
1

Warm up
Show that finding the minimum of an 

unordered list requires Ω(𝑛) comparisons

Fall 2019



Find Min, Lower Bound Proof

Show that finding the minimum of an unordered 
list requires Ω(𝑛) comparisons

2

Suppose (toward contradiction) that there is an algorithm for 
Find Min that does fewer than %

&
= Ω(𝑛) comparisons. 

This means there is at least one “uncompared” element
We can’t know that this element wasn’t the min!

2 8 19 20 −10+,, 3 9 -4

0 1 2 3 4 5 6 7



Homeworks

• HW3 due 11pm Tuesday, October 1
– Divide and conquer
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Regrade Office Hours
– Thursdays 11am-12pm @ Rice 210 (starting next week!)
– Thursdays 4pm-5pm @ Rice 501 (starting today!)

3



Today’s Keywords

• Sorting
• Linear time Sorting
• Counting Sort
• Radix Sort
• Maximum Sum Continuous Subarray

4



CLRS Readings

• Chapter 8

5



Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

6

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛&)

𝑂(𝑛&)

Optimal!

Optimal!

Optimal!



Speed Isn’t Everything
• Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with multiple computers 7



Heap Sort
• Idea: Build a Heap, repeatedly extract max element 

from the heap to build sorted list Right-to-Left

8

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)

9

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)

10

9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)

11

9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)

12

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse 
than Quick Sort

In Place?
Yes!

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left

When removing an element 
from the heap, move it to the 
(now unoccupied) end of the list



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

14

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

15

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9



In Place Heap Sort

16

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

Max Heap 
Property: Each 
node is larger 
than its children



In Place Heap Sort

17

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

Max Heap 
Property: Each 
node is larger 
than its children



In Place Heap Sort

18

7

4 6

3 1 5 2

7 4 6 3 1 5 2 8 9 10

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

Max Heap 
Property: Each 
node is larger 
than its children



Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse 
than Quick Sort

In Place? Adaptive? Stable?
Yes! No No

Parallelizable?
No

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left



Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

20

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛&)

𝑂(𝑛&)

Optimal!

Optimal!

Optimal!



Sorting in Linear Time

• Cannot be comparison-based
• Need to make some sort of assumption about the contents of 

the list
– Small number of unique values
– Small range of values
– Etc.

21



Counting Sort

22

• Idea: Count how many things are less than each element

Range is [1, 𝑘] (here [1,6])
make an array 𝐶 of size 𝑘
populate with counts of each value

3 6 4 1 3 6 1 6

1 2 3 4 5 6 7 8

2 0 2 1 0 3

1 2 3 4 5 6

𝐶 =

For 𝑖 in 𝐿:
++C 𝐿 𝑖

1.

𝐿 =

Take “running sum” of 𝐶
to count things less than each value

2 2 4 5 5 8

1 2 3 4 5 6

𝐶 =

For 𝑖 = 1 to len(𝐶):
𝐶 𝑖 = 𝐶 𝑖 − 1 + 𝐶[𝑖]

2.

running sum

To sort: last item of 
value 3 goes at index 4



Counting Sort

23

• Idea: Count how many things are less than each element

𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵
Decrement that position of C

2 2 4 5 5 8

1 2 3 4 5 6

𝐶 =

Last item of value 6 
goes at index 8

1 2 3 4 5 6 7 8
𝐵 =

For 𝑖 = len(𝐿) downto 1:
𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖
𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

6

3 6 4 1 3 6 1 6

1 2 3 4 5 6 7 8

7



Counting Sort

24

• Idea: Count how many things are less than each element

𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵
Decrement that position of C

2 2 4 5 5 7

1 2 3 4 5 6

𝐶 =

Last item of value 1 
goes at index 2

6

1 2 3 4 5 6 7 8
𝐵 =

For 𝑖 = len(𝐿) downto 1:
𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖
𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

1

3 6 4 1 3 6 1 6

1 2 3 4 5 6 7 8

1



Counting Sort

25

• Idea: Count how many things are less than each element

𝐿 =

For each element of 𝐿 (last to first):
Use 𝐶 to find its proper place in 𝐵
Decrement that position of C

