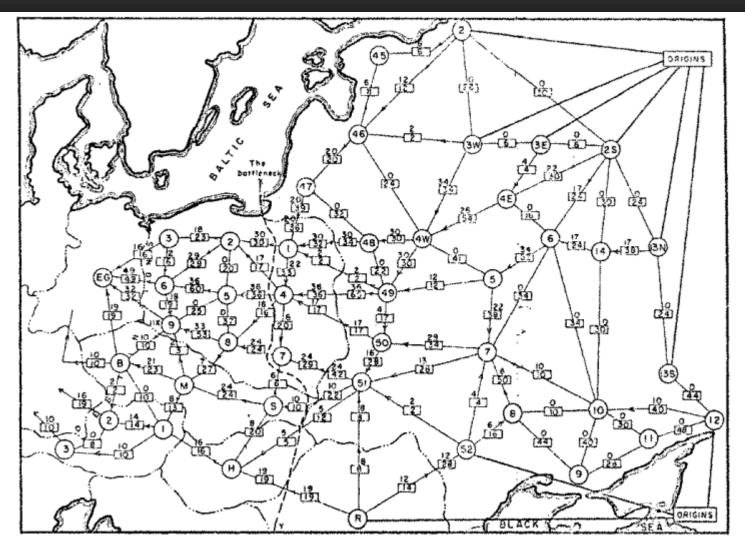


Max Flow / Min Cut



Railway map of Western USSR, 1955

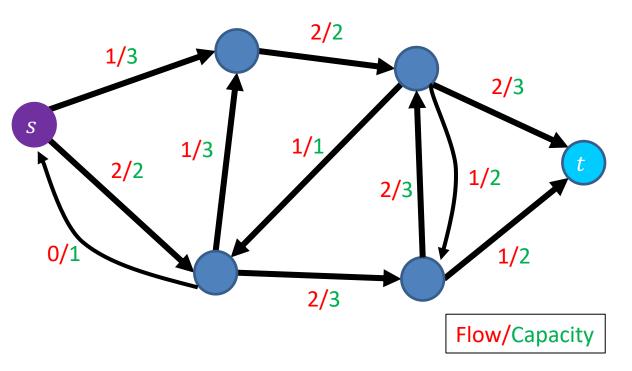
Flow Network

Graph G = (V, E)Source node $s \in V$ Sink node $t \in V$ Edge Capacities $c(e) \in$ Positive Real numbers

Max flow intuition: If s is a faucet, t is a drain, and s connects to t through a network of pipes with given capacities, what is the maximum amount of water which can flow from the faucet to the drain?

Flow

- Assignment of values to edges
 - -f(e)=n
 - Amount of water going through that pipe
- Capacity constraint
 - $f(e) \le c(e)$
 - Flow cannot exceed capacity
- Flow constraint
 - $\forall v \in V \{s, t\}, inflow(v) = outflow(v)$
 - $inflow(v) = \sum_{x \in V} f(x, v)$
 - $outflow(v) = \sum_{x \in V} f(v, x)$
 - Water going in must match water coming out
- Flow of G: |f| = outflow(s) inflow(s)
 - Net outflow of s



3 in example above

• Of all valid flows through the graph, find the one which maximizes:

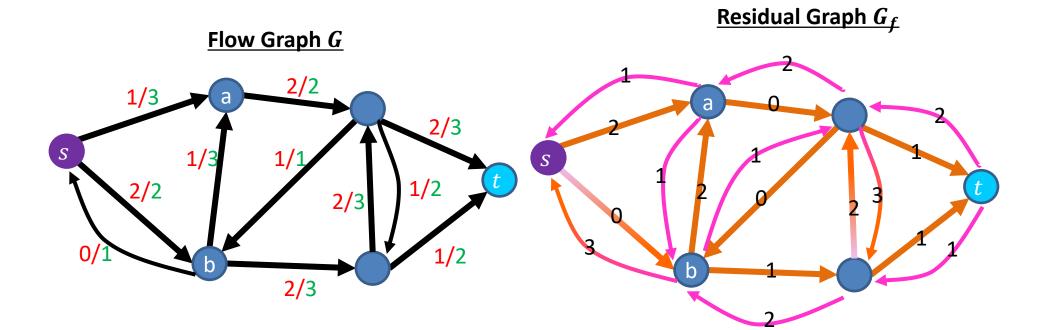
$$-|f| = outflow(s) - inflow(s)$$

Residual Graph G_f

- Keep track of net available flow along each edge
- Forward edges: weight is equal to available flow along that edge in the flow graph
 Flow I could add

$$-w(e) = c(e) - f(e)$$

- Back edges: weight is equal to flow along that edge in the flow graph
 - -w(e) = f(e) Flow I could remove



