
1

Warm up:
Show that no cycle crosses a cut

exactly once

Fall 2019

no cycle crosses a cut exactly once
• Assume the cycle crosses the cut once
• Consider some edge (𝑢, 𝑣) in the cycle which crosses the cut
• If we remove (𝑢, 𝑣) then there is still a path from 𝑢 to 𝑣

which must somewhere cross the cut

2

𝑣

𝑢

𝑣&
𝑣'

𝑒

Today’s Keywords

• Graphs
• Minimum Spanning Tree
• Prim’s Algorithm
• Shortest path
• Dijkstra’s Algorithm
• Breadth-first search

3

CLRS Readings

• Chapter 22
• Chapter 23

4

Homeworks

• HW7 due Thursday, November 14 @ 11pm
– Written (use latex)
– Graphs!

• HW10B also due Thursday, November 14 @ 11pm
– No late submissions allowed

• Reminder: I will not have office hours Monday
– Tuesday 11-1 instead

5

Graphs

6

10

2

6

11

9
5

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼}

𝐸 = { 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐵, 𝐶 , … }

Definition: Path

7

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣8, 𝑣9, … , 𝑣:)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣A, 𝑣AB8 ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path of > 2 nodes in
which 𝑣8 = 𝑣:

Definition: Minimum Spanning Tree

8

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑇 = (𝑉G, 𝐸G) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = K
L∈MN

𝑤(𝑒)

How many edges does 𝑇 have?
𝑉 − 1

Definition: Cut

9

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣8, 𝑣9 ∈ 𝐸 crosses a
cut if 𝑣8 ∈ 𝑆 and 𝑣9 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Cut Property

Consider any cut (𝑆, 𝑉 − 𝑆) in a graph 𝐺 = 𝑉, 𝐸 , the minimum
weight edge crossing that cut is in some MST of 𝐺

10

𝑆

𝑉 − 𝑆

𝑒

Warm up 2gether: Cycle Theorem

Consider any cycle in a graph 𝐺 = 𝑉, 𝐸 , the maximum weight
edge on that cycle is not in some MST of 𝐺

11

𝑣Q

𝑣'

𝑣9

𝑣8

𝑣&

𝑒

What is our strategy?
Assume we have a MST Already:
2 cases:
1. Tree does not have max weight

edge
2. Tree has max weight edge

Cycle Theorem: Case 1

12

𝑣Q

𝑣'

𝑣9

𝑣8

𝑣&

𝑒

Consider some MST 𝑇,
Case 1: (the easy case)

If 𝑒 ∉ 𝑇 Then claim holds

Consider any cycle c = (𝑣8, 𝑣9, … 𝑣:, 𝑣8) in a graph 𝐺 = 𝑉, 𝐸 , the
maximum weight edge 𝑒 on that cycle is not in some MST of 𝐺

Cycle Theorem: Case 2
Consider any cycle c = (𝑣8, 𝑣9, … 𝑣:, 𝑣8) in a graph 𝐺 = 𝑉, 𝐸 , the
maximum weight edge 𝑒 on that cycle is not in some MST of 𝐺

13

𝑣Q

𝑣'

𝑣9

𝑣8

𝑣&

𝑆

𝑉 − 𝑆

𝑒𝑒′

Consider some MST 𝑇,
Case 2:

Consider if 𝑒 = 𝑣8, 𝑣9 ∈ 𝑇
Let (𝑆, 𝑉 − 𝑆) be a cut which
𝑒 crosses

There is some other edge e’
not in 𝑇 which crosses
(𝑆, 𝑉 − 𝑆)

Build tree 𝑇U by exchanging
𝑒U for 𝑒

Cycle Theorem: Case 2

14

Consider some MST 𝑇,
Case 2:

if 𝑒 = 𝑣8, 𝑣9 ∈ 𝑇
𝑇U = 𝑇 with edge 𝑒U instead of 𝑒

We assumed 𝑤 𝑒 ≥ 𝑤(𝑒U)
𝑤 𝑇U = 𝑤 𝑇 − 𝑤 𝑒 + 𝑤(𝑒′)
𝑤 𝑇U ≤ 𝑤 𝑇
So 𝑇U is also a MST!
Thus the claim holds

Consider any cycle c = (𝑣8, 𝑣9, … 𝑣:, 𝑣8) in a graph 𝐺 = 𝑉, 𝐸 , the
maximum weight edge 𝑒 on that cycle is not in some MST of 𝐺

𝑣Q

𝑣'

𝑣9

𝑣8

𝑣&

𝑆

𝑉 − 𝑆

𝑒𝑒′

Prim’s Algorithm

15

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

16

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

17

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

18

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Prim’s Algorithm

19

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Prim’s Algorithm

20

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢)

0

∞

∞

∞

∞

∞ ∞

∞

∞

𝑑o is the cost to add
node 𝑢 to the tree
with only one edge

Prim’s Algorithm

21

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢)

0

10

12

∞

∞

∞ ∞

∞

∞

Prim’s Algorithm

22

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢)

0

10

9

∞

8

∞ ∞

∞

∞

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

23

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢)

0

10

9

7

8

∞ 5

6

∞

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑉 loops

𝑂(log𝑉)

𝑂(log 𝑉)

𝐸 times total

𝑂(𝐸 log 𝑉 + 𝑉 log 𝑉)

Single-Source Shortest Path

24

Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)

10

2

6

11

9
5

8

3

7

3

1

8

12

9

Dijkstra’s Algorithm

25

Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

∞

∞

∞ ∞

∞

∞

Dijkstra’s Algorithm

26

Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

∞

18

∞ ∞

∞

∞

Dijkstra’s Algorithm

27

Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

15

18

13 ∞

∞

∞

Dijkstra’s Algorithm

28

Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H0

10

12

15

18

13 20

∞

∞

VERY similar to Prim’s!

