VWhy lots of memory Is "bad’

e Using too much memory forces you to use slow memory
* Memory == 5SS

* May have too little memory for the algorithm to even run
e Lots of memory => not parallizable

* Contention for the memory

* See lecture slides on counting sort

* Memory <=time

VWhy lots of memory Is "bad’

* Von Neumann bottleneck
 Don’t have enough memory
* Cache coherency

* Time >= space

* Fast memory is expensive

CS4102 Algorithms

Fall 2019

Warm up

Why is an algorithm’s space complexity (how much memory it uses)
important?

Why might a memory-intensive algorithm be a “bad” one?

VWhy lots of memory Is "bad’

Today's Keywords

* Greedy Algorithms

* Choice Function

* Cache Replacement
 Hardware & Algorithms

CLRS Readings

* Chapter 16

HoMeworks

e HW6 Due Tuesday, November5 @ 11pm

— Written (use latex)
— DP and Greedy

* HW10A also due Tuesday, November5 @ 11pm
— No late submissions allowed

* HW4 and HWS5 grades coming soon

REVIEW: Showing Huffman is Optimal

e Overview:

— Show that there is an optimal tree in which the least

frequent characters are siblings Greedy Choice Property
e Exchange argument

— Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
« Proof by contradiction Optimal Substructure works

Huffman Exchange Argument

* Claim:if ¢4, ¢, are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢4, ¢, are siblings
— i.e. codes for ¢4, ¢, are the same length and differ only by their last
bit
Case 1: Consider some optimal tree Ty, If ¢1, €3 are siblings in this
tree, then claim holds

10

Huffman Exchange Argument

* Claim:if ¢4, ¢, are the least-frequent characters, then there is
an optimal prefix-free code s.t. ¢4, ¢, are siblings
— i.e. codes for ¢4, ¢, are the same length and differ only by their last
bit

Case 2: Consider some optimal tree Ty, in which ¢y, ¢c; are not siblings

Let a, b be the two characters of lowest
depth that are siblings
(Why must they exist?)

ldea: show that swapping ¢; with a does
not increase cost of the tree.

Similar for ¢, and b
Assume: fq < fgand fo < 3

11

Optimal Substructure

* Claim: An optimal solution for F involves finding an optimal
solution for F’, then adding ¢, ¢, as children to o

optimal 21?1

Contradiction!

>

optimal

12

Caching Problem

* Why is using too much memory a bad thing?

13

Von Neumann Bottleneck

* Named for John von Neumann
* |[nventor of modern computer architecture

* Other notable influences include:
— Mathematics
— Physics
— Economics
— Computer Science

14

Von Neumann Bottleneck

 Reading from memory is VERY slow
* Big memory = slow memory
* Solution: hierarchical memory

* Takeaway for Algorithms: Memory is time, more memory is a
lot more time Hope it’s not here

If not look here

Hopefully your

data in here
CPU,
registers
Access time:
Access time: Access time: 1,000,000 cycles 15

1 cycle 10 cycles

Caching Problem

* Cache misses are very expensive

* When we load something new into cache, we must eliminate
something already there

e We want the best cache “schedule” to minimize the number of
misses

16

Caching Problem Definition

* |nput:

— k = size of the cache

— M = |mq,,m,, ...m,] = memory access pattern
* Qutput:

— “schedule” for the cache (list of items in the cache at each time)
which minimizes cache fetches

17

&BCDADEADBAECEA

18

A BCDADEADIBAECEA
v v

19

A BCDADEADIBAECEA
v v v

20

We must evict

something to make
room for D

A B

CDADEADIBAECEA
v vV VR

21

\ If we evict A

ABCDADEADBAECEA
VEVAVE IR

22

If we evict C

A BCDADTEADIBAECEA
v vV VR

23

Our Problem vs Reality

* Assuming we know the entire access pattern
* Cache is Fully Associative
* Counting # of fetches (not necessarily misses)

 “Reduced” Schedule: Address only loaded on the cycle it’s required
— Reduced == Unreduced (by number of fetches)

N

Unreduced

ABCDADEADUBAETCTEA

N Leaving A in longer does
Reduced not save fetches

A BCDADTEADUBAETCTEA :

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

25

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict C

A DEADZBAECEA

A B CD
v vV VR

26

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict B

A BCDADEADZSBAETCEA
VEVANE AR

27

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict D

A B C A DEADSB
/// X VvV VR

28

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

Evict B

E A

>
\D
\J>
\m
®O

A B C A D E
/// X VvV %

29

Greedy choice property

* Belady evict rule:

— Evict the item accessed farthest in the future

A B C A DEAD A ECEA
/// X VvV VYR //x//

4 Cache Misses

30

Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

31

Caching Greedy Algorithm

Initialize cache= first k accesses 0(k)
Foreachm; € M: ntimes
if m; € cache: 0(k)
print cache 0(k)
else:
m = furthest-in-future from cache 0(kn)
evictm, loadm; 0(1)
print cache 0(k) 0 (kn?)

