
In Season 9 Episode 7 “The Slicer” of the hit 90s TV show 
Seinfeld,  George discovers that, years prior, he had a heated 

argument with his new boss, Mr. Kruger. This argument  
ended in George throwing Mr. Kruger’s boombox into the 

ocean. How did George make this discovery?
1https://www.youtube.com/watch?v=pSB3HdmLcY4

Warm Up

https://www.youtube.com/watch?v=pSB3HdmLcY4




Today’s Keywords

• Dynamic Programming
• Longest Common Subsequence
• Seam Carving
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CLRS Readings

• Chapter 15

4



Homeworks

• HW4 due 11pm Saturday, October 12
– Sorting, Divide and Conquer, Dynamic Programming
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• HW5 coming after the exam
– Seam Carving!
– Dynamic Programming (implementation)
– Java or Python
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Midterm

• Tuesday, October 15 in class
– SDAC: Please schedule with SDAC for Tuesday
– Mostly in-class with a (required) take-home portion

• Practice Midterm available on Collab today
• Review Session
– Sunday, October 13 at 3pm
– Olsson 120
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution
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Log Cutting Recursive Structure
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𝐶𝑢𝑡(𝑛) = value of best way to cut a log of length 𝑛

ℓ)
𝐶𝑢𝑡(𝑛 − ℓ))

𝐶𝑢𝑡 𝑛 = max
𝐶𝑢𝑡 𝑛 − 1 + 𝑃 1
𝐶𝑢𝑡 𝑛 − 2 + 𝑃 2
…
𝐶𝑢𝑡 0 + 𝑃[𝑛]

Last Cutbest way to cut a log of length 𝒏 − ℓ𝒏

𝑃 𝑖 = value of a cut of length 𝑖



Log Cutting Pseudocode
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Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]

Run Time: 𝑂(𝑛9)



Matrix Chaining Recursive Structure

• In general:
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𝐵𝑒𝑠𝑡 𝑖, 𝑗 = cheapest way to multiply together 𝑀@ through 𝑀A

𝐵𝑒𝑠𝑡 1, 𝑛 = min

𝐵𝑒𝑠𝑡 2, 𝑛 + 𝑟E𝑟9𝑐)
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 𝑛 + 𝑟E𝑟H𝑐)
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 𝑛 + 𝑟E𝑟J𝑐)
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 𝑛 + 𝑟E𝑟L𝑐)
…

𝐵𝑒𝑠𝑡 1, 𝑛 − 1 + 𝑟E𝑟)𝑐)

𝐵𝑒𝑠𝑡 𝑖, 𝑗 = min
AME

NO@
𝐵𝑒𝑠𝑡 𝑖, 𝑘 + 𝐵𝑒𝑠𝑡 𝑘 + 1, 𝑗 + 𝑟@𝑟NQE𝑐A

𝐵𝑒𝑠𝑡 𝑖, 𝑖 = 0



Matrix Chaining Memory
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𝐵𝑒𝑠𝑡 1,6 = min

𝐵𝑒𝑠𝑡 1,1 + 𝐵𝑒𝑠𝑡 2, 6 + 𝑟E𝑟9𝑐S
𝐵𝑒𝑠𝑡 1,2 + 𝐵𝑒𝑠𝑡 3, 6 + 𝑟E𝑟H𝑐S
𝐵𝑒𝑠𝑡 1,3 + 𝐵𝑒𝑠𝑡 4, 6 + 𝑟E𝑟J𝑐S
𝐵𝑒𝑠𝑡 1,4 + 𝐵𝑒𝑠𝑡 5, 6 + 𝑟E𝑟L𝑐S
𝐵𝑒𝑠𝑡 1,5 + 𝐵𝑒𝑠𝑡 6, 6 + 𝑟E𝑟S𝑐S

15125

𝑗 =
= 𝑖



Longest Common Subsequence
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Given two sequences 𝑋 and 𝑌, 
find the length of their longest 
common subsequence 

Example:
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐴𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴
𝐿𝐶𝑆 = 𝑇𝐶𝑇𝐴

Brute force: Compare every 
subsequence of 𝑋 with 𝑌
Ω(2))



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify Recursive Structure

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):
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𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝐴
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝐶

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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1. Identify Recursive Structure
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𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1

𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝐴
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝑇

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖, 𝑗 − 1

Case 1: 𝑋 𝑖 = 𝑌[𝑗]

