CS4102 Algorithms

Fall 2019

Warm up:
Show that no cycle crosses a cut
exactly once

NO CYyCle Ccrosses a cut exactly once

* Assume the cycle crosses the cut once

* Consider some edge (1, V) in the cycle which crosses the cut

* If we remove (u, v) then there is still a path from u to v
which must somewhere cross the cut

Today's Keywords

* Graphs

* Minimum Spanning Tree
* Prim’s Algorithm

e Shortest path

* Dijkstra’s Algorithm

* Breadth-first search

CLRS Readings

 Chapter 22
* Chapter 23

HoMeworks

e HW7 due Thursday, November 14 @ 11pm

— Written (use latex)
— Graphs!
* HW10B also due Thursday, November 14 @ 11pm

— No late submissions allowed

 Reminder: | will not have office hours Monday
— Tuesday 11-1 instead

Grapns

Vertices/Nodes
Definition: ¢ = (V, E)
Edges

w(e) = weight of edge e

8 V ={4,B,C,D,E,F,G,H,I}
E={(AB)(4C),(B,C), ..}

Detinition: Patn

A sequence of nodes (v, Vy, ..., Uy)
st.vVi<i<k-1,(v;v;,,) EE

(f"\)

1

Simple Path: Cycle:
A path in which each node A path of > 2 nodes in

appears at most once which v; = v,

Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
all the nodes in a graph ¢ = (V, E), that has
minimal cost

Cost(T) = z w(e)

eeEr

How many edges does 7" have?
V-1

Definition: Cut

A Cut of graph G = (V, E) is a partition of the
nodes into two sets, Sand !/ — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut

cutifvy €Sandv, €V —S if noedges cross the cut
(or opposite), e.g. (4, C) eg. R={(AB)(EG) (F,G)}

Cut Property

Consider any cut (S,V — S) inagraph G = (V, E), the minimum
weight edge crossing that cut is in some MST of G

10

Warm up 2gether: Cycle Theorem

Consider any cycle in a graph G = (V, E), the maximum weight
edge on that cycle is not in some MST of G

What is our strategy?
Assume we have a MIST Already:
2 cases:

1. Tree does not have max weight
edge

2. Tree has max weight edge

11

Cycle Theorem: Case 1

Consider any cycle ¢ = (v, Vy, ... Vg, V1) ina graph G = (V, E), the
maximum weight edge ¢ on that cycle is not in some MST of G

Consider some MST T,

Case 1: (the easy case)
If e & T Then claim holds

12

Cycle Theorem: Case 2

Consider any cycle ¢ = (v, Vy, ... Vg, V1) ina graph G = (V, E), the
maximum weight edge ¢ on that cycle is not in some MST of G

Consider some MST T,
Case 2:
Considerife = (v,,v,) ET
Let (S5, — S) be a cut which
e Crosses

There is some other edge e’
not in T which crosses
S,V —=25)

Build tree T’ by exchanging
e’ fore .

Cycle Theorem: Case 2

Consider any cycle ¢ = (v, Vy, ... Vg, V1) ina graph G = (V, E), the
maximum weight edge ¢ on that cycle is not in some MST of G
Consider some MST T,
Case 2:
ife=(v,v,) €T
T' = T with edge e’ instead of ¢

We assumed w(e) = w(e')
w(T") =w(T) —wl(e) +w(e)
w(T") < w(T)

SoT'is also a MST!

Thus the claim holds

14

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with anode notin A

15

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with anode notin A

16

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

17

Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with anode notin A

18

Prim’s Algorithm

Start with an empty tree A Keep edges in a Heap
Pick a start node O(E logV)

Repeat IV — 1 times:
Add the min-weight edge which connects to node
in A with anode notin A

19

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, setd. =0
While PQ is not empty:
v = PQ.extractmin()
foreachu € Vs.t. (v,u) € E:

PQ.decreaseKey(u, min(d,, w(v,u)))

d,, is the cost to add
node u to the tree
with only one edge

20

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, setd. =0
While PQ is not empty:
v = PQ.extractmin()
foreachu € Vs.t. (v,u) € E:

PQ.decreaseKey(u, min(d,, w(v,u)))

21

Prim’s Algorithm

nitialize ¢,, = oo TOor each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, setd. =0
While PQ is not empty:
v = PQ.extractmin()
foreachu € Vs.t. (v,u) € E:

PQ.decreaseKey(u, min(du, w (v, U)))
. 3

22

Prim’s Algorithm

nitialize ¢,, = oo TOor each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, setd. =0
While PQ is not empty: Vloops
v = PQ.extractmin() 0UogV)
foreachu € V s.t. (v,u) € E: E times total
, min(du, w (v, u))) 0(logV)

23

Single-source Shortest Path

THEU

UNIVERSITY

Find the quickest way to get from UVA to each of these other places

Given a graph ¢ = (V,E) and a start node s € I/, foreach v € V find
the least-weight path from s — v (call this weight 6 (s, v))

24

(assumption: all edge weights are positive)

Dijkstra’s Algorithm

Given some start node s

Start with an empty tree A
Repeat IV — 1 times:

