
Warm up
Can you cover an 8×8 grid with 1 

square missing using “trominoes?”
Can you cover this?

With these?

CS4102 Algorithms
Fall 2019



Office Hours

• Mondays, 10am-11am, 2-4pm



Today’s Keywords

• Recursion
• Recurrences
• Asymptotic notation
• Divide and Conquer
• Trominoes
• Merge Sort



CLRS Readings

• Chapters 3 & 4



Homeworks

• Hw0 due 11pm Tuesday, Sept 2
– Submit 2 attachments (zip and pdf)

• Hw1 released Tuesday, Sept 2
– Due 11pm Thursday, Sept 12
– Written (use Latex!)
– Asymptotic notation
– Recurrences
– Divide and conquer



Attendance

• How many people are here today?
• Naïve algorithm

1. Everyone stand
2. Professor walks around counting people
3. When counted, sit down

• Run time?
– Class of n students
– O(n)

• Other suggestions?



Good Attendance
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Better Attendance

1. Everyone Stand

2. Initialize your “count” to 1

3. Greet a neighbor who is standing: share your name, full date of 
birth(pause if odd one out)

4. If you are older: give “count” to younger and sit. 
Else if you are younger: add your “count” with older’s

5. If you are standing and have a standing neighbor, go to 3

What was the 
run time of this 
algorithm?
What are we 
going to count?



Attendance Algorithm Analysis

1. 
Stand

2. 
count=1

3. 
Greet

4. 
Add/sit

5. 
Repeat

Constant Initialization
1 1 𝑇( )𝑛 2)𝑇(𝑛) =

𝑇 𝑛 = 1 + 1 + 𝑇( )𝑛 2) How can we “solve” this?

Base case?𝑇 1 = 3

Do not need to be exact, asymptotic bound is fine.
Why?



Let’s solve the recurrence!

𝑇 𝑛 = 2 + 𝑇( )𝑛 2)
𝑇 1 = 3 Special case: 𝑛 = 2.

2 + 𝑇( )𝑛 4)
2 + 𝑇( )𝑛 8)…
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𝑘

𝑇 𝑛 = 3 + 1
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2 = 2 log= 𝑛 + 3



What if 𝑛 ≠ 2.?

• More people in the room → more time

– ∀ 0 < 𝑛 < 𝑚, 𝑇 𝑛 < 𝑇 𝑚 , where 2D < 𝑛 < 2.EF = 𝑚, 
i.e., k < log 𝑛 < 𝑘 + 1

– 𝑇 𝑛 ≤ 𝑇 𝑚 = 𝑇 2.EF = 𝑇 2 5678 9 = 2 log= 𝑛 + 3

These are unimportant.
Why?

= 𝑂(log 𝑛)



Asymptotic Notation*

• 𝑂(𝑔 𝑛 )
– At most within constant of 𝑔 for large 𝑛
– {functions 𝑓|∃ constants 𝑐, 𝑛4 > 0 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 ≤ 𝑐 ⋅ 𝑔(𝑛)}

• Ω(𝑔 𝑛 )
– At least within constant of 𝑔 for large 𝑛
– {functions 𝑓|∃ constants 𝑐, 𝑛4 > 0s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 ≥ 𝑐 ⋅ 𝑔(𝑛)}

• Θ 𝑔 𝑛
– “Tightly” within constant of 𝑔 for large 𝑛
– Ω 𝑔 𝑛 ∩ 𝑂(𝑔 𝑛 )

*CLRS Chapter 3



𝑓(𝑛) = 𝑂(𝑔 𝑛 )

𝑓(𝑛) = Θ(𝑔 𝑛 )

𝑓(𝑛) = Ω(𝑔 𝑛 )



Asymptotic Notation Example

• Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛=



Asymptotic Notation Example

• To Show: 𝑛 log 𝑛 ∈ 𝑂 𝑛=

– Technique: Find 𝑐, 𝑛4 > 0 s.t. ∀𝑛 > 𝑛4, 𝑛 log 𝑛 ≤ 𝑐 ⋅ 𝑛=

– Proof: Let 𝑐 = 1, 𝑛4 = 1.  Then,
𝑛4 log 𝑛4 = 1 log 1 = 0, 
𝑐 𝑛4= = 1 ⋅ 1= = 1,
0 ≤ 1.

∀𝑛 ≥ 1, log 𝑛 < 𝑛 ⇒ 𝑛 log 𝑛 ≤ 𝑛= □

Direct Proof!



Asymptotic Notation Example

• Show: 𝑛= ∉ 𝑂 𝑛



Asymptotic Notation Example

• To Show: 𝑛= ∉ 𝑂 𝑛
– Technique: Contradiction
– Proof: Assume 𝑛= ∈ 𝑂 𝑛 .  Then ∃𝑐, 𝑛4 > 0 s. t. ∀𝑛 > 𝑛4, 𝑛= ≤ 𝑐𝑛

Let us derive constant 𝑐.  For all 𝑛 > 𝑛4 > 0, we know: 
𝑐𝑛 ≥ 𝑛=, 
𝑐 ≥ 𝑛.

Since 𝑐 is dependent on 𝑛, it is not a constant.
Contradiction.  Therefore 𝑛= ∉ 𝑂 𝑛 . □

Proof by 
Contradiction!



Proof Techniques

• Direct Proof
– From the assumptions and definitions, directly derive the statement

• Proof by Contradiction
– Assume the statement is true, then find a contradiction

• Proof by Cases
• Induction



Asymptotic Notation

• 𝑜(𝑔 𝑛 )
– Below any constant of 𝑔 for large 𝑛
– {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• 𝜔(𝑔 𝑛 )
– Above any constant of 𝑔 for large 𝑛
– {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 > 𝑐 ⋅ 𝑔(𝑛)}

• 𝜃 𝑔 𝑛 ?
– 𝑜(𝑔 𝑛 ) ∩ 𝜔(𝑔 𝑛 ) = ∅



Asymptotic Notation Example

• 𝑜 𝑔 𝑛 = {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• Show: 𝑛 log 𝑛 ∈ 𝑜 𝑛=



Asymptotic Notation Example

• 𝑜 𝑔 𝑛 = {functions 𝑓|∀ constants 𝑐, ∃𝑛4 s.t. ∀𝑛 > 𝑛4, 𝑓 𝑛 < 𝑐 ⋅ 𝑔(𝑛)}

• To Show: 𝑛 log 𝑛 ∈ 𝑜 𝑛=
– given any 𝑐 find a 𝑛4 > 0 s.t. ∀𝑛 > 𝑛4, 𝑛 log 𝑛 < 𝑐 ⋅ 𝑛=

– Find a value of 𝑛 in terms of 𝑐:
• 𝑛 log 𝑛 < 𝑐 ⋅ 𝑛=

• log 𝑛 < 𝑐 ⋅ 𝑛

• 567 9
9

< 𝑐

– For a given 𝑐, select any value of 𝑛4 such that 567 99 < 𝑐



Trominoes Puzzle Solution

What about larger boards?

29

29



Trominoes Puzzle Solution

Divide the board into quadrants



Trominoes Puzzle Solution

Place a tromino to occupy the three 
quadrants without the missing piece



Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem



Trominoes Puzzle Solution

Solve Recursively



Divide and Conquer

Our first algorithmic technique!



Trominoes Puzzle Solution



Divide and Conquer*

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4

When is this a 
good strategy?