6

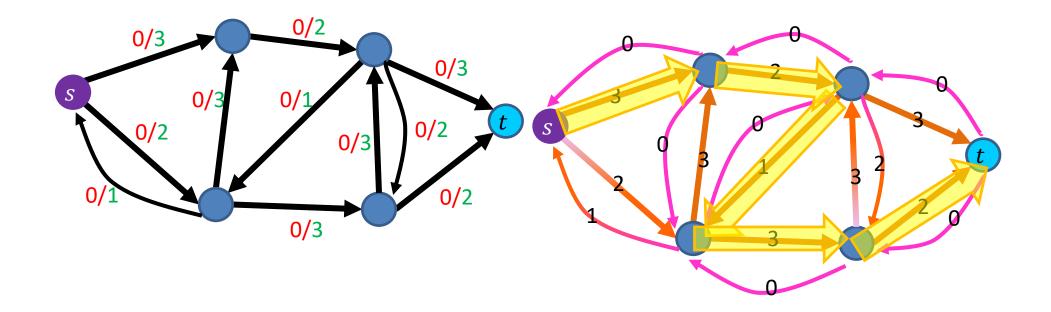
Ford-Fulkerson

- Augmenting Path: a path of positive-weight edges from s to t in the residual graph
- Algorithm: Repeatedly add the flow of any augmenting path

 $\forall (u, v) \in E \text{ Initialize } f(u, v) = 0$ While there is an augmenting path p in G_f $\text{let } f = \min_{u,v \in p} c_f(u, v)$ add f to the flow of each edge in p