Case 2: 𝑋 𝑖 ≠ 𝑌[𝑗]
𝑋 = 𝐴𝑇𝐶𝑇𝐺𝐶𝐺𝑇
𝑌 = 𝑇𝐺𝐶𝐴𝑇𝐴𝐶

𝐿𝐶𝑆 𝑖, 𝑗 = 𝐿𝐶𝑆 𝑖 − 1, 𝑗

𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwiseSave to M[i,j]

Read from M[i,j] 
if present

Let 𝐿𝐶𝑆 𝑖, 𝑗 = length of the LCS for the first 𝑖 characters of 𝑋, first 𝑗 character of 𝑌
Find 𝐿𝐶𝑆(𝑖, 𝑗):



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest

18



3. Solve in a Good Order
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

To fill in cell (𝑖, 𝑗) we need cells 𝑖 − 1, 𝑗 − 1 , 𝑖 − 1, 𝑗 , (𝑖, 𝑗 − 1)
Fill from Top->Bottom, Left->Right (with any preference)



Run Time?
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Run Time: Θ(𝑛 ⋅ 𝑚) (for 𝑋 = 𝑛, 𝑌 = 𝑚)



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Reconstructing the LCS
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𝐿𝐶𝑆 𝑖, 𝑗 =
0 if 𝑖 = 0 or	𝑗 = 0
𝐿𝐶𝑆 𝑖 − 1, 𝑗 − 1 + 1 if 𝑋 𝑖 = 𝑌[𝑗]
max(𝐿𝐶𝑆 𝑖, 𝑗 − 1 , 𝐿𝐶𝑆 𝑖 − 1, 𝑗 ) otherwise

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 2 2 2

0 0 1 2 2 2 2 2

0 1 1 2 2 2 3 3

0 1 2 2 3 3 3 4

0 1 2 2 3 3 4 4

𝑋 = 𝐴 𝑇 𝐶 𝑇𝑇 𝐺 𝐴
1 2 3 74 5 60𝑌 =

0

1

3
4
5
6

2
𝑇

𝐶
𝐴
𝑇
𝐴

𝐺

Start from bottom right,
if symbols matched, print that symbol then go diagonally
else go to largest adjacent 



Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Cropping

• Removes a “block” of pixels
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Cropped



Scaling

• Removes “stripes” of pixels
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Scaled



Seam Carving

• Removes “least energy seam” of pixels
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Carved



Seam Carving

• Method for image resizing that doesn’t scale/crop the image
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Cropped Scaled Carved



Seattle Skyline

30
http://rsizr.com/

http://rsizr.com/


Energy of a Seam

• Sum of the energies of each pixel
𝑒 𝑝 = energy of pixel 𝑝

• Many choices for pixel energy
– E.g.: change of gradient (how much the color of this pixel differs from 

its neighbors)
– Particular choice doesn’t matter, we use it as a “black box”

• Goal: find least-energy seam to remove
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Identify Recursive Structure

Let 𝑆 𝑖, 𝑗 = least energy seam from the bottom of the image up 
to pixel 𝑝@,A

33

𝑝@,A



Finding the Least Energy Seam
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𝑝),N

Want to delete the least energy seam going from bottom to top, so delete:

min
f

NOE
𝑆(𝑛, 𝑘)

𝑛

𝑚



Computing 𝑆(𝑛, 𝑘)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

35

𝑝),N

Known 
through 
𝑛 − 1

𝑚



Computing 𝑆(𝑛, 𝑘)
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Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)

S(n-1,k-1)

𝑝),N

S(n-1,k) S(n-1,k+1)

S(n,k)



Computing 𝑆(𝑛, 𝑘)

37

S(n-1,k-1)

𝑝),N

S(n-1,k) S(n-1,k+1)

S(n,k)

𝑆 𝑛, 𝑘 = 𝑚𝑖𝑛 𝑆 𝑛 − 1, 𝑘 − 1 + 𝑒(𝑝),N)

𝑆 𝑛 − 1, 𝑘 + 𝑒(𝑝),N)

𝑆 𝑛 − 1, 𝑘 + 1 + 𝑒(𝑝),N)

Assume we know the least energy seams for all of row 𝑛 − 1
(i.e. we know 𝑆(𝑛 − 1, ℓ) for all ℓ)



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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Repeated Seam Removal

44

𝑛

𝑚

Only need to update pixels dependent on the removed seam
2𝑛 pixels change Θ(2𝑛) time to update pixels

Θ(𝑛 +𝑚) time to find min+backtrack



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify the recursive structure of the problem
• What is the “last thing” done?

2. Save the solution to each subproblem in memory
3. Select a good order for solving subproblems
• “Top Down”: Solve each recursively
• “Bottom Up”: Iteratively solve smallest to largest
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