
Why lots of memory is “bad”

• Using too much memory forces you to use slow memory
• Memory == $$
• May have too little memory for the algorithm to even run
• Lots of memory => not parallizable
• Contention for the memory
• See lecture slides on counting sort
• Memory <= time

1

Why lots of memory is “bad”

• Von Neumann bottleneck
• Don’t have enough memory
• Cache coherency
• Time >= space
• Fast memory is expensive

2

3

Warm up

Why is an algorithm’s space complexity (how much memory it uses)
important?

Why might a memory-intensive algorithm be a “bad” one?

4

Fall 2019

Why lots of memory is “bad”

5

Today’s Keywords

• Greedy Algorithms
• Choice Function
• Cache Replacement
• Hardware & Algorithms

6

CLRS Readings

• Chapter 16

7

Homeworks

• HW6 Due Tuesday, November 5 @ 11pm
– Written (use latex)
– DP and Greedy

• HW10A also due Tuesday, November 5 @ 11pm
– No late submissions allowed

• HW4 and HW5 grades coming soon

8

REVIEW: Showing Huffman is Optimal

• Overview:
– Show that there is an optimal tree in which the least

frequent characters are siblings
• Exchange argument

– Show that making them siblings and solving the new
smaller sub-problem results in an optimal solution
• Proof by contradiction

9

Greedy Choice Property

Optimal Substructure works

Huffman Exchange Argument
• Claim: if 𝑐", 𝑐$ are the least-frequent characters, then there is

an optimal prefix-free code s.t. 𝑐", 𝑐$ are siblings
– i.e. codes for 𝑐", 𝑐$ are the same length and differ only by their last

bit

10𝑐"

𝑇&'(

𝑐$

Case 1: Consider some optimal tree 𝑇&'(. If 𝑐", 𝑐$ are siblings in this
tree, then claim holds

Huffman Exchange Argument

11

𝑐$

𝑎

𝑐"

𝑇&'(

𝑏

Case 2: Consider some optimal tree 𝑇&'(, in which 𝑐", 𝑐$ are not siblings

Let 𝑎, 𝑏 be the two characters of lowest
depth that are siblings
(Why must they exist?)

Idea: show that swapping 𝑐" with 𝑎 does
not increase cost of the tree.
Similar for 𝑐$ and 𝑏
Assume: 𝑓," ≤ 𝑓. and 𝑓,$ ≤ 𝑓/

• Claim: if 𝑐", 𝑐$ are the least-frequent characters, then there is
an optimal prefix-free code s.t. 𝑐", 𝑐$ are siblings
– i.e. codes for 𝑐", 𝑐$ are the same length and differ only by their last

bit

Optimal Substructure

• Claim: An optimal solution for 𝐹 involves finding an optimal
solution for 𝐹′, then adding 𝑐", 𝑐$ as children to 𝜎

12

𝑐" 𝑐$

𝑐" 𝑐$

𝜎

𝐹′

𝐹

𝑈′

𝜎

𝑇′
𝜎

𝑇

𝑐"

𝜎
𝑐$

𝑐"

𝑈

𝑐$

>
>Contradiction!

optimal

not-optimal optimal

?!?!

Caching Problem

• Why is using too much memory a bad thing?

13

Von Neumann Bottleneck

• Named for John von Neumann
• Inventor of modern computer architecture
• Other notable influences include:
– Mathematics
– Physics
– Economics
– Computer Science

14

Von Neumann Bottleneck

• Reading from memory is VERY slow
• Big memory = slow memory
• Solution: hierarchical memory
• Takeaway for Algorithms: Memory is time, more memory is a

lot more time

15

CPU,
registers

Cache
Disk

If not look here

Hopefully your
data in here

Hope it’s not here

Access time:
1 cycle

Access time:
10 cycles

Access time:
1,000,000 cycles

Caching Problem

• Cache misses are very expensive
• When we load something new into cache, we must eliminate

something already there
• We want the best cache “schedule” to minimize the number of

misses

16

Caching Problem Definition

• Input:
– 𝑘 = size of the cache
–𝑀 = 𝑚",𝑚$,…𝑚9 = memory access pattern

• Output:
– “schedule” for the cache (list of items in the cache at each time)

