Warm up:
Show that no cycle crosses a cut exactly once
no cycle crosses a cut exactly once

- Assume the cycle crosses the cut once
- Consider some edge \((u, v)\) in the cycle which crosses the cut
- If we remove \((u, v)\) then there is still a path from \(u\) to \(v\) which must somewhere cross the cut
Today’s Keywords

• Graphs
• Minimum Spanning Tree
• Prim’s Algorithm
• Shortest path
• Dijkstra’s Algorithm
• Breadth-first search
• Chapter 22
• Chapter 23
Homeworks

• HW7 due Thursday, November 14 @ 11pm
 – Written (use latex)
 – Graphs!
• HW10B also due Thursday, November 14 @ 11pm
 – No late submissions allowed
• Reminder: I will not have office hours Monday
 – Tuesday 11-1 instead
Definition: \(G = (V, E) \)

\(w(e) = \text{weight of edge } e \)

\[V = \{A, B, C, D, E, F, G, H, I\} \]

\[E = \{(A, B), (A, C), (B, C), \ldots\} \]
Definition: Path

A sequence of nodes \((v_1, v_2, ..., v_k)\)

s.t. \(\forall 1 \leq i \leq k - 1, (v_i, v_{i+1}) \in E\)

Simple Path:
A path in which each node appears at most once

Cycle:
A path of > 2 nodes in which \(v_1 = v_k\)
Definition: Minimum Spanning Tree

A Tree $T = (V_T, E_T)$ which connects ("spans") all the nodes in a graph $G = (V, E)$, that has minimal cost

$$\text{Cost}(T) = \sum_{e \in E_T} w(e)$$

How many edges does T have? $V - 1$
Definition: Cut

A Cut of graph $G = (V, E)$ is a partition of the nodes into two sets, S and $V - S$

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$
Consider any cut \((S, V - S)\) in a graph \(G = (V, E)\), the minimum weight edge crossing that cut is in some MST of \(G\).
Consider any cycle in a graph $G = (V, E)$, the maximum weight edge on that cycle is not in some MST of G

What is our strategy?

Assume we have a MST Already:

2 cases:

1. Tree does not have max weight edge
2. Tree has max weight edge
Consider any cycle $c = (v_1, v_2, \ldots, v_k, v_1)$ in a graph $G = (V, E)$, the maximum weight edge e on that cycle is not in some MST of G.

Consider some MST T, Case 1: (the easy case) If $e \notin T$ Then claim holds.
Consider any cycle $c = (v_1, v_2, \ldots v_k, v_1)$ in a graph $G = (V, E)$, the maximum weight edge e on that cycle is not in some MST of G

Consider some MST T, Case 2:

Consider if $e = (v_1, v_2) \in T$

Let $(S, V - S)$ be a cut which e crosses

There is some other edge e' not in T which crosses $(S, V - S)$

Build tree T' by exchanging e' for e
Consider any cycle \(c = (v_1, v_2, \ldots v_k, v_1) \) in a graph \(G = (V, E) \), the maximum weight edge \(e \) on that cycle is *not* in *some* MST of \(G \)

Consider some MST \(T \),
Case 2:

If \(e = (v_1, v_2) \in T \)

\(T' = T \) with edge \(e' \) instead of \(e \)

We assumed \(w(e) \geq w(e') \)

\(w(T') = w(T) - w(e) + w(e') \)

\(w(T') \leq w(T) \)

So \(T' \) is also a MST!

Thus the claim holds
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree A
Pick a start node
Repeat $V - 1$ times:
 Add the min-weight edge which connects to node in A with a node not in A
Prim’s Algorithm

Start with an empty tree \(A \)
Pick a start node
Repeat \(V - 1 \) times:
Add the min-weight edge which connects to node in \(A \) with a node not in \(A \)
Prim’s Algorithm

Start with an empty tree A

Pick a start node

Repeat $V - 1$ times:

Add the min-weight edge which connects to node in A with a node not in A

Keep edges in a Heap

$O(E \log V)$
Prim's Algorithm

Initialize $d_v = \infty$ for each node v

Keep a priority queue PQ of nodes, using d_v as key

Pick a start node s, set $d_s = 0$

While PQ is not empty:

$v = PQ.extractmin()$

for each $u \in V$ s.t. $(v, u) \in E$:

$PQ.decreaseKey(u, \min(d_u, w(v, u)))$

d_u is the cost to add node u to the tree with only one edge.
Prim’s Algorithm

Initialize \(d_v = \infty \) for each node \(v \)
Keep a priority queue \(PQ \) of nodes, using \(d_v \) as key
Pick a start node \(s \), set \(d_s = 0 \)
While \(PQ \) is not empty:

\[v = PQ.\text{extractmin}() \]
for each \(u \in V \) s.t. \((v,u) \in E\):

\[PQ.\text{decreaseKey}(u, \min(d_u, w(v,u))) \]
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v

Keep a priority queue PQ of nodes, using d_v as key

Pick a start node s, set $d_s = 0$

While PQ is not empty:

$v = PQ.extractmin()$

for each $u \in V$ s.t. $(v, u) \in E$:

$PQ.decreaseKey(u, \min(d_u, w(v, u)))$
Prim’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:
 V loops
 $v = PQ.extractMin()$ \(O(\log V) \)
 for each $u \in V$ s.t. $(v, u) \in E$: \(E \) times total
 $PQ.decreaseKey(u, \min(d_u, w(v, u)))$ \(O(\log V) \)

$O(E \log V + V \log V)$
Single-Source Shortest Path

Find the quickest way to get from UVA to each of these other places

Given a graph $G = (V, E)$ and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \to v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)
Dijkstra’s Algorithm