Prim’s Algorithm

29

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢)

0

∞

∞

∞

∞

∞ ∞

∞

∞

Dijkstra’s Algorithm

30

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑑] + 𝑤 𝑣, 𝑢)

0

∞

∞

∞

∞

∞ ∞

∞

∞

𝑉 loops

𝑂(log𝑉)

𝑂(log 𝑉)𝐸 times total

𝑂(E log 𝑉 + 𝑉 log 𝑉)

Dijkstra’s Algorithm Proof Strategy

• Proof by induction
• Idea: show that when node 𝑢 is removed from the priority

queue, 𝑑o = 𝛿(𝑠, 𝑢)
– Claim 1: when 𝑢 is removed from the queue, 𝑑o ≥ 𝛿(𝑠, 𝑢)
• i.e. 𝑑o is at least the length of the shortest path

– Claim 2: if we consider any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• i.e. 𝑑o is no longer than any other path from 𝑠 to 𝑢, including the shortest one

31

Proof of Dijkstra’s

• Base case:
– 𝑖 = 0, 𝑢 = 𝑣8 = 𝑠, 𝛿 𝑠, 𝑣8 = 0

• Assume that nodes 𝑣8 = 𝑠, … , 𝑣A have been removed from 𝑃𝑄
already, and for each of them 𝑑]y = 𝛿(𝑠, 𝑣A)

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted

32

Proof of Dijkstra’s: Claim 1

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• Claim 1: 𝑑o ≥ 𝛿(𝑠, 𝑢)
• Proof: node 𝑢 has a path of weight 𝑑o from 𝑠

– Discovering a path was how we updated the key!

• Since 𝑑o is the weight of SOME path, its weight is at least that of the SHORTEST
path

33

Proof of Dijkstra’s: Claim 2

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• for any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• Extracted nodes define a cut of the graph
• Let edge (𝑥, 𝑦) be the last edge in this path which

crosses the cut

34

𝑢

𝑠

Proof of Dijkstra’s: Claim 2

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• for any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• Extracted nodes define a cut of the graph
• Let edge (𝑥, 𝑦) be the last edge in this path which

crosses the cut

35

𝑢

𝑠

Extracted Nodes

Proof of Dijkstra’s: Claim 2

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• for any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• Extracted nodes define a cut of the graph
• Let edge (𝑥, 𝑦) be the last edge in this path which

crosses the cut

36

𝑢

𝑥

𝑦

𝑠

Extracted Nodes 𝑤 𝑠,… , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦,… , 𝑢)
≥ 𝑑| + 𝑤(𝑦,… , 𝑢)
≥ 𝑑o + 𝑤(𝑦,… , 𝑢)
≥ 𝑑o

By definition

Because
otherwise, 𝑢
would not
be next
extracted

No negative
edge weights

Still in PQ

𝑑} = 𝛿(𝑠, 𝑥)

We updated 𝑦’s key 𝑑|
when we extracted 𝑥 if
𝑑} + 𝑤 𝑥, 𝑦 < 𝑑|

Proof of Dijkstra’s: Finale

• Claim 1: 𝑑o ≥ 𝛿 𝑠, 𝑢
• Claim 2: 𝑑o ≤ 𝑤(𝑠, … , 𝑢) for any path from 𝑠 to 𝑢 (including

the shortest one)
• 1&2 Together: 𝑤 𝑠,… , 𝑢 ≥ 𝑑o ≥ 𝛿(𝑠, 𝑢)
– therefore 𝛿(𝑠, 𝑢) ≥ 𝑑o ≥ 𝛿(𝑠, 𝑢)
– 𝑑o = 𝛿(𝑠, 𝑢)

37

Breadth-First Search

• Input: a node 𝑠
• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all

neighbors of neighbors of 𝑠, …
• Output: lots of choices!
– Is the graph connected?
– Is there a path from 𝑠 to 𝑢?
– Shortest number of “hops” from 𝑠 to 𝑢

38

Sounds like Dijkstra’s!

Dijkstra’s Algorithm

39

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑑] + 𝑤 𝑣, 𝑢)

0

∞

∞

∞

∞

∞ ∞

∞

∞

Replace with a (plain-old) Queue

BFS

40

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Keep a queue 𝑄 of nodes
Pick a start node 𝑠
𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
While 𝑄 is not empty:

𝑣 = 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
for each “unvisited” 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)

BFS: Shortest “Hops” Path

41

Keep a queue 𝑄 of nodes
Pick a start node 𝑠
𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
ℎ𝑜𝑝𝑠 = 0
While 𝑄 is not empty:

𝑣 = 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
ℎ𝑜𝑝𝑠 += 1
for each “unvisited” 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑢. ℎ𝑜𝑝𝑠 = ℎ𝑜𝑝𝑠
𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)