which minimizes cache fetches

17

Example

18

A B C D A D E A D B A E C E A

A

B

C

Example

19

A B C D A D E A D B A E C E A

A

B

C

A

B

C

Example

20

A B C D A D E A D B A E C E A

A

B

C

A

B

C

A

B

C

Example

21

A B C D A D E A D B A E C E A

A

B

C

We must evict
something to make
room for D

A

B

C

A

B

C

A

B

C

Example

22

A B C D A D E A D B A E C E A

D

B

C

If we evict AA

B

C

A

B

C

A

B

C

A

B

C

Example

23

A B C D A D E A D B A E C E A

A

B

D

If we evict CA

B

C

A

B

C

A

B

C

A

B

C

Our Problem vs Reality
• Assuming we know the entire access pattern
• Cache is Fully Associative
• Counting # of fetches (not necessarily misses)
• “Reduced” Schedule: Address only loaded on the cycle it’s required
– Reduced == Unreduced (by number of fetches)

24

A B C D A D E A D B A E C E A

A B C D A D E A D B A E C E A

A
B
C

A
B
C

A
B
C

A
B
C

D
B
C

D
B
C

A
B
C

A
B
C

Unreduced

Reduced
Leaving A in longer does
not save fetches

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

25

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

26

A B C D A D E A D B A E C E A

A

B

C Evict C

A

B

C

A

B

C

A

B

C

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

27

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

B

D Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

28

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

D Evict D

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

29

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

B Evict B

Greedy choice property

• Belady evict rule:
– Evict the item accessed farthest in the future

30

A B C D A D E A D B A E C E A

A

B

D

A

B

C

A

B

C

A

B

C

A

B

D

A

B

D

A

E

D

A

E

D

A

E

D

A

E

B

A

E

B

A

E

B

A

E

C

A

E

C

A

E

C

4 Cache Misses

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

31

Caching Greedy Algorithm

Initialize 𝑐𝑎𝑐ℎ𝑒= first k accesses
For each 𝑚< ∈ 𝑀:

if 𝑚< ∈ 𝑐𝑎𝑐ℎ𝑒:
print 𝑐𝑎𝑐ℎ𝑒

else:
𝑚 = furthest-in-future from cache
evict 𝑚, load 𝑚<
print 𝑐𝑎𝑐ℎ𝑒

32

𝑂(𝑘)

𝑛 times

𝑂(𝑘)

𝑂(𝑘)

𝑂(𝑘𝑛)

𝑂(1)

𝑂(𝑘) 𝑂(𝑘𝑛$)

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

33

Belady Exchange Lemma

Let 𝑆DD be the schedule chosen by our greedy algorithm
Let 𝑆< be a schedule which agrees with 𝑆DD for the first 𝑖 memory accesses.
We will show: there is a schedule 𝑆<F" which agrees with 𝑆DD for the first

𝑖 + 1 memory accesses, and has no more misses than 𝑆<
(i.e. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<))

34

𝑆∗
Agrees with
𝑆DD on first 0
accesses

𝑆" 𝑆$
Agrees with
𝑆DD on first
access

Agrees with
𝑆DD on first 2
accesses

… 𝑆DD
Agrees with
𝑆DD on all 𝑛
accesses

Lemma Lemma Lemma Lemma
Optimal Greedy

Belady Exchange Proof Idea

35

𝑆<

𝑆DD

𝑆<F"

First 𝑖 accesses

Must agree with 𝑆DD

Need to fill in the rest
of 𝑆<F" to have no

more misses than 𝑆<

𝑆< Cache after 𝑖

Proof of Lemma

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
Since 𝑆< agrees with 𝑆DD for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

36

𝑆DD Cache after 𝑖=
Consider access 𝑚<F" = 𝑑

Case 1: if 𝑑 is in the cache, then neither 𝑆< nor 𝑆DD
evict from the cache, use the same cache for 𝑆<F"

𝑓𝑒 𝑓𝑒

𝑆<F" Cache after 𝑖 𝑓𝑒

𝑑 𝑑

𝑑

𝑆< Cache after 𝑖

Proof of Lemma

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
Since 𝑆< agrees with 𝑆DD for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

