Why lots of memory is “bad”

- Using too much memory forces you to use slow memory
- Memory == $$
- May have too little memory for the algorithm to even run
- Lots of memory => not parallizable
- Contention for the memory
- See lecture slides on counting sort
- Memory <= time
Why lots of memory is “bad”

- Von Neumann bottleneck
- Don’t have enough memory
- Cache coherency
- Time \geq space
- Fast memory is expensive
Warm up

Why is an algorithm’s space complexity (how much memory it uses) important?

Why might a memory-intensive algorithm be a “bad” one?
Why lots of memory is “bad”
Today’s Keywords

• Greedy Algorithms
• Choice Function
• Cache Replacement
• Hardware & Algorithms
• Chapter 16
Homeworks

• HW6 Due Tuesday, November 5 @ 11pm
 – Written (use latex)
 – DP and Greedy

• HW10A also due Tuesday, November 5 @ 11pm
 – No late submissions allowed

• HW4 and HW5 grades coming soon
Overview:
- Show that there is an optimal tree in which the least frequent characters are siblings
 - Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
 - Proof by contradiction

Greedy Choice Property
Optimal Substructure works
Huffman Exchange Argument

• **Claim:** if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 – i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt}. If c_1, c_2 are siblings in this tree, then claim holds
• **Claim:** if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings

 – i.e. codes for c_1, c_2 are the same length and differ only by their last bit

 Case 2: Consider some optimal tree T_{opt}, in which c_1, c_2 are not siblings

 Let a, b be the two characters of lowest depth that are siblings
 (Why must they exist?)

 Idea: show that swapping c_1 with a does not increase cost of the tree.

 Similar for c_2 and b

 Assume: $f_{c_1} \leq f_a$ and $f_{c_2} \leq f_b$
Optimal Substructure

- **Claim**: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ.
• Why is using too much memory a bad thing?
Von Neumann Bottleneck

- Named for John von Neumann
- Inventor of modern computer architecture
- Other notable influences include:
 - Mathematics
 - Physics
 - Economics
 - Computer Science
Von Neumann Bottleneck

- Reading from memory is VERY slow
- Big memory = slow memory
- Solution: hierarchical memory
- Takeaway for Algorithms: Memory is time, more memory is a lot more time

![Diagram of memory hierarchy](image)

- CPU, registers
 - Access time: 1 cycle
- Cache
 - Access time: 10 cycles
- Disk
 - Access time: 1,000,000 cycles
- Hopefully your data in here
- If not look here
- Hope it’s not here
• Cache misses are very expensive
• When we load something new into cache, we must eliminate something already there
• We want the best cache “schedule” to minimize the number of misses
Caching Problem Definition

• Input:
 – \(k = \) size of the cache
 – \(M = [m_1, m_2, \ldots m_n] = \) memory access pattern

• Output:
 – “schedule” for the cache (list of items in the cache at each time) which minimizes cache fetches
Example

A B C D A D E A D B A E C E A

A B C

A B C

A C D A D E A D B A E C E A

✓ ✓
Example

A B C D A D E A D B A E C E A

A B C

A B C D A D E A D B A E C E A
We must evict something to make room for D.
Example

If we evict A
Example

If we evict C
Our Problem vs Reality

- Assuming we know the entire access pattern
- Cache is Fully Associative
- Counting # of fetches (not necessarily misses)
- “Reduced” Schedule: Address only loaded on the cycle it’s required
 - Reduced == Unreduced (by number of fetches)

![Diagram showing reduced and unreduced schedules]

Leaving A in longer does not save fetches
Greedy Algorithms

• Require Optimal Substructure
 – Solution to larger problem contains the solution to a smaller one
 – Only one subproblem to consider!

• Idea:
 1. Identify a greedy choice property
 • How to make a choice guaranteed to be included in some optimal solution
 2. Repeatedly apply the choice property until no subproblems remain
Greedy choice property

- Belady evict rule:
 - Evict the item accessed farthest in the future
Greedy choice property

• Belady evict rule:
 – Evict the item accessed farthest in the future
• Belady evict rule:
 – Evict the item accessed farthest in the future
Greedy choice property

• Belady evict rule:
 – Evict the item accessed farthest in the future
Greedy choice property

• Belady evict rule:
 – Evict the item accessed farthest in the future

4 Cache Misses
• Require **Optimal Substructure**
 – Solution to larger problem contains the solution to a smaller one
 – Only one subproblem to consider!
• Idea:
 1. Identify a greedy **choice property**
 • How to make a choice guaranteed to be included in some optimal solution
 2. Repeatedly apply the choice property until no subproblems remain
Caching Greedy Algorithm

Initialize $\text{cache} = \text{first k accesses } O(k)$

For each $m_i \in M$: n times

\begin{align*}
\text{if } m_i \in \text{cache: } & O(k) \\
\text{print cache } & O(k) \\
\text{else: } \\
\text{m = furthest-in-future from cache } & O(kn) \\
\text{evict m, load } m_i & O(1) \\
\text{print cache } & O(k)
\end{align*}

$O(kn^2)$
Exchange argument

• Shows correctness of a greedy algorithm

• Idea:
 – Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 – How to show my sandwich is at least as good as yours:
 • Show: “I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich”
Belady Exchange Lemma

Let S_{ff} be the schedule chosen by our greedy algorithm.