1 2 4 5 5 7

1 2 3 4 5 6

𝐶 =

Last item of value 6 
goes at index 7

6 6

1 2 3 4 5 6 7 8
𝐵 =

For 𝑖 = len(𝐿) downto 1:
𝐵 𝐶 𝐿 𝑖 = 𝐿 𝑖
𝐶 𝐿 𝑖 = 𝐶 𝐿 𝑖 − 1

1

3 6 4 1 3 6 1 6

1 2 3 4 5 6 7 8

Run Time: 𝑂 𝑛 + 𝑘

Memory: 𝑂 𝑛 + 𝑘

6



Counting Sort

• Why not always use counting sort?
• For 64-bit numbers, requires an array of length 2@A > 10+C
– 5 GHz CPU will require > 116 years to initialize the array
– 18 Exabytes of data
• Total amount of data that Google has 

26



12 Exabytes

27



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

28

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

Place each element into 
a “bucket” according to 
its 1’s place

999018
255
555
245

103
323
823
113

512

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

29

Place each element into 
a “bucket” according to 
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999255
555245

121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9



Radix Sort

• Idea: Stable sort on each digit, from least 
significant to most significant

30

Place each element into 
a “bucket” according to 
its 100’s place

999255
555245

121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

901
999

800
801
823

512
555401323245

255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

Run Time: 𝑂 𝑑 𝑛 + 𝑏
𝑑 = digits in largest value
𝑏 = base of representation



Maximum Sum Contiguous Subarray Problem

The maximum-sum subarray of a given array of integers 𝐴 is the 
interval [𝑎, 𝑏] such that the sum of all values in the array 
between 𝑎 and 𝑏 inclusive is maximal. 
Given an array of 𝑛 integers (may include both positive and 
negative values), give a 𝑂(𝑛 log 𝑛) algorithm for finding the 
maximum-sum subarray.

31



Divide and Conquer Θ(𝑛 log 𝑛)

32

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
Recursively 

Solve on Right



Divide and Conquer Θ(𝑛 log 𝑛)

33

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut

2-13-6-3-716 -20-42-37135-128

Largest sum 
that ends here

+ Largest sum 
that starts here



Divide and Conquer Θ(𝑛 log 𝑛)

34

5 8 -4 3 7 -15 2 8 -20 17 8 -50 -5 22
0 21 3 4 5 6 7 8 9 10 11 12 13

Divide in half
Recursively 

Solve on Left
19

Recursively 
Solve on Right

25Find Largest 
sum that spans 

the cut
19

2-13-6-3-716 -20-42-37135-128

Return the Max of 
Left, Right, Center

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛



Divide and Conquer Summary

• Divide
– Break the list in half

• Conquer
– Find the best subarrays on the left and right

• Combine
– Find the best subarray that “spans the divide”
– I.e. the best subarray that ends at the divide concatenated with the 

best that starts at the divide

Typically multiple subproblems.
Typically all roughly the same size.



Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for sub in subproblems:

subsolutions.append(myDCalgo(sub))
solution = Combine(subsolutions)
return solution

36



MSCS Divide and Conquer Θ(𝑛 log 𝑛)

def MSCS(list):
if list.length < 2:

return list[0] #list of size 1 the sum is maximal
{listL, listR} = Divide (list)
for list in {listL, listR}:

subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution

37



Types of “Divide and Conquer”

• Divide and Conquer
– Break the problem up into several subproblems of roughly equal size, 

recursively solve
– E.g. Karatsuba, Closest Pair of Points, Mergesort…

• Decrease and Conquer
– Break the problem into a single smaller subproblem, recursively solve
– E.g. Impossible Missions Force (Double Agents), Quickselect, Binary 

Search



Pattern So Far

• Typically looking to divide the problem by some fraction 
(½, ¼ the size)

• Not necessarily always the best!
– Sometimes, we can write faster algorithms by finding unbalanced

divides.