32

=Xchange argument

* Shows correctness of a greedy algorithm
* |dea:

— Show exchanging an item from an arbitrary optimal solution with
your greedy choice makes the new solution no worse
— How to show my sandwich is at least as good as yours:

e Show: “l can remove any item from your sandwich, and it would be no worse
by replacing it with the same item from my sandwich” -v

Belady =xchange Lemma

Let S¢ - be the schedule chosen by our greedy algorithm
Let 5; be a schedule which agrees with S¢¢ for the first i memory accesses.

We will show: there is a schedule 5;, ; which agrees with 5S¢ for the first
[+ 1 memory accesses, and has no more misses than 5;

(i.e. misses(S; 1) < misses(S;))

Optimal Greedy

Lemma Lemma Lemma Lemma

*
=) [\ |) |) - EE) Sff
Agrees with Agrees with Agrees with Agrees with
S¢ron first 0 S¢r on first S¢y on first 2 S¢ronalln »

daccesses access accesses accesses

Belady Exchange Proof [dea

First i accesses

A
| \
s | 1 I 1 [[)

Need to fill in the rest

Si+1 - -- *. -- - of §;4+1 to have no

more misses than §;

Must agree with S¢¢

s | [I I I

Proot of Lemma

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

d e f

d e f —

S; Cache after i S¢r Cache after i

Consider accessm;,; = d

Case 1:if d is in the cache, then neither 5; nor S¢¢
evict from the cache, use the same cache for ;. ;

S;+1 Cache after i d < f

36

Proot of Lemma

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i e f — S¢r Cache after i e f

Consider accessm;,; = d

Case 2:if d isn’t in the cache, and both 5; and
S¢r evict f from the cache, evict f ford in 5; 4

S;+1 Cache after i < d

37

Proot of Lemma

Goal: find S;; ;1 s.t. misses(S;,,) < misses(S;)

Since 5; agrees with 5S¢ for the first i accesses, the
state of the cache at access i + 1 will be the same

S; Cache after i

Consider accessm;,; = d

Sff Cache afteri

Case 3:if d isn’tin the cache, 5; evicts e and 5S¢

evicts f from the cache

S; Cache afteri + 1 d f

Sff Cache afteri + 1 & d

38

First i accesses

A
| \
s | 1 I 1 [[)

Need to fill in the rest

Si+1 - -- *. -- - of §;4+1 to have no

more misses than §;

Must agree with S¢¢

s | [I I I

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂllllii@l

First place S; involves e or f

s | [I I I

m; = the first access after i + 1 in which S; deals with e or f

3optionssm; =e orm;=form;=x+*e,f

Case 3, my =e

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂlllliigl

First place S; usese or f

s | [I I I

m, = the first access after i + 1 in which S; deals with e or f

3 options: m; = e

Case 3, my =e

Goal: find S; ., s.t. misses(S;,,) < misses(S;)

d

S; Cache aftert — 1 S;.1 Cache aftert —1 % €

f
5; must load e into S;+1 will load f into
the cache, assume it the cache, evicting x
evicts x

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;) "

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂllllii?I

First place S; usese or f

s | [I I I

m, = the first access after i + 1 in which S; deals with e or f

3 options: m;=f

Cannot Happen!

s [N 1) [) [

“Evict f"

smlllﬁllql

First place S; usese or f
Means f not farthest future access!

%TIII$IIII

“Evict f"

Case 3, my =x #e,f

First i accesses

A
| \
s I I [[[

Copy 5;

%ﬂllllii?I

First place S; usese or f

s | [I I I

m, = the first access after i + 1 in which S; deals with e or f

3 options: m;,=x+e,f

Case 3, my =x #e,f

Goal: find S; ., s.t. misses(S;,,) < misses(S;)

S; Cache aftert — 1 a f :'t S;11 Cache aftert — 1 € d

X X

S; loads x into the S;+1 will load x into
cache, it must be the cache, evicting e
evicting f

The caches now match!

S;+1 behaved exactly the same as 5; between i
and t, and has the same cache after t,
therefore misses(S;,,) = misses(S;)

46

UJse Lemma to show Optimality

Lemma Lemma Lemma Lemma
S (==4A15 S5 Ny
Agrees with Agrees with Agrees with Agrees with
S¢r on first O S¢r on first S¢r on first 2 Sgronalln
accesses accesses

accesses access

47