Given some start node \(s \)
Start with an empty tree \(A \)
Repeat \(V - 1 \) times:
 Add the “nearest” node not yet in \(A \)
Dijkstra’s Algorithm

Given some start node s
Start with an empty tree A
Repeat $V - 1$ times:
 Add the “nearest” node not yet in A
Dijkstra’s Algorithm

Given some start node s
Start with an empty tree A
Repeat $V − 1$ times:
 Add the “nearest” node not yet in A
Dijkstra’s Algorithm

Given some start node s
Start with an empty tree A
Repeat $V - 1$ times:
Add the “nearest” node not yet in A

VERY similar to Prim’s!
Prim’s Algorithm

Initialize \(d_v = \infty \) for each node \(v \)
Keep a priority queue \(PQ \) of nodes, using \(d_v \) as key
Pick a start node \(s \), set \(d_s = 0 \)
While \(PQ \) is not empty:
 \[v = PQ\text{-extract}\text{min}() \]
 for each \(u \in V \) s.t. \((v, u) \in E \):
 \[PQ\text{-decreaseKey}(u, \min(d_u, w(v, u))) \]
Dijkstra’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:

- $v = PQ.extractmin()$ \(O(\log V) \)
- for each $u \in V$ s.t. $(v, u) \in E$: \(E \) times total
 - $PQ.decreaseKey(u, \min(d_u, d_v + w(v, u)))$ \(O(\log V) \)

$O(E \log V + V \log V)$
Dijkstra’s Algorithm Proof Strategy

• Proof by induction
• Idea: show that when node u is removed from the priority queue, $d_u = \delta(s, u)$
 – Claim 1: when u is removed from the queue, $d_u \geq \delta(s, u)$
 • i.e. d_u is at least the length of the shortest path
 – Claim 2: if we consider any path (s, \ldots, u), $w(s, \ldots, u) \geq d_u$
 • i.e. d_u is no longer than any other path from s to u, including the shortest one
Proof of Dijkstra’s

• Base case:
 \[-i = 0, u = v_1 = s, \delta(s, v_1) = 0\]

• Assume that nodes \(v_1 = s, \ldots, v_i\) have been removed from \(PQ\) already, and for each of them \(d_{v_i} = \delta(s, v_i)\)

• Let node \(u\) be the \((i + 1)^{th}\) node extracted
Proof of Dijkstra’s: Claim 1

• Let node u be the $(i + 1)^{th}$ node extracted

• Claim 1: $d_u \geq \delta(s, u)$

 • Proof: node u has a path of weight d_u from s
 – Discovering a path was how we updated the key!

 • Since d_u is the weight of SOME path, its weight is at least that of the **SHORTEST** path
Proof of Dijkstra’s: Claim 2

- Let node u be the $(i + 1)^{th}$ node extracted
- for any path $(s, ..., u), w(s, ..., u) \geq d_u$
- Extracted nodes define a cut of the graph
- Let edge (x, y) be the last edge in this path which crosses the cut
Proof of Dijkstra’s: Claim 2

• Let node u be the $(i + 1)^{th}$ node extracted
• for any path $(s, ..., u)$, $w(s, ..., u) \geq d_u$
• Extracted nodes define a cut of the graph
• Let edge (x, y) be the last edge in this path which crosses the cut
Proof of Dijkstra’s: Claim 2

• Let node u be the $(i + 1)^{th}$ node extracted
• for any path $(s, ..., u), w(s, ..., u) \geq d_u$
• Extracted nodes define a cut of the graph
• Let edge (x, y) be the last edge in this path which crosses the cut

By definition

\[w(s, ..., u) \geq \delta(s, x) + w(x, y) + w(y, ..., u) \]

\[\geq d_y + w(y, ..., u) \]

\[\geq d_u + w(y, ..., u) \]

\[\geq d_u \]

No negative edge weights

Because otherwise, u would not be next extracted

We updated y’s key d_y
when we extracted x if
\[d_x + w(x, y) < d_y \]
Proof of Dijkstra’s: Finale

• Claim 1: \(d_u \geq \delta(s, u) \)

• Claim 2: \(d_u \leq w(s, ..., u) \) for any path from \(s \) to \(u \) (including the shortest one)

• 1&2 Together: \(w(s, ..., u) \geq d_u \geq \delta(s, u) \)
 - therefore \(\delta(s, u) \geq d_u \geq \delta(s, u) \)
 - \(d_u = \delta(s, u) \)
Breadth-First Search

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...
- Output: lots of choices!
 - Is the graph connected?
 - Is there a path from s to u?
 - Shortest number of “hops” from s to u

Sounds like Dijkstra’s!
Dijkstra’s Algorithm

Initialize $d_v = \infty$ for each node v
Keep a priority queue PQ of nodes, using d_v as key
Pick a start node s, set $d_s = 0$
While PQ is not empty:

$v = PQ\.extract\text{min}()$
for each $u \in V$ s.t. $(v, u) \in E$:

$PQ\.decrease\text{Key}(u, \min(d_u, d_v + w(v, u)))$
BFS

Keep a queue Q of nodes

Pick a start node s

$Q.enqueue(s)$

While Q is not empty:

$v = Q.dequeue()$

for each “unvisited” $u \in V$ s.t. $(v, u) \in E$:

$Q.enqueue(u)$
BFS: Shortest “Hops” Path

Keep a queue Q of nodes
Pick a start node s
$Q\.enqueue(s)$
hops = 0
While Q is not empty:
 $v = Q\.dequeue()$
 hops += 1
for each “unvisited” $u \in V$ s.t. $(v, u) \in E$:
 $u\.hops = hops$
 $Q\.enqueue(u)$