
Why lots of memory is “bad”

• Using too much memory forces you to use slow memory
• Memory == $$
• May have too little memory for the algorithm to even run
• Lots of memory => not parallizable
• Contention for the memory
• See lecture slides on counting sort
• Memory <= time 
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Why lots of memory is “bad”

• Von Neumann bottleneck
• Don’t have enough memory
• Cache coherency
• Time >= space
• Fast memory is expensive
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Warm up

Why is an algorithm’s space complexity (how much memory it uses) 
important?

Why might a memory-intensive algorithm be a “bad” one?
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Why lots of memory is “bad”
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Today’s Keywords

• Greedy Algorithms
• Choice Function
• Cache Replacement
• Hardware & Algorithms
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CLRS Readings

• Chapter 16
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Homeworks

• HW6 Due Tuesday, November 5 @ 11pm
– Written (use latex)
– DP and Greedy

• HW10A also due Tuesday, November 5 @ 11pm
– No late submissions allowed

• HW4 and HW5 grades coming soon
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REVIEW: Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least 

frequent characters are siblings
• Exchange argument

– Show that making them siblings and solving the new 
smaller sub-problem results in an optimal solution
• Proof by contradiction
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Greedy Choice Property

Optimal Substructure works



Huffman Exchange Argument
• Claim: if 𝑐", 𝑐$ are the least-frequent characters, then there is 

an optimal prefix-free code s.t. 𝑐", 𝑐$ are siblings
– i.e. codes for 𝑐", 𝑐$ are the same length and differ only by their last 

bit

10𝑐"

𝑇&'(

𝑐$

Case 1: Consider some optimal tree 𝑇&'(. If 𝑐", 𝑐$ are siblings in this 
tree, then claim holds



Huffman Exchange Argument
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𝑐$

𝑎

𝑐"

𝑇&'(

𝑏

Case 2: Consider some optimal tree 𝑇&'(, in which 𝑐", 𝑐$ are not siblings

Let 𝑎, 𝑏 be the two characters of lowest 
depth that are siblings 
(Why must they exist?)

Idea: show that swapping 𝑐" with 𝑎 does 
not increase cost of the tree. 
Similar for 𝑐$ and 𝑏
Assume: 𝑓," ≤ 𝑓. and 𝑓,$ ≤ 𝑓/

• Claim: if 𝑐", 𝑐$ are the least-frequent characters, then there is 
an optimal prefix-free code s.t. 𝑐", 𝑐$ are siblings
– i.e. codes for 𝑐", 𝑐$ are the same length and differ only by their last 

bit



Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal 
solution for 𝐹′, then adding 𝑐", 𝑐$ as children to 𝜎
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𝑐" 𝑐$

𝑐" 𝑐$

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐"

𝜎
𝑐$

𝑐"

𝑈

𝑐$

>
>Contradiction!

optimal

not-optimal optimal

?!?!



Caching Problem

• Why is using too much memory a bad thing?
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Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics 
– Physics
– Economics 
– Computer Science
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Von Neumann Bottleneck

• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time, more memory is a 

lot more time
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CPU, 
registers

Cache
Disk

If not look here

Hopefully your 
data in here

Hope it’s not here

Access time: 
1 cycle

Access time: 
10 cycles

Access time: 
1,000,000 cycles



Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate 

something already there
• We want the best cache “schedule” to minimize the number of 

misses
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Caching Problem Definition

• Input: 
– 𝑘 = size of the cache
–𝑀 = 𝑚",𝑚$,…𝑚9 = memory access pattern

• Output: 
– “schedule” for the cache (list of items in the cache at each time) 

which minimizes cache fetches
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Example
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Example
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Example
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Example
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Example
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Example
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Our Problem vs Reality
• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)
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Unreduced

Reduced
Leaving A in longer does 
not save fetches



Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses
For each 𝑚< ∈ 𝑀:

if 𝑚< ∈ 𝑐𝑎𝑐ℎ𝑒:
print 𝑐𝑎𝑐ℎ𝑒

else:
𝑚 = furthest-in-future from cache
evict 𝑚, load 𝑚<
print 𝑐𝑎𝑐ℎ𝑒
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𝑂(𝑘)

𝑛 times

𝑂(𝑘)

𝑂(𝑘)

𝑂(𝑘𝑛)

𝑂(1)

𝑂(𝑘) 𝑂(𝑘𝑛$)



Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with 

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse 

by replacing it with the same item from my sandwich”
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Belady Exchange Lemma

