imel

ne hit 90s TV show
Seinfeld, George discovers that, years prior, he had a heated
argument with his new boss, Mr. Kruger. This argument
ended in George throwing Mr. Kruger’s boombox into the

ocean. How did George make this discovery?
https://www.youtube.com/watch?v=pSB3HdmLcY4 !

https://www.youtube.com/watch?v=pSB3HdmLcY4

Today's Keywords

* Dynamic Programming
* Longest Common Subsequence
* Seam Carving

CLRS Readings

 Chapter 15

HoMeworks

* HW4 due 11pm Saturday, October 12
— Sorting, Divide and Conquer, Dynamic Programming
— Written (use LaTeX!)
— Submit BOTH a pdf and a zip file (2 separate attachments)

* HW5 coming after the exam
— Seam Carving!

— Dynamic Programming (implementation)
— Java or Python

* Tuesday, October 15 in class
— SDAC: Please schedule with SDAC for Tuesday

— Mostly in-class with a (required) take-home portion
* Practice Midterm available on Collab today

e Review Session

— Sunday, October 13 at 3pm
— Olsson 120

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
if mem|[problem] not blank:
return mem|[problem]
if baseCase(problem):
solution = solve(problem)
mem|[problem] = solution
return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem|[problem] = solution
return solution

L og Cutting Recursive Structure

Pli] = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

 Cut(n — 1) + P[1]
Cut(n) = max — Cut(n—2)+ P[Z]

\.C.’.ut(O) + P[n]

Cut(n —4¥,)

Log Cutting Pseudocode

Initialize Memory C

Cut(n):
C[0] =0 Run Time: 0(n?)
for i=1 to n:
best=0
forj=1toi:
best = max(best, C[i-j] + P[j])
Cli] = best

return C[n]

Matrix Chaining Recursive Structure

* |[n general:
Best(i,j) = cheapest way to multiply together M; through M;
j—-1
Best(i,j) = I%lilfl(BQSt(i, k) + Best(k + 1,j) + rirk+1cj)
=i

Best(i,i) =0

Best(2,n) + ryryc,

Best(1,2) + Best(3,n) + ryrz3c,

Best(1,3) + Best(4,n) + ry1ycy
Best(1,n) = min — Best(1,4) + Best(5,n) + rirscy,

Best(1,n — 1) + rr,c,

N~

11

Matrix Chaining Memory

30| M, |x 35

j-1
Best(i,j) = rlgir_l(Best(i, k) + Best(k +1,j) + 7"i"”i!c+1Cj)
=i

Best(i,i) =0

Best(1,6) = min

X

Best(1,1) + Best(2,6) + ryryc
Best(1,2) + Best(3,6) + ry1r3cq

Best(1,3) + Best(4,6) + ryrcq
Best(1,4) + Best(5,6) + ryrscq

15 3| x 5 « 10 | x 20
j=1 2 3 4 5 6
0 15750 | 7875 | 9375 | 11875 | 15125
0 2625 | 4375 | 7125 | 10500
0 750 | 2500 | 5375
° 0 1000 | 3500
0 5000
0

_Best(1,5) + Best(6,6) + ry1gce

N

12

Longest Common subseguence

Given two sequences X and Y,

find the length of their longest
common subsequence

Example:

X = ATCTGAT
Y =TGCATA
LCS =TCTA

Brute force: Compare every

subsequence of X with Y
Q2™

13

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* |dea:
1. Identify the recursive structure of the problem
 What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

14

1. ldentify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y
Find LCS(1,)):
Case 1: X|i| = Y[j] X = ATCTGCGT

Y = TGCATAT
LCS(i,)) = LCS(i—1,j — 1) + 1

Case 2: X|i] + Y[j]

X = ATCTGCGA X = ATCTGCGT
Y =TGCATAT Y =TGCATAC
LCS@i,) = LCS(i,j — 1) LCS@i,) = LCS(i — 1,)
0 ifi=0o0rj=0
LCS(i,j)) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise .

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

16

1. ldentify Recursive Structure

Let LCS(i,j) = length of the LCS for the first i characters of X, first j character of Y

Find LCS(i,)):

Case 1: X|i| = Y[j] X = ATCTGCGT
Y =TGCATAT
LCS(i,j) =LCS(i—1,j—1)+1

Case 2: X|i] + Y[j]

X =ATCTGCGA X =ATCTGCGT
Y =TGCATAT Y =TGCATAC
LCS@i,) = LCS(i,j — 1) LCS@i,) = LCS(i — 1,)
’O Read from M[i,j] ifi =0 Ol"j =0
.. if
LC-S'}‘(L]) =< LCS(i—1,] — 1)% i if X[i] = Y[/]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

Save to M[i,j]

17

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

18

3. Solve In a Good Order

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

B |lR|lm|lolo|lo|lOo|
NN R R|Rr|R,|lo[DMS
NIN|IN|IN|R[R[o|WO
Blw|lw|N|N|R|O|lax
Bl |lw NNl

