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Warm up:
Show that no cycle crosses a cut 

exactly once

Fall 2019



no cycle crosses a cut exactly once
• Assume the cycle crosses the cut once
• Consider some edge (𝑢, 𝑣) in the cycle which crosses the cut
• If we remove (𝑢, 𝑣) then there is still a path from 𝑢 to 𝑣

which must somewhere cross the cut
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Today’s Keywords

• Graphs
• Minimum Spanning Tree
• Prim’s Algorithm
• Shortest path 
• Dijkstra’s Algorithm
• Breadth-first search
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CLRS Readings

• Chapter 22
• Chapter 23
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Homeworks

• HW7 due Thursday, November 14 @ 11pm
– Written (use latex)
– Graphs!

• HW10B also due Thursday, November 14 @ 11pm
– No late submissions allowed

• Reminder: I will not have office hours Monday
– Tuesday 11-1 instead
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Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼}

𝐸 = { 𝐴, 𝐵 , 𝐴, 𝐶 , 𝐵, 𝐶 , … }



Definition: Path

7

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣8, 𝑣9, … , 𝑣:)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣A, 𝑣AB8 ∈ 𝐸

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path of > 2 nodes in 
which 𝑣8 = 𝑣:



Definition: Minimum Spanning Tree
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A Tree 𝑇 = (𝑉G, 𝐸G) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has 
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = K
L∈MN

𝑤(𝑒)

How many edges does 𝑇 have?
𝑉 − 1



Definition: Cut
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A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆
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𝑆

Edge 𝑣8, 𝑣9 ∈ 𝐸 crosses a 
cut if 𝑣8 ∈ 𝑆 and 𝑣9 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Cut Property

Consider any cut (𝑆, 𝑉 − 𝑆) in a graph 𝐺 = 𝑉, 𝐸 , the minimum 
weight edge crossing that cut is in some MST of 𝐺
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Warm up 2gether: Cycle Theorem

Consider any cycle in a graph 𝐺 = 𝑉, 𝐸 , the maximum weight 
edge on that cycle is not in some MST of 𝐺
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What is our strategy?
Assume we have a MST Already:
2 cases: 
1. Tree does not have max weight 

edge
2. Tree has max weight edge 



Cycle Theorem: Case 1
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Consider some MST 𝑇, 
Case 1: (the easy case)

If 𝑒 ∉ 𝑇 Then claim holds 

Consider any cycle c = (𝑣8, 𝑣9, … 𝑣:, 𝑣8) in a graph 𝐺 = 𝑉, 𝐸 , the 
maximum weight edge 𝑒 on that cycle is not in some MST of 𝐺



Cycle Theorem: Case 2
Consider any cycle c = (𝑣8, 𝑣9, … 𝑣:, 𝑣8) in a graph 𝐺 = 𝑉, 𝐸 , the 
maximum weight edge 𝑒 on that cycle is not in some MST of 𝐺
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Consider some MST 𝑇, 
Case 2:

Consider if 𝑒 = 𝑣8, 𝑣9 ∈ 𝑇
Let (𝑆, 𝑉 − 𝑆) be a cut which 
𝑒 crosses

There is some other edge e’ 
not in 𝑇 which crosses 
(𝑆, 𝑉 − 𝑆)

Build tree 𝑇U by exchanging 
𝑒U for 𝑒



Cycle Theorem: Case 2
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Consider some MST 𝑇, 
Case 2:

if 𝑒 = 𝑣8, 𝑣9 ∈ 𝑇
𝑇U = 𝑇 with edge 𝑒U instead of 𝑒

We assumed 𝑤 𝑒 ≥ 𝑤(𝑒U)
𝑤 𝑇U = 𝑤 𝑇 − 𝑤 𝑒 + 𝑤(𝑒′)
𝑤 𝑇U ≤ 𝑤 𝑇
So 𝑇U is also a MST!
Thus the claim holds

Consider any cycle c = (𝑣8, 𝑣9, … 𝑣:, 𝑣8) in a graph 𝐺 = 𝑉, 𝐸 , the 
maximum weight edge 𝑒 on that cycle is not in some MST of 𝐺
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm

17

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:

Add the min-weight edge which connects to node 
in 𝐴 with a node not in 𝐴

Keep edges in a Heap
𝑂 𝐸 log 𝑉



Prim’s Algorithm
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Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢 )
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∞ ∞

∞

∞

𝑑o is the cost to add 
node 𝑢 to the tree 
with only one edge



Prim’s Algorithm
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Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢 )
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Prim’s Algorithm

22

Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢 )
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Prim’s Algorithm
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Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢 )
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𝑉 loops

𝑂(log𝑉)

𝑂(log 𝑉)

𝐸 times total 

𝑂(𝐸 log 𝑉 + 𝑉 log 𝑉)



Single-Source Shortest Path

24

Find the quickest way to get from UVA to each of these other places

Given a graph 𝐺 = (𝑉, 𝐸) and a start node 𝑠 ∈ 𝑉, for each 𝑣 ∈ 𝑉 find 
the least-weight path from 𝑠 → 𝑣 (call this weight 𝛿(𝑠, 𝑣))

(assumption: all edge weights are positive)
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Dijkstra’s Algorithm
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Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴
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Dijkstra’s Algorithm
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Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴
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Dijkstra’s Algorithm
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Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴
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Dijkstra’s Algorithm
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Given some start node 𝑠
Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:

Add the “nearest” node not yet in 𝐴
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VERY similar to Prim’s!