Residual Graph G_f

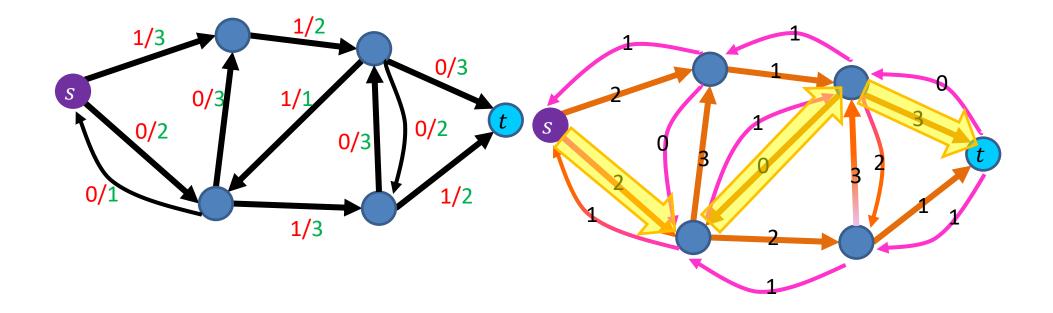
Flow Graph G



Add flow of 1 to this path

Residual Graph G_f

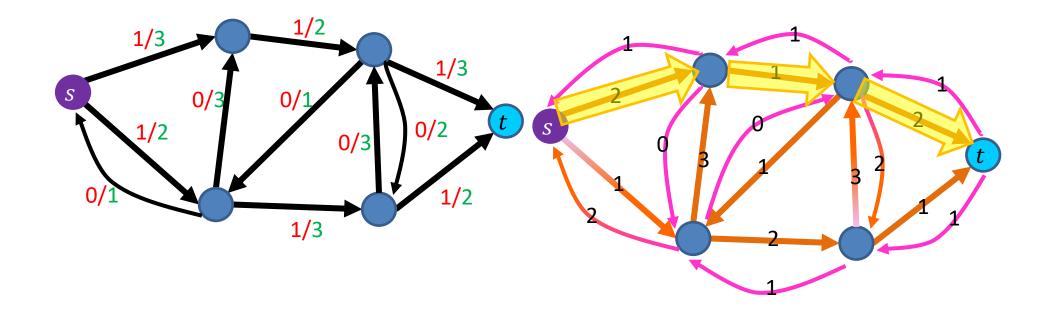
Flow Graph G



Add flow of 1 to this path

Residual Graph G_f

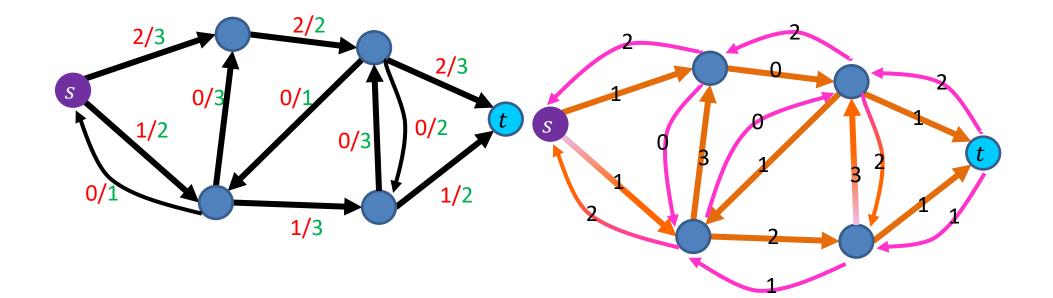
Flow Graph G



Add flow of 1 to this path

Residual Graph G_f

Flow Graph G

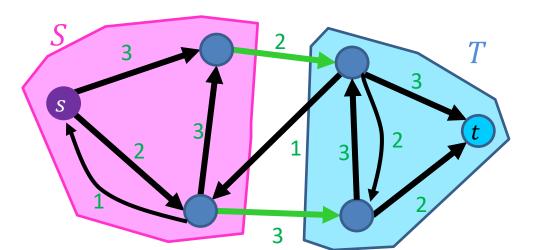


Showing Correctness of Ford-Fulkerson

Consider cuts which separate s and t

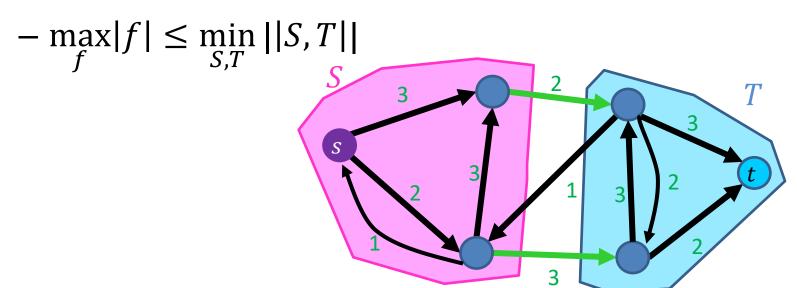
- Let $s \in S$, $t \in T$, s.t. $V = S \cup T$

- Cost of cut (S, T) = ||S, T||
 - Sum capacities of edges which go from S to T
 - This example: 5



Maxflow<MinCut

- Max flow upper bounded by any cut separating *s* and *t*
- Why? "Conservation of flow"
 - All flow exiting s must eventually get to t
 - To get from s to t, all "tanks" must cross the cut
- Conclusion: If we find the minimum-cost cut, we've found the maximum flow



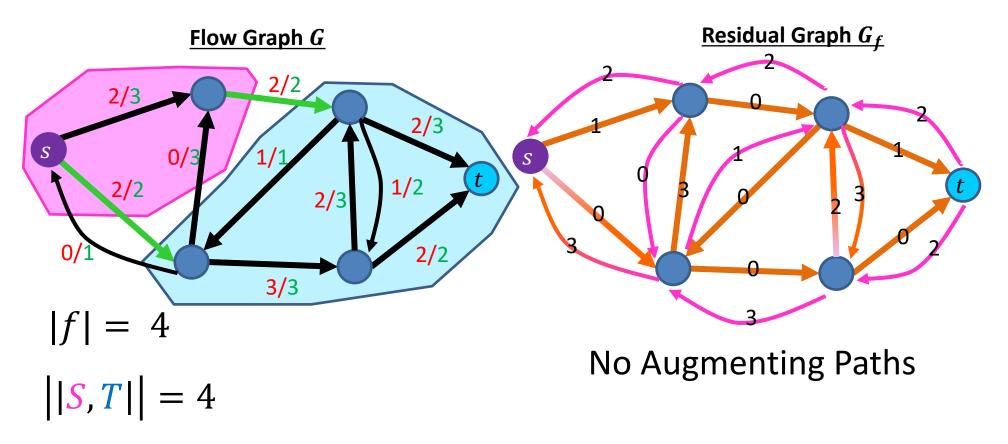
Maxflow/Mincut Theorem

- To show Ford-Fulkerson is correct:
 - Show that when there are no more augmenting paths, there is a cut with cost equal to the flow
- Conclusion: the maximum flow through a network matches the minimum-cost cut

$$-\max_{f}|f| = \min_{S,T} ||S,T||$$

- Duality
 - When we've maximized max flow, we've minimized min cut (and viceversa), so we can check when we've found one by finding the other

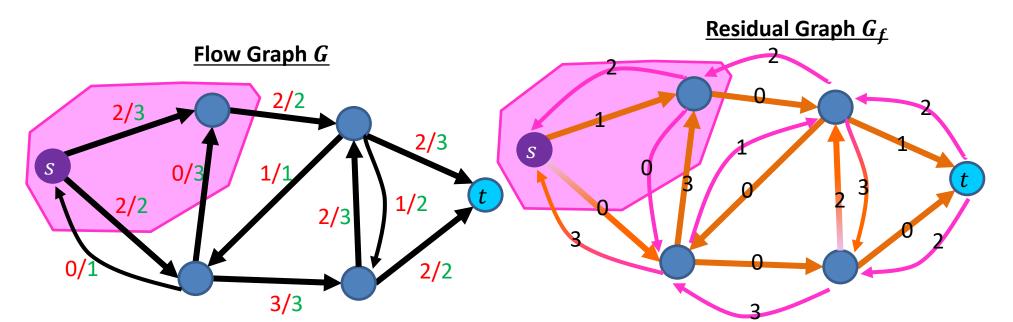
Example: Maxflow/Mincut



Idea: When there are no more augmenting paths, there exists a cut in the graph with cost matching the flow 15