Let 𝑆DD be the schedule chosen by our greedy algorithm
Let 𝑆< be a schedule which agrees with 𝑆DD for the first 𝑖 memory accesses.
We will show: there is a schedule 𝑆<F" which agrees with 𝑆DD for the first 

𝑖 + 1 memory accesses, and has no more misses than 𝑆<
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<))
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𝑆∗
Agrees with 
𝑆DD on first 0 
accesses

𝑆" 𝑆$
Agrees with 
𝑆DD on first  
access

Agrees with 
𝑆DD on first 2  
accesses

… 𝑆DD
Agrees with 
𝑆DD on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy 



Belady Exchange Proof Idea
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𝑆<

𝑆DD

𝑆<F"

First 𝑖 accesses

Must agree with 𝑆DD

Need to fill in the rest 
of 𝑆<F" to have no 

more misses than 𝑆<



𝑆< Cache after 𝑖

Proof of Lemma

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
Since 𝑆< agrees with 𝑆DD for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆DD Cache after 𝑖=
Consider access 𝑚<F" = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆< nor 𝑆DD
evict from the cache, use the same cache for 𝑆<F"

𝑓𝑒 𝑓𝑒

𝑆<F" Cache after 𝑖 𝑓𝑒

𝑑 𝑑

𝑑



𝑆< Cache after 𝑖

Proof of Lemma

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
Since 𝑆< agrees with 𝑆DD for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆DD Cache after 𝑖=
Consider access 𝑚<F" = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆< and 
𝑆DD evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆<F"

𝑆<F" Cache after 𝑖 𝑑𝑒



𝑆< Cache after 𝑖

Proof of Lemma

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
Since 𝑆< agrees with 𝑆DD for the first 𝑖 accesses, the 
state of the cache at access 𝑖 + 1 will be the same
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𝑆DD Cache after 𝑖=
Consider access 𝑚<F" = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆< evicts 𝑒 and 𝑆DD
evicts 𝑓 from the cache

𝑆< Cache after 𝑖 + 1 𝑆DD Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒



Case 3
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𝑆<

𝑆DD

𝑆<F"

First 𝑖 accesses

Must agree with 𝑆DD

Need to fill in the rest 
of 𝑆<F" to have no 

more misses than 𝑆<



Case 3
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𝑆<

𝑆DD

𝑆<F" 𝑚(

First 𝑖 accesses

First place 𝑆< involves 𝑒 or 𝑓

Copy 𝑆<

𝑚( = the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚( = 𝑒
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𝑆<

𝑆DD

𝑆<F" 𝑒

First 𝑖 accesses

First place 𝑆< uses 𝑒 or 𝑓

Copy 𝑆<

𝑚( = the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚( = 𝑒

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
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𝑆< Cache after 𝑡 − 1 𝑆<F" Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆< must load 𝑒 into 
the cache, assume it 
evicts 𝑥

𝑆<F" will load 𝑓 into 
the cache, evicting 𝑥

𝑆<F" behaved exactly the same as 𝑆< between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)

The caches now match!

𝑥 𝑥

𝑒 𝑓



Case 3, 𝑚( = 𝑓
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𝑆<

𝑆DD

𝑆<F" 𝑓

First 𝑖 accesses

First place 𝑆< uses 𝑒 or 𝑓

Copy 𝑆<

𝑚( = the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚( = 𝑓

Cannot Happen!

44

𝑆<

𝑆DD

𝑆<F" 𝑓

First place 𝑆< uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!



Case 3, 𝑚( = 𝑥 ≠ 𝑒, 𝑓
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𝑆<

𝑆DD

𝑆<F" 𝑥

First 𝑖 accesses

First place 𝑆< uses 𝑒 or 𝑓

Copy 𝑆<

𝑚( = the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇



Case 3, 𝑚( = 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
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𝑆< Cache after 𝑡 − 1 𝑆<F" Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆< loads 𝑥 into the 
cache, it must be 
evicting 𝑓

𝑆<F" will load 𝑥 into 
the cache, evicting 𝑒

𝑆<F" behaved exactly the same as 𝑆< between 𝑖
and 𝑡, and has the same cache after 𝑡, 
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)

𝑥 𝑥

The caches now match!



Use Lemma to show Optimality
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𝑆∗
Agrees with 
𝑆DD on first 0 
accesses

𝑆" 𝑆$
Agrees with 
𝑆DD on first  
access

Agrees with 
𝑆DD on first 2  
accesses

… 𝑆DD
Agrees with 
𝑆DD on all 𝑛
accesses

Lemma Lemma Lemma Lemma