Prim’s Algorithm
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Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑤 𝑣, 𝑢 )
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Dijkstra’s Algorithm
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Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑑] + 𝑤 𝑣, 𝑢 )
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𝑉 loops

𝑂(log𝑉)

𝑂(log 𝑉)𝐸 times total 

𝑂(E log 𝑉 + 𝑉 log 𝑉)



Dijkstra’s Algorithm Proof Strategy

• Proof by induction
• Idea: show that when node 𝑢 is removed from the priority 

queue, 𝑑o = 𝛿(𝑠, 𝑢)
– Claim 1: when 𝑢 is removed from the queue, 𝑑o ≥ 𝛿(𝑠, 𝑢)
• i.e. 𝑑o is at least the length of the shortest path

– Claim 2: if we consider any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• i.e. 𝑑o is no longer than any other path from 𝑠 to 𝑢, including the shortest one
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Proof of Dijkstra’s

• Base case:
– 𝑖 = 0, 𝑢 = 𝑣8 = 𝑠, 𝛿 𝑠, 𝑣8 = 0

• Assume that nodes 𝑣8 = 𝑠, … , 𝑣A have been removed from 𝑃𝑄
already, and for each of them 𝑑]y = 𝛿(𝑠, 𝑣A)

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
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Proof of Dijkstra’s: Claim 1

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• Claim 1: 𝑑o ≥ 𝛿(𝑠, 𝑢)
• Proof: node 𝑢 has a path of weight 𝑑o from 𝑠

– Discovering a path was how we updated the key!

• Since 𝑑o is the weight of SOME path, its weight is at least that of the SHORTEST 
path
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Proof of Dijkstra’s: Claim 2

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• for any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• Extracted nodes define a cut of the graph
• Let edge (𝑥, 𝑦) be the last edge in this path which 

crosses the cut

34
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Proof of Dijkstra’s: Claim 2

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• for any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• Extracted nodes define a cut of the graph
• Let edge (𝑥, 𝑦) be the last edge in this path which 

crosses the cut

35
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Proof of Dijkstra’s: Claim 2

• Let node 𝑢 be the 𝑖 + 1 z{ node extracted
• for any path 𝑠, … , 𝑢 , 𝑤 𝑠,… , 𝑢 ≥ 𝑑o
• Extracted nodes define a cut of the graph
• Let edge (𝑥, 𝑦) be the last edge in this path which 

crosses the cut

36
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𝑦

𝑠

Extracted Nodes 𝑤 𝑠,… , 𝑢 ≥ 𝛿 𝑠, 𝑥 + 𝑤 𝑥, 𝑦 + 𝑤(𝑦,… , 𝑢)
≥ 𝑑| + 𝑤(𝑦,… , 𝑢)
≥ 𝑑o + 𝑤(𝑦,… , 𝑢)
≥ 𝑑o

By definition

Because 
otherwise, 𝑢
would not 
be next 
extracted

No negative 
edge weights

Still in PQ

𝑑} = 𝛿(𝑠, 𝑥)

We updated 𝑦’s key 𝑑|
when we extracted 𝑥 if
𝑑} + 𝑤 𝑥, 𝑦 < 𝑑|



Proof of Dijkstra’s: Finale

• Claim 1: 𝑑o ≥ 𝛿 𝑠, 𝑢
• Claim 2: 𝑑o ≤ 𝑤(𝑠, … , 𝑢) for any path from 𝑠 to 𝑢 (including 

the shortest one)
• 1&2 Together: 𝑤 𝑠,… , 𝑢 ≥ 𝑑o ≥ 𝛿(𝑠, 𝑢)
– therefore 𝛿(𝑠, 𝑢) ≥ 𝑑o ≥ 𝛿(𝑠, 𝑢)
– 𝑑o = 𝛿(𝑠, 𝑢)
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Breadth-First Search

• Input: a node 𝑠
• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all 

neighbors of neighbors of 𝑠, …
• Output: lots of choices!
– Is the graph connected?
– Is there a path from 𝑠 to 𝑢?
– Shortest number of “hops” from 𝑠 to 𝑢

38

Sounds like Dijkstra’s!



Dijkstra’s Algorithm
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Initialize 𝑑] = ∞ for each node 𝑣
Keep a priority queue 𝑃𝑄 of nodes, using 𝑑] as key
Pick a start node 𝑠, set 𝑑a = 0
While 𝑃𝑄 is not empty:

𝑣 = 𝑃𝑄. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛()
for each 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑃𝑄. 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑢,min 𝑑o, 𝑑] + 𝑤 𝑣, 𝑢 )
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Replace with a (plain-old) Queue



BFS
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Keep a queue 𝑄 of nodes
Pick a start node 𝑠
𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
While 𝑄 is not empty:

𝑣 = 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
for each “unvisited” 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)
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Keep a queue 𝑄 of nodes
Pick a start node 𝑠
𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
ℎ𝑜𝑝𝑠 = 0
While 𝑄 is not empty:

𝑣 = 𝑄. 𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
ℎ𝑜𝑝𝑠 += 1
for each “unvisited” 𝑢 ∈ 𝑉 s.t. 𝑣, 𝑢 ∈ 𝐸:

𝑢. ℎ𝑜𝑝𝑠 = ℎ𝑜𝑝𝑠
𝑄. 𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)