Proof: Maxflow/Mincut Theorem

- If |f| is a max flow, then G_f has no augmenting path
 - Otherwise, use that augmenting path to "push" more flow
- Define S = nodes reachable from source node s by positive-weight edges in the residual graph
 - -T = V S
 - -S separates s, t (otherwise there's an augmenting path)



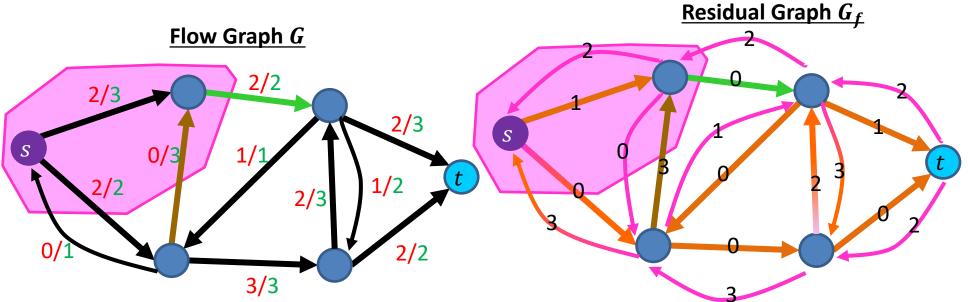
16

Proof: Maxflow/Mincut Theorem

- To show: ||S, T|| = |f|
 - Weight of the cut matches the flow across the cut
- Consider edge (u, v) with $u \in S$, $v \in T$

- f(u, v) = c(u, v), because otherwise w(u, v) > 0 in G_f , which would mean $v \in S$

- Consider edge (y, x) with $y \in T, x \in S$
 - f(y, x) = 0, because otherwise the back edge w(y, x) > 0 in G_f , which would mean $y \in S$



17

Proof Summary

- 1. The flow |f| of G is upper-bounded by the sum of capacities of edges crossing any cut separating source s and sink t
- 2. When Ford-Fulkerson terminates, there are no more augmenting paths in G_f
- 3. When there are no more augmenting paths in G_f then we can define a cut S = nodes reachable from source node s by positive-weight edges in the residual graph
- 4. The sum of edge capacities crossing this cut must match the flow of the graph
- 5. Therefore this flow is maximal

Today's Keywords

- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set

CLRS Readings

• Chapter 34

Homeworks

- HW8 due Thursday, 11/21, at 11pm
 - Python or Java
 - Marriage
- HW9 out Thursday, due Thursday 12/5 at 11pm
 - Reductions, Graphs
 - Written (LaTeX)
- HW10C out Thursday, due Thursday 12/5 at 11pm
 - Implement a problem from HW9
 - No late submissions

Final Exam

- Monday, December 9, 7pm in Maury 209 (our section)
 - Practice exam coming next week
 - Review session likely the weekend before
 - Conflict form coming by email
 (if you have another exam scheduled for 7pm)

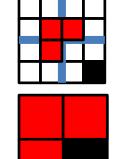
Divide and Conquer*

 Break the problem into multiple subproblems, each smaller instances of the original

• Conquer:

Divide:

- If the suproblems are "large":
 - Solve each subproblem recursively
- If the subproblems are "small":
 - Solve them directly (base case)
- Combine:
 - Merge together solutions to subproblems



_		-	
	H		┝
	H		┢
	П	1	F

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

Greedy Algorithms

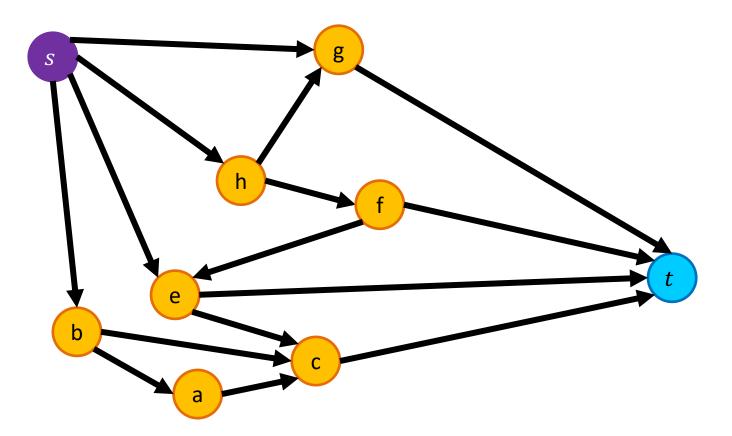
- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

So far

- Divide and Conquer, Dynamic Programming, Greedy
 - Take an instance of Problem A, relate it to smaller instances of Problem A
- Next:
 - Take an instance of Problem A, relate it to an instance of Problem B

