
Warm up
Can you cover an 8×8 grid with 1

square missing using “trominoes?”
Can you cover this?

With these?

CS4102 Algorithms
Fall 2019

Office Hours

• Mondays, 10am-11am, 2-4pm

Today’s Keywords

• Recursion
• Recurrences
• Asymptotic notation
• Divide and Conquer
• Trominoes
• Merge Sort

CLRS Readings

• Chapters 3 & 4

Homeworks

• Hw0 due 11pm Tuesday, Sept 2
– Submit 2 attachments (zip and pdf)

• Hw1 released Tuesday, Sept 2
– Due 11pm Thursday, Sept 12
– Written (use Latex!)
– Asymptotic notation
– Recurrences
– Divide and conquer

Attendance

• How many people are here today?
• Naïve algorithm

1. Everyone stand
2. Professor walks around counting people
3. When counted, sit down

• Run time?
– Class of n students
– O(n)

• Other suggestions?

Good Attendance

1 2

nn-1

𝑛 students

𝑛
ro

w
s

𝑂(𝑛)

Better Attendance

1. Everyone Stand

2. Initialize your “count” to 1

3. Greet a neighbor who is standing: share your name, full date of
birth(pause if odd one out)

4. If you are older: give “count” to younger and sit.
Else if you are younger: add your “count” with older’s

5. If you are standing and have a standing neighbor, go to 3

What was the
run time of this
algorithm?
What are we
going to count?

Attendance Algorithm Analysis

1.
Stand

2.
count=1

3.
Greet

4.
Add/sit

5.
Repeat

Constant Initialization
1 1 𝑇()𝑛 2)𝑇(𝑛) =

𝑇 𝑛 = 1 + 1 + 𝑇()𝑛 2) How can we “solve” this?

Base case?𝑇 1 = 3

Do not need to be exact, asymptotic bound is fine.
Why?

Let’s solve the recurrence!

𝑇 𝑛 = 2 + 𝑇()𝑛 2)
𝑇 1 = 3 Special case: 𝑛 = 2.

2 + 𝑇()𝑛 4)
2 + 𝑇()𝑛 8)…

3

𝑘

𝑇 𝑛 = 3 + 1
234

56789

2 = 2 log= 𝑛 + 3

What if 𝑛 ≠ 2.?

• More people in the room → more time

– ∀ 0 < 𝑛 < 𝑚, 𝑇 𝑛 < 𝑇 𝑚 , where 2D < 𝑛 < 2.EF = 𝑚,
i.e., k < log 𝑛 < 𝑘 + 1

– 𝑇 𝑛 ≤ 𝑇 𝑚 = 𝑇 2.EF = 𝑇 2 5678 9 = 2 log= 𝑛 + 3

These are unimportant.
Why?

= 𝑂(log 𝑛)

Asymptotic Notation*

• 𝑂(𝑔 𝑛)
– At most within constant of 𝑔 for large 𝑛
– {functions 𝑓|∃ constants 𝑐, 𝑛4 > 0 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)}

• Ω(𝑔 𝑛)
– At least within constant of 𝑔 for large 𝑛
– {functions 𝑓|∃ constants 𝑐, 𝑛4 > 0s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛)}

• Θ 𝑔 𝑛
– “Tightly” within constant of 𝑔 for large 𝑛
– Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛)

*CLRS Chapter 3

𝑓(𝑛) = 𝑂(𝑔 𝑛)

𝑓(𝑛) = Θ(𝑔 𝑛)

𝑓(𝑛) = Ω(𝑔 𝑛)

Asymptotic Notation Example

• Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛=

Asymptotic Notation Example

• To Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛=

– Technique: Find 𝑐, 𝑛4 > 0 s.t. ∀𝑛 > 𝑛4, 𝑛 log 𝑛 ≤ 𝑐 ⋅ 𝑛=

– Proof: Let 𝑐 = 1, 𝑛4 = 1. Then,
𝑛4 log 𝑛4 = 1 log 1 = 0,
𝑐 𝑛4= = 1 ⋅ 1= = 1,
0 ≤ 1.

∀𝑛 ≥ 1, log 𝑛 < 𝑛 ⇒ 𝑛 log 𝑛 ≤ 𝑛= □

Direct Proof!

Asymptotic Notation Example

• Show: 𝑛= ∉ 𝑂 𝑛

Asymptotic Notation Example

• To Show: 𝑛= ∉ 𝑂 𝑛
– Technique: Contradiction
– Proof: Assume 𝑛= ∈ 𝑂 𝑛 . Then ∃𝑐, 𝑛4 > 0 s. t. ∀𝑛 > 𝑛4, 𝑛= ≤ 𝑐𝑛

Let us derive constant 𝑐. For all 𝑛 > 𝑛4 > 0, we know:
𝑐𝑛 ≥ 𝑛=,
𝑐 ≥ 𝑛.

Since 𝑐 is dependent on 𝑛, it is not a constant.
Contradiction. Therefore 𝑛= ∉ 𝑂 𝑛 . □

Proof by
Contradiction!

Proof Techniques

• Direct Proof
– From the assumptions and definitions, directly derive the statement

• Proof by Contradiction
– Assume the statement is true, then find a contradiction

• Proof by Cases
• Induction

Asymptotic Notation

• 𝑜(𝑔 𝑛)
– Below any constant of 𝑔 for large 𝑛
– {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• 𝜔(𝑔 𝑛)
– Above any constant of 𝑔 for large 𝑛
– {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 > 𝑐 ⋅ 𝑔(𝑛)}

• 𝜃 𝑔 𝑛 ?
– 𝑜(𝑔 𝑛) ∩ 𝜔(𝑔 𝑛) = ∅

Asymptotic Notation Example

• 𝑜 𝑔 𝑛 = {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• Show: 𝑛 log 𝑛 ∈ 𝑜 𝑛=

Asymptotic Notation Example

• 𝑜 𝑔 𝑛 = {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• To Show: 𝑛 log 𝑛 ∈ 𝑜 𝑛=
– given any 𝑐 find a 𝑛4 > 0 s.t. ∀𝑛 > 𝑛4, 𝑛 log 𝑛 < 𝑐 ⋅ 𝑛=

– Find a value of 𝑛 in terms of 𝑐:
• 𝑛 log 𝑛 < 𝑐 ⋅ 𝑛=

• log 𝑛 < 𝑐 ⋅ 𝑛

• 567 9
9

< 𝑐

– For a given 𝑐, select any value of 𝑛4 such that 567 99 < 𝑐

Trominoes Puzzle Solution

What about larger boards?

29

29

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
quadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Trominoes Puzzle Solution

Divide and Conquer*

• Divide:
– Break the problem into multiple subproblems, each smaller instances of

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4

When is this a
good strategy?