37

𝑆DD Cache after 𝑖=
Consider access 𝑚<F" = 𝑑

𝑓𝑒 𝑓𝑒

Case 2: if 𝑑 isn’t in the cache, and both 𝑆< and
𝑆DD evict 𝑓 from the cache, evict 𝑓 for 𝑑 in 𝑆<F"

𝑆<F" Cache after 𝑖 𝑑𝑒

𝑆< Cache after 𝑖

Proof of Lemma

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)
Since 𝑆< agrees with 𝑆DD for the first 𝑖 accesses, the
state of the cache at access 𝑖 + 1 will be the same

38

𝑆DD Cache after 𝑖=
Consider access 𝑚<F" = 𝑑

𝑓𝑒 𝑓𝑒

Case 3: if 𝑑 isn’t in the cache, 𝑆< evicts 𝑒 and 𝑆DD
evicts 𝑓 from the cache

𝑆< Cache after 𝑖 + 1 𝑆DD Cache after 𝑖 + 1≠𝑓𝑑 𝑑𝑒

Case 3

39

𝑆<

𝑆DD

𝑆<F"

First 𝑖 accesses

Must agree with 𝑆DD

Need to fill in the rest
of 𝑆<F" to have no

more misses than 𝑆<

Case 3

40

𝑆<

𝑆DD

𝑆<F" 𝑚(

First 𝑖 accesses

First place 𝑆< involves 𝑒 or 𝑓

Copy 𝑆<

𝑚(= the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3, 𝑚(= 𝑒

41

𝑆<

𝑆DD

𝑆<F" 𝑒

First 𝑖 accesses

First place 𝑆< uses 𝑒 or 𝑓

Copy 𝑆<

𝑚(= the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3, 𝑚(= 𝑒

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)

42

𝑆< Cache after 𝑡 − 1 𝑆<F" Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆< must load 𝑒 into
the cache, assume it
evicts 𝑥

𝑆<F" will load 𝑓 into
the cache, evicting 𝑥

𝑆<F" behaved exactly the same as 𝑆< between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)

The caches now match!

𝑥 𝑥

𝑒 𝑓

Case 3, 𝑚(= 𝑓

43

𝑆<

𝑆DD

𝑆<F" 𝑓

First 𝑖 accesses

First place 𝑆< uses 𝑒 or 𝑓

Copy 𝑆<

𝑚(= the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3, 𝑚(= 𝑓

Cannot Happen!

44

𝑆<

𝑆DD

𝑆<F" 𝑓

First place 𝑆< uses 𝑒 or 𝑓

“Evict 𝑓"

“Evict 𝑓"

Means 𝑓 not farthest future access!

Case 3, 𝑚(= 𝑥 ≠ 𝑒, 𝑓

45

𝑆<

𝑆DD

𝑆<F" 𝑥

First 𝑖 accesses

First place 𝑆< uses 𝑒 or 𝑓

Copy 𝑆<

𝑚(= the first access after 𝑖 + 1 in which 𝑆< deals with 𝑒 or 𝑓
3 options: 𝒎𝒕 = 𝒆 or 𝒎𝒕 = 𝒇 or 𝒎𝒕 = 𝒙 ≠ 𝒆, 𝒇

Case 3, 𝑚(= 𝑥 ≠ 𝑒, 𝑓

Goal: find 𝑆<F" s.t. 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" ≤ 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)

46

𝑆< Cache after 𝑡 − 1 𝑆<F" Cache after 𝑡 − 1≠𝑓𝑑 𝑑𝑒

𝑆< loads 𝑥 into the
cache, it must be
evicting 𝑓

𝑆<F" will load 𝑥 into
the cache, evicting 𝑒

𝑆<F" behaved exactly the same as 𝑆< between 𝑖
and 𝑡, and has the same cache after 𝑡,
therefore 𝑚𝑖𝑠𝑠𝑒𝑠 𝑆<F" = 𝑚𝑖𝑠𝑠𝑒𝑠(𝑆<)

𝑥 𝑥

The caches now match!

Use Lemma to show Optimality

47

𝑆∗
Agrees with
𝑆DD on first 0
accesses

𝑆" 𝑆$
Agrees with
𝑆DD on first
access

Agrees with
𝑆DD on first 2
accesses

… 𝑆DD
Agrees with
𝑆DD on all 𝑛
accesses

Lemma Lemma Lemma Lemma

