Why lots of memory is "bad"

- Using too much memory forces you to use slow memory
- Memory == \$\$
- May have too little memory for the algorithm to even run
- Lots of memory => not parallizable
- Contention for the memory
- See lecture slides on counting sort
- Memory <= time

Why lots of memory is "bad"

- Von Neumann bottleneck
- Don't have enough memory
- Cache coherency
- Time >= space
- Fast memory is expensive

CS4102 Algorithms Fall 2019

<u>Warm up</u>

Why is an algorithm's space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a "bad" one?

Why lots of memory is "bad"

Today's Keywords

- Greedy Algorithms
- Choice Function
- Cache Replacement
- Hardware & Algorithms

CLRS Readings

• Chapter 16

Homeworks

- HW6 Due Tuesday, November 5 @ 11pm
 - Written (use latex)
 - DP and Greedy
- HW10A also due Tuesday, November 5 @ 11pm
 - No late submissions allowed
- HW4 and HW5 grades coming soon

REVIEW: Showing Huffman is Optimal

- Overview:
 - Show that there is an optimal tree in which the least
 frequent characters are siblings
 Greedy Choice Property
 - Exchange argument
 - Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
 - Proof by contradiction

Optimal Substructure works

Huffman Exchange Argument

- Claim: if c₁, c₂ are the least-frequent characters, then there is an optimal prefix-free code s.t. c₁, c₂ are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt} . If c_1, c_2 are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c₁, c₂ are the least-frequent characters, then there is an optimal prefix-free code s.t. c₁, c₂ are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1, c_2 are not siblings

Let *a*, *b* be the two characters of lowest depth that are siblings (Why must they exist?)

Idea: show that swapping c_1 with a does not increase cost of the tree. Similar for c_2 and bAssume: $f_{c1} \leq f_a$ and $f_{c2} \leq f_b$

Optimal Substructure

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Caching Problem

• Why is using too much memory a bad thing?

Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science

Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

Caching Problem

- Cache misses are very expensive
- When we load something new into cache, we must eliminate something already there
- We want the best cache "schedule" to minimize the number of misses

Caching Problem Definition

- Input:
 - -k = size of the cache

 $-M = [m_1, m_2, \dots m_n] = memory access pattern$

- Output:
 - "schedule" for the cache (list of items in the cache at each time) which minimizes cache fetches

Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- "Reduced" Schedule: Address only loaded on the cycle it's required
 - Reduced == Unreduced (by number of fetches)

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

- Belady evict rule:
 - Evict the item accessed farthest in the future

4 Cache Misses

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Caching Greedy Algorithm

```
Initialize cache = first k accesses O(k)
For each m_i \in M: n times
     if m_i \in cache: O(k)
           print cache O(k)
     else:
           m = furthest-in-future from cache O(kn)
           evict m, load m_i O(1)
           print cache O(k)
```

 $O(kn^2)$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses. We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first i + 1 memory accesses, and has no more misses than S_i (i.e. $misses(S_{i+1}) \le misses(S_i)$)

Belady Exchange Proof Idea

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$ Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access i + 1 will be the same S_i Cache after i d e f = S_{ff} Cache after i d e fConsider access $m_{i+1} = d$

Case 1: if *d* is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \le misses(S_i)$ Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same S_i Cache after *i* e $f = S_{ff}$ Cache after *i* e f

Consider access $m_{i+1} = d$

Case 2: if d isn't in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

Proof of Lemma

Goal: find S_{i+1} s.t. $misses(S_{i+1}) \leq misses(S_i)$ Since S_i agrees with S_{ff} for the first *i* accesses, the state of the cache at access i + 1 will be the same S_{ff} Cache after *i* е S_i Cache after iConsider access $m_{i+1} = d$ Case 3: if d isn't in the cache, S_i evicts e and S_{ff}

evicts f from the cache

Case 3

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = e$

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = e$

Goal: find
$$S_{i+1}$$
 s.t. $misses(S_{i+1}) \le misses(S_i)$

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Case 3, $m_t = f$

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = f$

Cannot Happen!

Case 3, $m_t = x \neq e$, f

 m_t = the first access after i + 1 in which S_i deals with e or f3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$

Case 3, $m_t = x \neq e$, f

Goal: find
$$S_{i+1}$$
 s.t. $misses(S_{i+1}) \le misses(S_i)$

The caches now match!

 S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $misses(S_{i+1}) = misses(S_i)$

Use Lemma to show Optimality