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

W W ININ[FR|FR|O
W W INININ|IP-R|O

s B N R o B

Tofillincell (i,j)weneedcells (i —1,j —1),(i —1,j),(i,j — 1)
Fill from Top->Bottom, Left->Right (with any preference) 19

Run Time"

0 ifi=0o0rj=0
LCS(i,j) = LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X =
A
A

B |lR|lm|lolo|lo|lOo|
NN R R|Rr|R,|lo[DMS
NIN|IN|IN|R[R[o|WO
Blw|lw|N|N|R|O|lax
Bl |lw NNl

N U1 A W DN =R O
O(l0O|lO0O|lO0O(O|OC (OO

> N x> O 9 S
WIW|IN|N|F|[F|lO
WIW|N|N|N|(R|O

Run Time: O(n - m) (for |X| =n, |Y| = m)

20

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j)) =~ LcS(i—1,j—1) +1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T G Al |T

= 0 1 2 3) 5 6 7
A ol o 0 0 0| O 0 0 0
T|1] o 0 1 1 P 1 1 1 1
Gl2| o 0 1 1 1 A 2 2 2

c 3| o 0 1 2 2 2 | 2 2

Al a4l o 1 1 2 2 2 K 3 W 3

T 5| o 1 2 2 3 3 3 | a4

A 6| o 1 2 2 3 3 a |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 2

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j) = Lcs(i—1,j— 1)+ 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise
X = A T C T G Al LT
ro 0 1 2 3 4 5 6 7
A ol o 0w O 0 0 0 0 0
T 1] o 0 |a1l 1 1 1 1 1
G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 \ 2 € 2€1T 2 | 2 2
Al 4] o0 1 1 2 2 2 < 3 W 3
T| 5] o 1 2 2 3 3 3 | a4
A 6| o 1 2 2 3 3 4 |'a

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 2

Reconstructing the LCS

0 ifi=0o0rj=0
LCS(i,j) = Lcs(i—1,j— 1)+ 1 if X[i] = Y[j]
- max(LCS(i,j —1),LCS(i—1,j)) otherwise

X = A T C T ¢ la| T

= 0 1 2 3 7} 5 6 7
T oo o 0 O 0 0 0 0 0
T|1] o 0 |a1l 1 1 1 1 1

G 2| o 0o |'1 1 1 2 2 2
Cl3| o 0 1 | "A2 2 2 2 2

A 4| o 1 1 | 2 2 2 3 3

T 5| o 1 2 2 3 3 3 4
Ale| o 1 2 2 3 3 4 €— 4

Start from bottom right,
if symbols matched, print that symbol then go diagonally

else go to largest adjacent 2

* Method for image resizing that doesn’t scale/crop the image

24

Seam Carving

* Method for image resizing that doesn’t scale/crop the image

25

[ale

Cropp

2
Q
X
o
(-
@)
Y
O
O
=
(qV)
n
QD
>
@)
=
Q
o
®

Scaling

i)
Q
X
Q.
Y
@
HS
(b
Q.
o
)
W
wm
Q
>
O
&
Q
'
°

Seam Carving

* Removes “least energy seam” of pixels

Carved

=N

[ale

>
T
>,
=
3
D
)

* Method for image resizing that doesn’t scale/crop the image

Carved

Scaled

29

Seattle skyline

=g w4)
_s=asaei bl oans

http://rsizr.com/

Energy of a Seam

* Sum of the energies of each pixel
e(p) = energy of pixel p

* Many choices for pixel energy

— E.g.: change of gradient (how much the color of this pixel differs from
its neighbors)

— Particular choice doesn’t matter, we use it as a “black box”

* Goal: find least-energy seam to remove

31

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones
* |dea:
1. Identify the recursive structure of the problem
 What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems
* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

32

[dentity Recursive Structure

Let S(i,j) = least energy seam from the bottom of the image up
to pixel pi,j

33

~INAing the Least Energy Seam

Want to delete the least energy seam going from bottom to top, so delete:
m
min(S(n, k))

’_ Pn k

n—<

34

Computing S(n, k)

Assume we know the least energy seams for all of rown — 1
(i.e. we know S(n — 1,) for all £)

pn,k

Known
through—
n—1

35

Computing

Assume we know the least energy seams for allof rown — 1
(i.e. we know S(n — 1, %) for all ¥)

Pn.k

. .
S(n-llk)

36

Computing

Assume we know the least energy seams for allof rown — 1

(i.e. we know S(n — 1, %) for all ¥)
S(n, k) = min— Sm—1k—1)+ e(Pnk)

Sn—1,k) + e(pn,k)
Sm—1k+1)+e(Pnk)

Pn.k

. .
S(n-llk)

37

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

38

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?
2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
e “Bottom Up”: Iteratively solve smallest to largest

39

Repeated seam Removal

Only need to update pixels dependent on the removed seam
2n pixels change O(2n) time to update pixels

O(n + m) time to find min+backtrack

44

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones

e |dea:

1. Identify the recursive structure of the problem
* What is the “last thing” done?

2. Save the solution to each subproblem in memory

3. Select a good order for solving subproblems

* “Top Down”: Solve each recursively
* “Bottom Up”: Iteratively solve smallest to largest

45