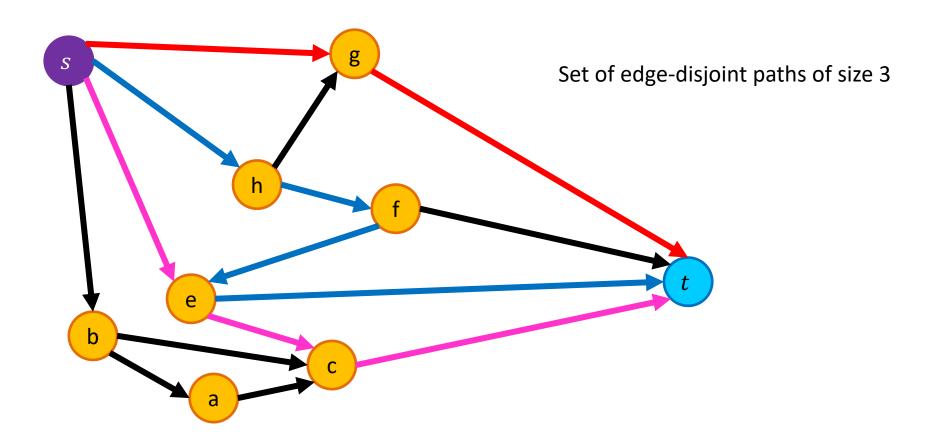
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



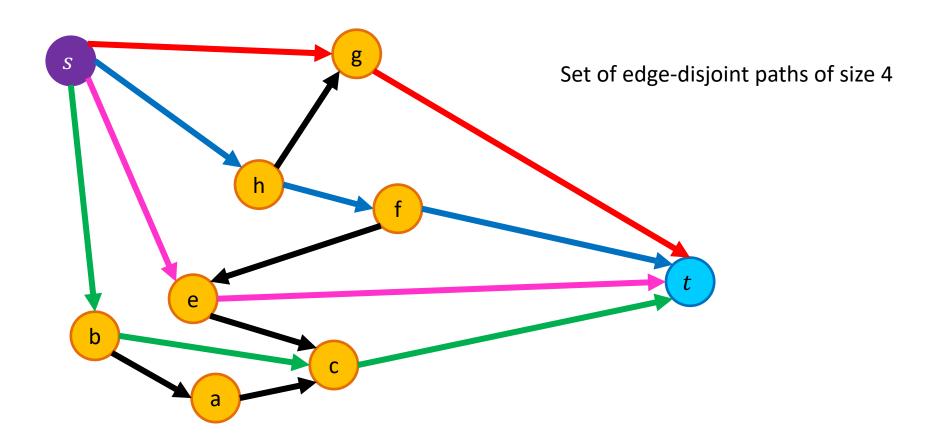
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



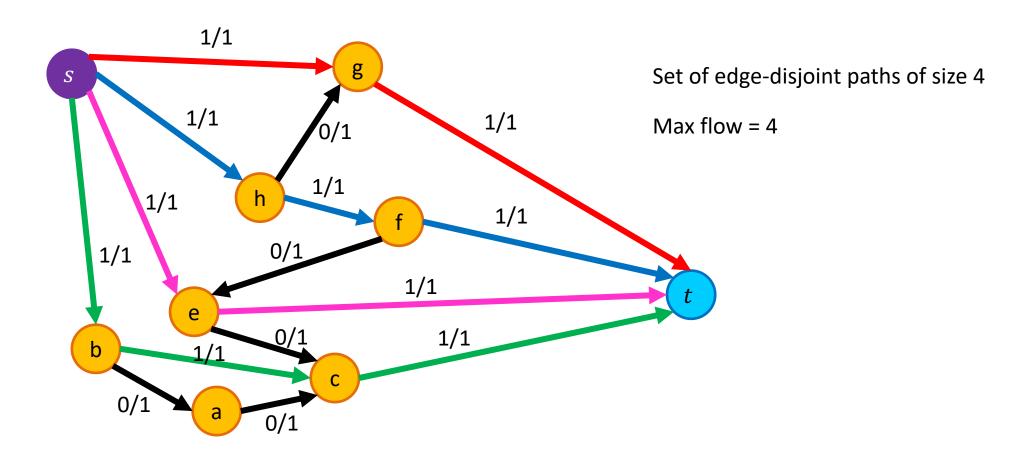
Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges



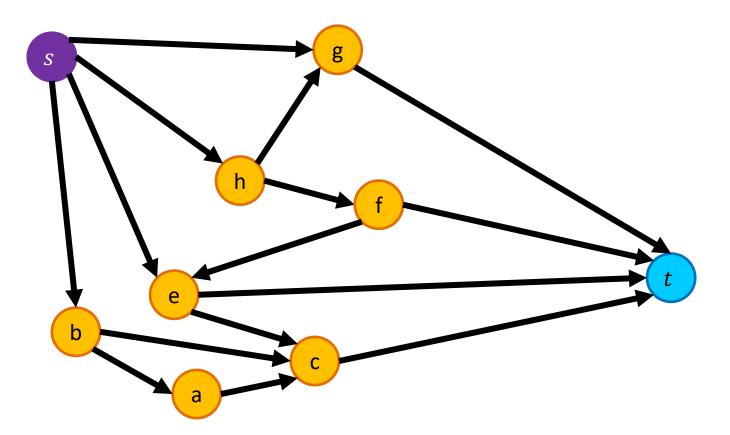
Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.



