
1

Warm up:
Show that the sum of degrees of all

nodes in any undirected graph is even

Show that for any graph 𝐺 = 𝑉, 𝐸 ,
∑'∈) deg(𝑣) is even

Fall 2019

∑'∈) deg(𝑣) is always even

• deg(𝑣) counts the number of edges incident 𝑣
• Consider any edge e ∈ 𝐸
• This edge is incident 2 vertices (on each end)
• This means 2 ⋅ 𝐸 = ∑'∈) deg(𝑣)
• Therefore ∑'∈) deg(𝑣) is even

2

Today’s Keywords
• Greedy Algorithms
• Choice Function
• Graphs
• Minimum Spanning Tree
• Kruskal’s Algorithm
• Prim’s Algorithm
• Cut Theorem

3

CLRS Readings

• Chapter 22
• Chapter 23

4

Homeworks

• HW6 due tonight @ 11pm
– Written (use latex)
– DP and Greedy

• HW10A also due tonight @ 11pm
– No late submissions allowed

• HW7 due Thursday, November 14 @ 11pm
– Written (use latex)
– Graphs!

• HW10B also due Thursday, November 14 @ 11pm
– No late submissions allowed

5

Tomorrow (Wednesday)

Administrativa

• No office hours on Monday (traveling)
– Extra hours Tuesday 11am-1pm

• Normal office hours shift starting 11/18
– Mondays 10-11am, 2-3pm
– Tuesdays 12:30-1:30pm

6

ARPANET

7

Problem

8

We need to connect together all these places into a network
We have feasible wires to run, plus the cost of each wire
Find the cheapest set of wires to run to connect all places

10

2

6

11

9
5

8

3

7

3

1

8

12

9

Find a
Minimum
Spanning Tree

Graphs

9

10

2

6

11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼}

𝐸 = { 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐵, 𝐶 , … }

Adjacency List Representation

10

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A

B

C

D

E

F

G

H

I

B C

A C E

A B D F

C E F

B D G H

C D G

E F H I

E G I

G H

Tradeoffs
Space:
Time to list neighbors:
Time to check edge (𝐴, 𝐵):

𝑉 + 𝐸
𝐷𝑒𝑔𝑟𝑒𝑒(𝐴)

𝐷𝑒𝑔𝑟𝑒𝑒(𝐴)

Adjacency Matrix Representation

11

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H
A
B
C
D
E
F
G
H
I

Tradeoffs
Space:
Time to list neighbors:
Time to check edge (𝐴, 𝐵):

𝑉A
𝑉

𝑂(1)

A B C D E F G H I
1 1

1 1 1
1 1 1

1 1 1
1 1 1 1

1 1 1
1 1 1 1
1 1 1

1 1

1

Definition: Path

12

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣D, 𝑣A, … , 𝑣E)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣K, 𝑣KLD ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path of > 2 nodes in
which 𝑣D = 𝑣E

Definition: Connected Graph

13

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣D, 𝑣A ∈ 𝑉 there is a path from 𝑣D to 𝑣A

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: Tree

14

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Definition: Spanning Tree

15

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑇 = (𝑉O, 𝐸O) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?
𝑉 − 1

Definition: Minimum Spanning Tree

16

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑇 = (𝑉O, 𝐸O) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = S
T∈UV

𝑤(𝑒)

How many edges does 𝑇 have?
𝑉 − 1

Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

17

Kruskal’s Algorithm

18

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

19

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

20

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

21

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

22

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Kruskal’s Algorithm

23

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

Definition: Cut

24

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣D, 𝑣A ∈ 𝐸 crosses a
cut if 𝑣D ∈ 𝑆 and 𝑣A ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Exchange argument

• Shows correctness of a greedy algorithm
• Idea:
– Show exchanging an item from an arbitrary optimal solution with

your greedy choice makes the new solution no worse
– How to show my sandwich is at least as good as yours:
• Show: “I can remove any item from your sandwich, and it would be no worse

by replacing it with the same item from my sandwich”

25

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let
(𝑆, 𝑉 − 𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight
edge which crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a
minimum spanning tree.

26

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Cut Theorem

27

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑆

𝑉 − 𝑆

𝑇

𝐴 ⊆ 𝑇

𝑒

Consider some MST 𝑇,
Case 1: (the easy case)

If 𝑒 ∈ 𝑇 Then claim holds

Proof of Cut Theorem

28

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = (𝑣D, 𝑣A) ∉ 𝑇
Since 𝑇 is a MST, there is
some path from 𝑣D to 𝑣A.

Let 𝑒′ be the first edge on this
path which crosses the cut

Build tree 𝑇] by exchanging
𝑒] for 𝑒

𝑣A

𝑣D

𝑆

𝑉 − 𝑆

𝑒𝑒′

Proof of Cut Theorem

29

Claim: If 𝐴 is a subset of a MST 𝑇, and 𝑒 is the least-
weight edge which crosses cut (𝑆, 𝑉 − 𝑆) (which 𝐴
respects) then 𝐴 ∪ {𝑒} is also a subset of a MST.

𝑇

𝐴 ⊆ 𝑇

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = (𝑣D, 𝑣A) ∉ 𝑇

𝑣A

𝑣D

𝑆

𝑉 − 𝑆

𝑒𝑒′
We assumed 𝑤 𝑒 ≤ 𝑤(𝑒])
𝑤 𝑇] = 𝑤 𝑇 − 𝑤 𝑒] + 𝑤(𝑒)
𝑤 𝑇] ≤ 𝑤 𝑇
So 𝑇] is also a MST!
Thus the claim holds

𝑇] = 𝑇 with edge 𝑒 instead of 𝑒]

Kruskal’s Algorithm

30

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the min-weight edge that doesn’t
cause a cycle

𝑆
𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

General MST Algorithm

31

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

32

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

33

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

34

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

35

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

36

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

37

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Summary of MST results

• Fredman-Tarjan ‘84: Θ(𝐸 + 𝑉 log 𝑉)
• Gabow et al ‘86: Θ(𝐸 log log∗ 𝑉)
• Chazelle ‘00: Θ(𝐸𝛼 𝑉)
• Pettie-Ramachandran ’02:Θ(?)(optimal)
• Karger-Klein-Tarjan ‘95: Θ(𝐸) (randomized)

• [read and summarize any/all for EC]

38