Let S_i be a schedule which agrees with S_{ff} for the first i memory accesses.

We will show: there is a schedule S_{i+1} which agrees with S_{ff} for the first $i + 1$ memory accesses, and has no more misses than S_i (i.e. $\text{misses}(S_{i+1}) \leq \text{misses}(S_i)$)
Belady Exchange Proof Idea

First i accesses

S_i

S_{i+1}

Must agree with S_{ff}

Need to fill in the rest of S_{i+1} to have no more misses than S_i
Proof of Lemma

Goal: find S_{i+1} s.t. $\text{misses}(S_{i+1}) \leq \text{misses}(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access $i + 1$ will be the same

Consider access $m_{i+1} = d$

Case 1: if d is in the cache, then neither S_i nor S_{ff} evict from the cache, use the same cache for S_{i+1}
Proof of Lemma

Goal: find S_{i+1} s.t. $\text{misses}(S_{i+1}) \leq \text{misses}(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access $i + 1$ will be the same

\[
S_i \text{ Cache after } i \quad e \quad f \quad = \quad S_{ff} \text{ Cache after } i \quad e \quad f
\]

Consider access $m_{i+1} = d$

Case 2: if d isn’t in the cache, and both S_i and S_{ff} evict f from the cache, evict f for d in S_{i+1}

\[
S_{i+1} \text{ Cache after } i \quad e \quad d
\]
Proof of Lemma

Goal: find S_{i+1} s.t. $\text{misses}(S_{i+1}) \leq \text{misses}(S_i)$

Since S_i agrees with S_{ff} for the first i accesses, the state of the cache at access $i + 1$ will be the same

\[
\begin{array}{c|cc}
S_i \text{ Cache after } i & e & f \\
\end{array}
= \begin{array}{c|cc}
S_{ff} \text{ Cache after } i & e & f \\
\end{array}
\]

Consider access $m_{i+1} = d$

Case 3: if d isn’t in the cache, S_i evicts e and S_{ff} evicts f from the cache

\[
\begin{array}{c|cc}
S_i \text{ Cache after } i + 1 & d & f \\
\end{array}
\neq \begin{array}{c|cc}
S_{ff} \text{ Cache after } i + 1 & e & d \\
\end{array}
\]
Case 3

First i accesses

S_i

S_{i+1}

Must agree with S_{ff}

Need to fill in the rest of S_{i+1} to have no more misses than S_i
Case 3

First i accesses

S_i

Copy S_i

First place S_i involves e or f

S_{i+1}

S_{ff}

$m_t = \text{the first access after } i + 1 \text{ in which } S_i \text{ deals with } e \text{ or } f$

3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$
Case 3, \(m_t = e \)

First \(i \) accesses

\(S_i \)

Copy \(S_i \)

First place \(S_i \) uses \(e \) or \(f \)

\(S_{i+1} \)

\(m_t = \) the first access after \(i + 1 \) in which \(S_i \) deals with \(e \) or \(f \)

3 options: \(m_t = e \) or \(m_t = f \) or \(m_t = x \neq e, f \)
Case 3, $m_t = e$

Goal: find S_{i+1} s.t. $\text{misses}(S_{i+1}) \leq \text{misses}(S_i)$

S_i Cache after $t - 1$:

\[
\begin{array}{ccc}
S_i & x & d & f \\
& e & & \\
\end{array}
\]

S_i must load e into the cache, assume it evicts x

S_{i+1} Cache after $t - 1$:

\[
\begin{array}{ccc}
S_{i+1} & x & e & d \\
& f & & \\
\end{array}
\]

S_{i+1} will load f into the cache, evicting x

The caches now match!

S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $\text{misses}(S_{i+1}) = \text{misses}(S_i)$
Case 3, $m_t = f$

$m_t = \text{the first access after } i + 1 \text{ in which } S_i \text{ deals with } e \text{ or } f$

3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$
Case 3, $m_t = f$

Cannot Happen!

- S_i:

- S_{i+1}: "Evict f"

- First place S_i uses e or f
 Means f not farthest future access!

- S_{ff}: "Evict f"
Case 3, $m_t = x \neq e, f$

$m_t = \text{the first access after } i + 1 \text{ in which } S_i \text{ deals with } e \text{ or } f$

3 options: $m_t = e$ or $m_t = f$ or $m_t = x \neq e, f$
Case 3, $m_t = x \neq e, f$

Goal: find S_{i+1} s.t. $\text{misses}(S_{i+1}) \leq \text{misses}(S_i)$

- S_i loads x into the cache, it must be evicting f

- S_{i+1} will load x into the cache, evicting e

The caches now match!

- S_{i+1} behaved exactly the same as S_i between i and t, and has the same cache after t, therefore $\text{misses}(S_{i+1}) = \text{misses}(S_i)$
Use Lemma to show Optimality

\[S^* \rightarrow S_1 \rightarrow S_2 \rightarrow \ldots \rightarrow S_{ff} \]

Agrees with \(S_{ff} \) *on first 0 accesses*

Agrees with \(S_{ff} \) *on first access*

Agrees with \(S_{ff} \) *on first 2 accesses*

Agrees with \(S_{ff} \) *on all* \(n \) *accesses*