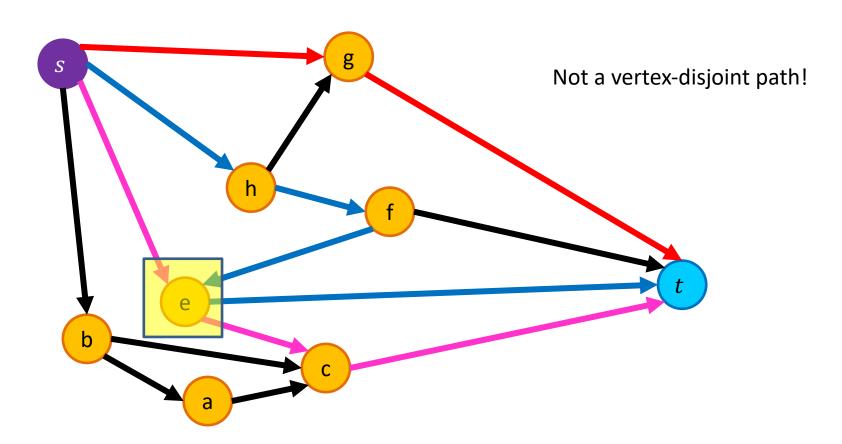
Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices



Vertex-Disjoint Paths

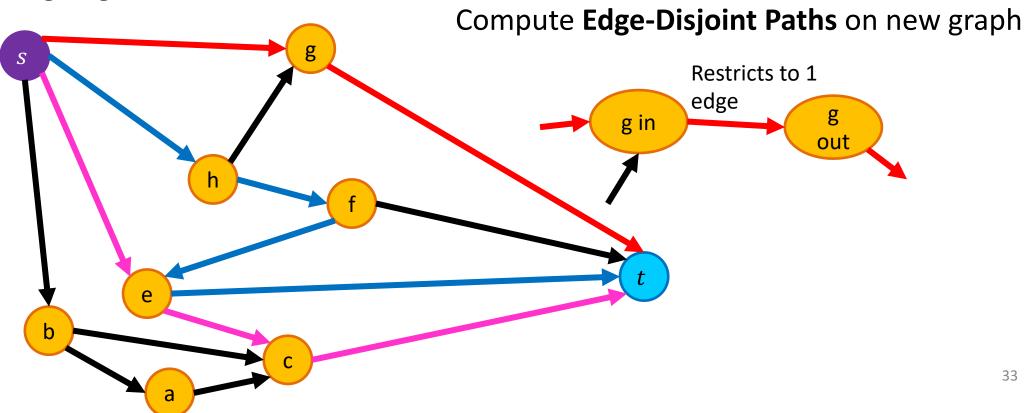
Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

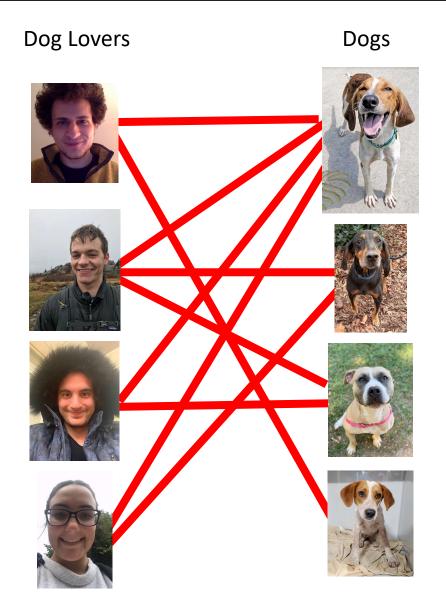


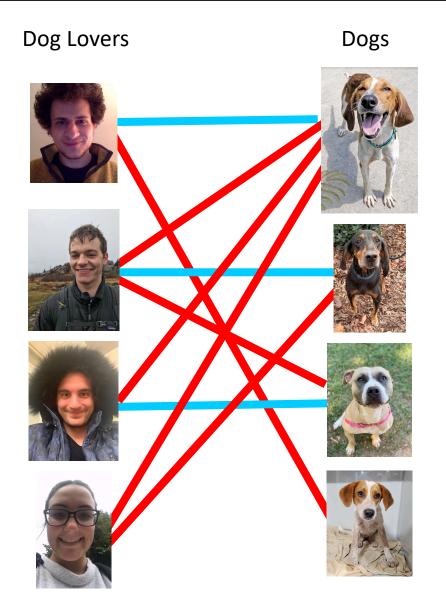
Vertex-Disjoint Paths Algorithm

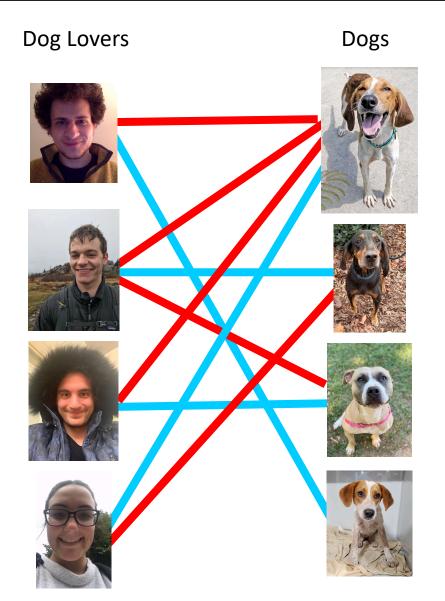
Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges









Given a graph G = (L, R, E)

a set of left nodes, right nodes, and edges between left and right Find the largest set of edges $M \subseteq E$ such that each node $u \in L$ or $v \in R$ is incident to at most one edge.

