CS4102 Algorithms Fall 2019

Warm up

Can you cover an 8×8 grid with 1 square missing using "trominoes?"

Can you cover this?

With these?

Office Hours

• Mondays, 10am-11am, 2-4pm

Today's Keywords

- Recursion
- Recurrences
- Asymptotic notation
- Divide and Conquer
- Trominoes
- Merge Sort

CLRS Readings

• Chapters 3 & 4

Homeworks

- Hw0 due 11pm Tuesday, Sept 2

 Submit 2 attachments (zip and pdf)
- Hw1 released Tuesday, Sept 2
 - Due 11pm Thursday, Sept 12
 - Written (use Latex!)
 - Asymptotic notation
 - Recurrences
 - Divide and conquer

Attendance

- How many people are here today?
- Naïve algorithm
 - 1. Everyone stand
 - 2. Professor walks around counting people
 - 3. When counted, sit down
- Run time?
 - Class of n students
 - O(n)
- Other suggestions?

Good Attendance

Better Attendance

- 1. Everyone Stand
- 2. Initialize your "count" to 1

What was the run time of this algorithm? What are we going to count?

- 3. Greet a neighbor who is standing: share your name, full date of birth(pause if odd one out)
- 4. If you are older: give "count" to younger and sit. Else if you are younger: add your "count" with older's
- 5. If you are standing and have a standing neighbor, go to 3

Attendance Algorithm Analysis

$$T(n) = 1 + 1 + T(\frac{n}{2})$$
 How can we "solve" this?
$$T(1) = 3$$
 Base case?

Do not need to be exact, asymptotic bound is fine. Why?

Let's solve the recurrence!

What if $n \neq 2^k$?

• More people in the room \rightarrow more time

$$- \forall 0 < n < m, T(n) < T(m)$$
, where $2^k < n < 2^{k+1} = m$,
i.e., k < log n < k + 1

$$-T(n) \le T(m) = T(2^{k+1}) = T(2^{\lceil \log_2 n \rceil}) = 2 \lceil \log_2 n \rceil + 3 = O(\log n)$$

These are unimportant.
Why?

Asymptotic Notation*

• *O*(*g*(*n*))

- At most within constant of g for large n
- {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \le c \cdot g(n)$ }
- Ω(g(n))
 - At least within constant of g for large n
 - {functions $f \mid \exists$ constants $c, n_0 > 0$ s.t. $\forall n > n_0, f(n) \ge c \cdot g(n)$ }
- $\Theta(g(n))$
 - "Tightly" within constant of g for large n
 - $\ \Omega\bigl(g(n)\bigr) \cap O(g(n))$

 $O(q(n)) = \{f: \exists c, n_0 > 0, \forall n > n_0, f(n) \leq g(n) \cdot c\}$ • Show: $n \log n \in O(n^2)$ $\exists c, n_0 > 0$: $\forall n > n_0$ $n \log n \leq c \cdot n^2$ $let c=1, n_0=1$ $f(1) = 1 \log 1 = 0$ $q(1) = 1^2 = 1$ $f(1) < g(1) \cdot c = g(1) \cdot 1$ $0 \le 1 \cdot 1^2 = 1$ 4n>n=1 rlogn skna logn ≤n Jn>no Therefre Mlogn E O(n²)

Direct Proof!

- To Show: $n \log n \in O(n^2)$
 - Technique: Find $c, n_0 > 0$ s.t. $\forall n > n_0, n \log n \le c \cdot n^2$

- **Proof:** Let
$$c = 1, n_0 = 1$$
. Then,
 $n_0 \log n_0 = (1) \log (1) = 0$,
 $c n_0^2 = 1 \cdot 1^2 = 1$,
 $0 \le 1$.

$$\forall n \geq 1, \log(n) < n \Rightarrow n \log n \leq n^2 \quad \Box$$

 $O(q_{n}) = \{f: \exists c, n_{o} > 0: \forall n > n_{o} f(n) \leq q(n) \cdot c \}$ • Show: $n^2 \notin O(n)$ Proof: Assuming $n^2 \in O(n)$. then $\exists c, n \ge 0$; $\forall n \ge n_2 \le c \cdot n$. $| let x = max(c, n_o) + 1 \implies x > c$ n 2 5 cm n < C $C \ge n$ $C \ge n$ $C \ge n = C \cdot X$ $X \le C$, Contradiction! $X \le C$, Contradiction!Therefore n² & O(n) therefore N2 & O(n)

- To Show: $n^2 \notin O(n)$
 - Technique: Contradiction

Proof by Contradiction!

- **Proof:** Assume $n^2 \in O(n)$. Then $\exists c, n_0 > 0$ s.t. $\forall n > n_0, n^2 \leq cn$ Let us derive constant c. For all $n > n_0 > 0$, we know: $cn \geq n^2$, $c \geq n$.

> Since c is dependent on n, it is not a constant. Contradiction. Therefore $n^2 \notin O(n)$. \Box

Proof Techniques

- Direct Proof
 - From the assumptions and definitions, directly derive the statement
- Proof by Contradiction
 - Assume the statement is true, then find a contradiction
- Proof by Cases
- Induction

Asymptotic Notation

- *o*(*g*(*n*))
 - Below any constant of g for large n
 - $\{ \text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- ω(g(n))
 - Above any constant of g for large n
 - $\{ \text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) > c \cdot g(n) \}$
- $\theta(g(n))$? - $o(g(n)) \cap \omega(g(n)) = \emptyset$

- $o(g(n)) = \{ \text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- Show: $n \log n \in o(n^2)$

 $4cxyJn_{0}>0$, 4n>n $nlogn < c \cdot n^{2}$ $nlogn < c \cdot n^{2}$ $logn < c \cdot n$ $\frac{logn}{n} < c$ $\frac{logn}{n} < c$ $lin \frac{logn}{n} = 0$ therefore $nlogn \in o(n^{2})$

- $o(g(n)) = \{ \text{functions } f | \forall \text{ constants } c, \exists n_0 \text{ s.t. } \forall n > n_0, f(n) < c \cdot g(n) \}$
- To Show: $n \log n \in o(n^2)$
 - given any c find a $n_0 > 0$ s.t. $\forall n > n_0, n \log n < c \cdot n^2$
 - Find a value of n in terms of c:
 - $n \log n < c \cdot n^2$
 - $\log n < c \cdot n$
 - $\frac{\log n}{n} < c$

- For a given c, select any value of n_0 such that $\frac{\log n}{n} < c$

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Each quadrant is now a smaller subproblem

Solve Recursively

Divide and Conquer

Our first algorithmic technique!

Divide and Conquer*

• Divide:

When is this a good strategy?

 Break the problem into multiple subproblems, each smaller instances of the original

• Conquer:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)
- Combine:
 - Merge together solutions to subproblems

