elements

2 |5 10
3(1-2 —2)23—n—6elements

2 |5 10

18

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

median of medians algorithm

partition algorithm

19

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i < index of p recurse left. Else
recurse right (with index i — p) 71

<5(5)

Combine: Nothing!

S(n) < S()+M(n) + O(n)

20

10

Median of Medians

1. Break list into blocks of size 5 O(n)

2. Find the median of each chunk O(n)

3. Return median of medians (using Quickselect) ¢ (E)
o 5

Mn)=3S (g) + 0(n)

21

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i < index of p recurse left. Else
recurse right 7n

<5(5;)

Combine: Nothing!

S(n) < S()+M(n) + O(n)

22

10

Divide: select an element p using Median of Medians, Partition(p)

M(n) + 0(n)

Conquer: if i = index of p, done, if i < index of p recurse left. Else
recurse right 7n

<5(5;)

Sn)<S (10) + S (Z) + 0(n) = O(n))

Combine: Nothing!

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

B <[« |- e

Conquer: Recursively sort left and right sublists

If pivot is the median, list is split in half each iteration

24

Phew! Back to Quicksort

Divide: Select a pivot element, and partition about the pivot

Using Quickselect, always pivot about the median

B <[« |- e

T(n) =2T(n/2) + 0(n)

T(n) = O(nlogn)

25

A Worthwhile Choice?

Using Quickselect to pick median guarantees 0(n logn) worst-case run-time

Approach has very large constants
* If you really want ®(nlogn), better off using MergeSort

More efficient approach: Random pivot
* Very small constant (very fast algorithm)
* Expected to runin ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

26

Quicksort Running Time

If the pivot is always (n/10) order statistic:

T(n) =T(n/10)+TO9n/10) + O(n)

27

Quicksort Running Time

T(n) =T(n/10) + T(9n/10) + O(n)

- O(n)
/\
n/10 In/10 O(n)
/\ /\

Tl/}{\ ‘971{/1{:(1 97’1{/]{2 81‘7’1//:1\0\0 @(TL)> @(logn)

1

1

1

1 1

Quicksort Running Time

If the pivot is always (n/10) order statistic:

T(n) =T(n/10)+TO9n/10) + O(n)
= O(nlogn)

This is true if the pivot is any (n/k)™ order statistic for any

constant k > 1 (as long as the size of the smaller list is a

constant fraction of the full list, we get @(nlogn) running time)

Quicksort Running Time

If the pivot is always d™" order statistic:

Then we shorten by d each time

Tn)=Tn—d)+n
= 0(n?)

What’s the probability of this occurring (for a random pivot)?

30

Probability of Always Choosing d'™™ Order Statistic

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

o e . H d
Probability second pivot is among d smallest: —

Probability all pivots are among d smallest:

Very small probability!
d d d d n

1 1
;Xn—dxn—demxﬁX1= (Ex(g_l)Xle) =@

31

Formal Argument for n log n Average

We will focus on counting the number of comparisons

For simplicity: suppose all elements are distinct

Quicksort only compares against a pivot

* Element i only compared to element j if one of them was the
pivot

32

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
— Why? Otherwise | would not know their order

— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 53

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

2

E uniformly at random

Assuming pivot is chosen

Prlwe compare 1 and 12] =

Elements only compared if 1 or 12 was chosen as the
first pivot since otherwise they are in different sublists

34

Formal Argument for n log n Average

What is the probability of comparing two given elements?

33 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be in right sublist and will be
processed in future invocation of Quicksort

Pr|we compare i and j| = Pr[we compare i and j in Quicksort(|p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

33 4 5 6 7 8 9 | 10 | 11 | 12

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be
processed in future invocation of

[p + 1, ...,n] denotes the right
sublist (in some order) that we are

recursively sorting

Pr|we compare i and j| = Pr[we compare i and j in Quicksort(|p + 1, ...,n])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 2: Pivot greater than j
Then sublist [i,i + 1, ..., j] will be in left sublist and will be
processed in future invocation of Quicksort

Pr{we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])

Formal Argument for n log n Average

What is the probability of comparing two given elements?

123456.89101112

i J

Case 3.1: Pivot contained in [i + 1, ...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiandj] = 0

Formal Argument for n log n Average

What is the probability of comparing two given elements?

1234.6789101112

i J

Case 3.2: Pivotis eitheri orj
Then we will always compare i and j

Pr[we compareiandj] =1

Formal Argument for n log n Average

What is the probability of comparing two given elements?

Case 1: Pivot less than i
Pr[we compare i and j| = Pr[we compare i and j in Quicksort(|p + 1, ...,n])
Case 2: Pivot greater than j
Pr[we compare i and j| = Pr[we compare i and j in Quicksort([1, ..., p])
Case 3: Pivotin [i,i + 1, ...,]]

2
Pr[we compare i and j| = Pr|i orj is selected as pivot] =j T 1

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
Pr[we compare i and j] =j —T 1

41

Formal Argument for n log n Average

Probability of comparing element i with element j:

2
Pr[we compare i and j] =j —T 1

Expected number of comparisons:

x| =

Substitution:
k=j—i

42

Formal Argument for n log n Average

Substitution:
k=j—i

1 Intuition (not proof!):
Useful fact: o1 M1
;ENL —dx =1lnn

X

43

Formal Argument for n log n Average
;J‘:Zu‘:J_?Jrl:;Z ZZ%

n-1
= 2 z O(logn) = O(nlogn)
i=1

n

1
Useful fact: 2 e O(logn)

M'
lngh

44