Add the “nearest” node not yet in A

25

Dijkstra’s Algorithm

Given some start node s

Start with an empty tree A
Repeat IV — 1 times:

Add the “nearest” node not yet in A

26

Dijkstra’s Algorithm

Given some start node s

Start with an empty tree A
Repeat IV — 1 times:

Add the “nearest” node not yet in A

27

Dijkstra’s Algorithm

Given some start node s
Start with an empty tree A VERY similar to Prim’s!
Repeat IV — 1 times:

Add the “nearest” node not yet in A

28

Prim’s Algorithm

Initialize d,, = oo for each node v
Keep a priority queue PQ of nodes, using d,, as key
Pick a start node s, setd. =0
While PQ is not empty:
v = PQ.extractmin()
foreachu € Vs.t. (v,u) € E:

PQ.decreaseKey(u, min(d,, w(v,u)))

29

Dijkstra’s Algorithm

Initialize d,, = oo for each node v

Keep a priority queue PQ of nodes, using d,, as key

Pick a start node s, setd. =0

While PQ is not empty: Vloops
v = PQ.extractmin()
foreachu € V s.t. (v,u) € E: Ftimestotal 0(logV)

PQ. decgoeasel(ey(u, min(du, d, + w(v, u)))

O(logV)

30

Dijkstra’'s Algorithm Proot Strategy

* Proof by induction

* |dea: show that when node u is removed from the priority
queue, d,, = 0(s,u)
— Claim 1: when u is removed from the queue, d,, = 6(s,u)
* i.e. d,, is at least the length of the shortest path
— Claim 2: if we consider any path (s, ..., u), w(s, ...,u) = d,,
* i.e. d, is nolonger than any other path from s to u, including the shortest one

31

Proot of Dijkstra’s

* Base case:
—i=0u=v,=s5,0(,v,)=0

* Assume that nodes v; = s, ..., v; have been removed from P(Q
already, and for each of them d,,, = 4(s, v;)

* Let node u be the (i + 1) node extracted

32

Proof of Dikstra's: Clam 1

* Let node u be the (i + 1) node extracted
* Claim1l:d, = d6(s,u)

* Proof: node u has a path of weight d,, from s
— Discovering a path was how we updated the key!

* Since d,, is the weight of SOME path, its weight is at least that of the SHORTEST
path

33

Proof of Dikstra's: Clam 2

e Let node u be the (i + 1)t node extracted
» forany path (s,...,u), w(s,...,u) = d,
* Extracted nodes define a cut of the graph

* Let edge (x,y) be the last edge in this path which
crosses the cut

34

Proof of Dikstra's: Clam 2

e Let node u be the (i + 1)t node extracted
« forany path (s,...,u), w(s,...,u) = d,
* Extracted nodes define a cut of the graph

* Let edge (x,y) be the last edge in this path which
crosses the cut

Extracted Nodes

35

Proof of Dikstra's: Clam 2

e Let node u be the (i + 1)t node extracted
« forany path (s,...,u), w(s,...,u) = d,
* Extracted nodes define a cut of the graph

* Let edge (x,y) be the last edge in this path which
crosses the cut i = 5(s,0)

We updated y’s key d,,
when we extracted x if
dy +w(x,y) <d,

Extracted Nodes

w(s,...,u) = 6(s,x) +w(x,y) +w(y,..., 1)
= dy + w(y, ..., 1) | By definition
= du + W(y' ---:u) Because

: herwi
= du No negative otherwise, u
edge weights jeuldoet
be next
extracted

Still in PQ 36

Proof of Dijkstra’s: Finale

* Claim1:d, = 6(s,u)

* Claim2:d, < w(s,...,u) for any path from s to u (including
the shortest one)

* 1&2 Together: w(s, ...,u) = d, = §(s,u)
— therefore §(s,u) = d, = d(s,u)
—d, =0(s,u)

37

Breadth-First Search

* [nput: a node s
* Behavior: Start with node s, visit all neighbors of s, then all
neighbors of neighbors of s, ...

e QOutput: lots of choices!
— Is the graph connected?
— |s there a path from s to u?

— Shortest number of “hops” from s to u

Sounds like Dijkstra’s!

38

Dijkstra’s Algorithm

Initialize d,, = oo for each node v

Keep a priority queue PO of nodes, using d,, as key

Pick a start node s,setd. =0

While PQ is not empty: Replace with a (plain-old) Queue
v = PQ.extractmin()
foreachu € Vs.t. (v,u) € E:

PQ.decreaseKey(u, min(du, d, +w(v, u)))

39

BFS

Keep a queue () of nodes
Pick a start node s
Q.enqueue(s)
While () is not empty:
v = Q.dequeue()
for each “unvisited” u € V s.t. (v,u) € E:
Q.enqueue(u)

40

BFS: Shortest "Hops” Path

Keep a queue () of nodes
Pick a start node s
Q.enqueue(s)
hops = 0
While () is not empty:

v = Q.dequeue()

hops += 1
for each “unvisited” u € V s.t. (v,u) € E:
u.hops = hops

Q.enqueue(u)

41