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

• Adding in a source and sink to the set of nodes:

 $- V' = L \cup R \cup \{s, t\}$

• Adding an edge from source to L and from R to sink:

$$- E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in r \mid (v, t)\}$$

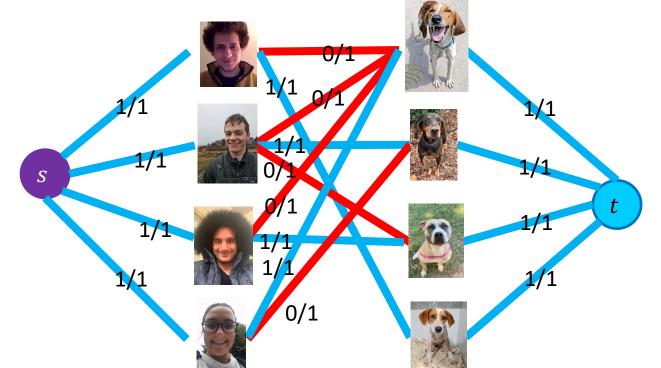
S

• Make each edge capacity 1:

$$- \forall e \in E', c(e) = 1$$

Maximum Bipartite Matching Using Max Flow

- 1. Make G into $G' = \Theta(L+R)$
- 2. Compute Max Flow on $G' \quad \Theta(E \cdot V) \quad |f| \leq L$
- 3. Return *M* as all "middle" edges with flow 1 $\Theta(L+R)$



 $\Theta(E \cdot V)$

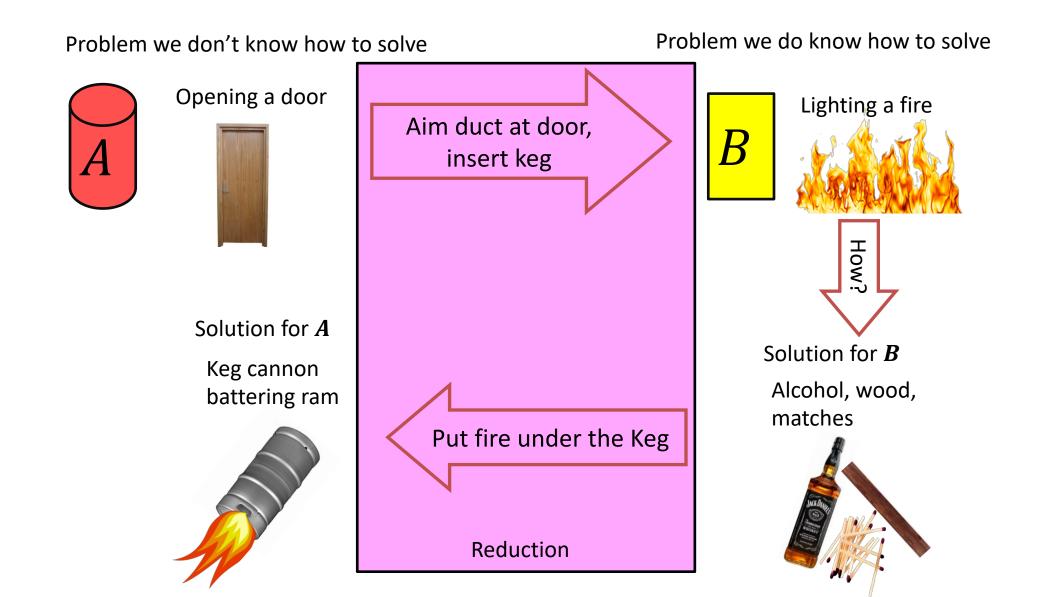
Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

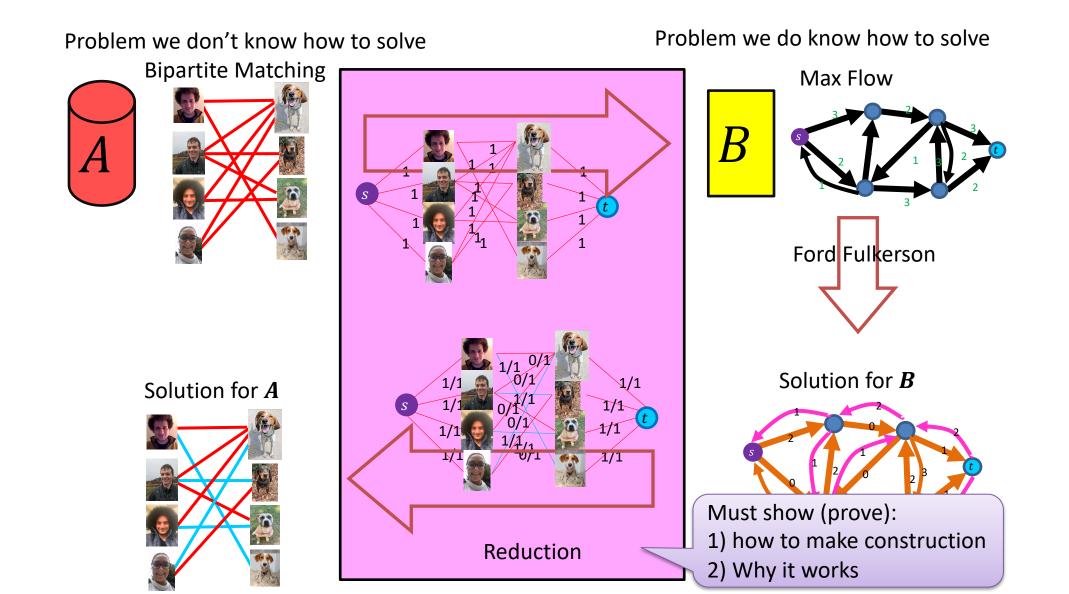
Reductions

Shows how two different problems relate to each other

MacGyver's Reduction



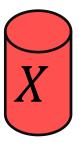
Bipartite Matching Reduction

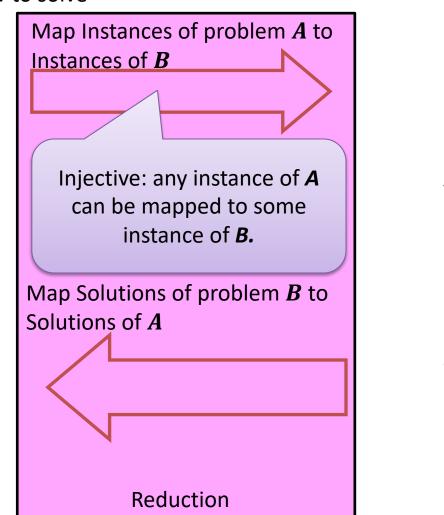


In General: Reduction

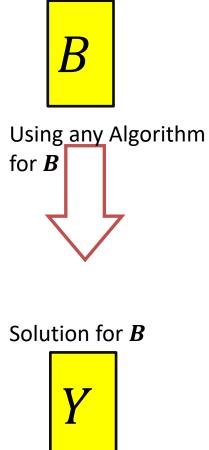
Problem we don't know how to solve

Solution for A

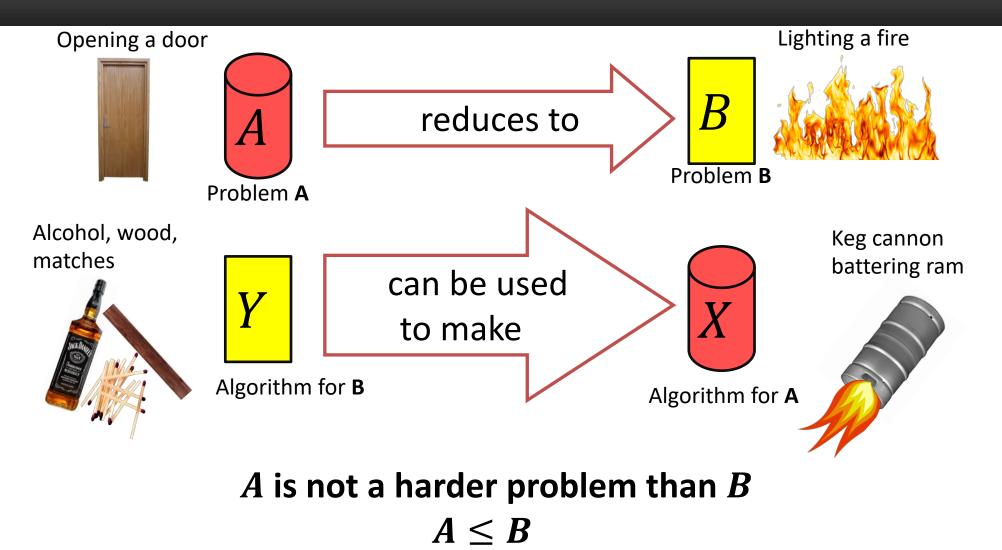




Problem we do know how to solve



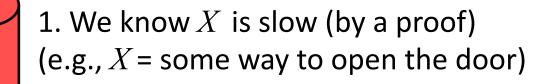
Worst-case lower-bound Proofs



The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow



2. Assume *Y* is quick [toward contradiction] (*Y* = some way to light a fire)

3. Show how to use *Y* to perform *X* quickly

4. X is slow, but Y could be used to perform X quickly conclusion: Y must not actually be quick