CS4102 Algorithms

Fall 2019

all 2019




Max Flow / Min Cut

ORICING

B o RIAMCS

—{{ CCACR '5{:,-.._-\ T
Railway map of Western USSR, 1955




Flow Network

Graph G = (V,E)
Source node s € IV
Sink nodet € IV
Edge Capacities c(e) € Positive Real numbers ’

Max flow intuition: If s is a faucet, t is a drain, and s connects to t
through a network of pipes with given capacities, what is the
maximum amount of water which can flow from the faucet to the
drain?



Assignment of values to edges
- fle)=n
— Amount of water going through that pipe
Capacity constraint
— f(e) =c(e)
— Flow cannot exceed capacity
Flow constraint
— Vv eV —{s,t}, inflow(v) = outflow(v)
— inflow(v) = ey f(x, V)

— outflow(v) = Yyey f(v,X)
— Water going in must match water coming out

Flow of G: |f| = outflow(s) — inflow(s)
— Net outflow of s
3 in example above

Flow/Capacity




e Of all valid flows through the graph, find the one which
maximizes:

— |f| = outflow(s) — inflow(s)



~esidual Graph Gy

Keep track of net available flow along each edge

Forward edges: weight is equal to available flow along that edge in the flow
graph Flow | could add

— w(e) =c(e) — f(e)
Back edges: weight is equal to flow along that edge in the flow graph
— w(e) = f(e) Flow | could remove

Residual Graph Gf

Flow Graph G




Ford-Fulkerson

* Augmenting Path: a path of positive-weight edges from s to ¢
in the residual graph

e Algorithm: Repeatedly add the flow of any augmenting path

V(u,v) € E Initialize f(u,v) = 0
While there is an augmenting path p in Gy

let f = min ce(u, v
f Iin r(u,v)

add f to the flow of each edge in p



—ord Fulkerson: example

Residual Graph Gf

Flow Graph G

N

\ ) 2 ’

1

y— ()j

N o—

Add flow of 1 to this path



—ord Fulkerson: example

Residual Graph Gf

TN
N —

Add flow of 1 to this path

Flow Graph G




—ord Fulkerson: example

Residual Graph Gf

Flow Graph G

Add flow of 1 to this path

10



—ord Fulkerson: example

Residual Graph Gf

Flow Graph G

11



Showing Correctness of Ford-Fulkerson

* Consider cuts which separate s and ¢
—Letse S, tel,st.V=5UT

* Costofcut(S,7)=||S,T|
— Sum capacities of edges which go from S to T
— This example: 5

12



Maxtlow<MIiNnCut

 Max flow upper bounded by any cut separating s and ¢

 Why? “Conservation of flow”
— All flow exiting s must eventually get to ©
— To get from s to ¢, all “tanks” must cross the cut

* Conclusion: If we find the minimum-cost cut, we’ve found the
maximum flow

— < min||S,T
m}§X|f| _ng,lTnll ,SII

13




Maxtlow/Mincut Theorem

e To show Ford-Fulkerson is correct:

— Show that when there are no more augmenting paths, there is a cut
with cost equal to the flow

* Conclusion: the maximum flow through a network matches the
minimum-cost cut

—max|f| = min ||S,T
ax|f| = min |15, 7]

* Duality

— When we’ve maximized max flow, we’ve minimized min cut (and vice-
versa), so we can check when we’ve found one by finding the other

14



=xample: Maxtlow/Mincut

Flow Graph G Residual Graph Gf

“ ” No Augmenting Paths
S, Tl =4

ldea: When there are no more augmenting paths, there
exists a cut in the graph with cost matching the flow .. s



Proof: Maxtlow/Mincut Theorem

* If |f]is a max flow, then G¢ has no augmenting path
— Otherwise, use that augmenting path to “push” more flow

 Define S = nodes reachable from source node s by positive-weight
edges in the residual graph

—T=V-=5
— S separates s, ¢ (otherwise there’s an augmenting path)

Residual Graph Gf
Flow Graph G

16



Proof: Maxtlow/Mincut Theorem

* To show: HS,TH = |f]|

— Weight of the cut matches the flow across the cut
* Consider edge (u,v)withu e S, veT

— f(u,v) = c(u,v), because otherwise w(u, v) > 0 in G¢, which would meanv € S
* Consideredge (v, x)withyeT,x €S

— f(y,x) = 0, because otherwise the back edge w(y,x) > 0 in Gy,

which would meany € §
Residual Graph Gf

Flow Graph G %




Proof Summary

The flow |f| of G is upper-bounded by the sum of capacities of edges crossing
any cut separating source s and sink ¢

When Ford-Fulkerson terminates, there are no more augmenting paths in G¢

When there are no more augmenting paths in G¢ then we can define a cut
S = nodes reachable from source node s by posmve -weight edges in the
residual graph

The sum of edge capacities crossing this cut must match the flow of the graph

Therefore this flow is maximal

18



Today's Keywords

* Reductions

* Bipartite Matching
* Vertex Cover

* Independent Set

19



CLRS Readings

* Chapter 34



HoMeworks

* HWS8 due Thursday, 11/21, at 11pm
— Python or Java
— Marriage
 HW9 out Thursday, due Thursday 12/5 at 11pm
— Reductions, Graphs
— Written (LaTeX)

* HW10C out Thursday, due Thursday 12/5 at 11pm

— Implement a problem from HW9
— No late submissions

21



 Monday, December 9, 7pm in Maury 209 (our section)
— Practice exam coming next week
— Review session likely the weekend before

— Conflict form coming by email
(if you have another exam scheduled for 7pm)

22



Divide and Conquer”

:ili=

* Divide:
— Break the problem into multiple subproblems, each smaller instances of
the original

* Conquer:
— |f the suproblems are “large”:
* Solve each subproblem recursively

— |f the subproblems are “small”:
e Solve them directly (base case)

* Combine:
— Merge together solutions to subproblems ﬁ

*CLRS Chapter 4



Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
2. Select a good order for solving subproblems

e Usually smallest problem first

24



Greedy Algorithms

* Require Optimal Substructure
— Solution to larger problem contains the solution to a smaller one

— Only one subproblem to consider!

* |dea:
1. Identify a greedy choice property

* How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain

25



* Divide and Conquer, Dynamic Programming, Greedy

— Take an instance of Problem A, relate it to smaller instances of
Problem A

* Next:

— Take an instance of Problem A, relate it to an instance of Problem B

26



—dge-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

27



—dge-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 3

28



—dge-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no edges

Set of edge-disjoint paths of size 4

29



=dge-Disjoint Paths Algorithm

Make s and t the source and sink, give each edge capacity 1, find the max flow.

Set of edge-disjoint paths of size 4

Max flow =4

30



Vertex-Disjoint Paths

Given a graph ¢ = (V,E), astart node s and a
destination node t, give the maximum number of paths
from s to t which share no vertices

31



Vertex-Disjoint Paths

Given a graph ¢ = (V, E), a start node s and a destination node t, give the
maximum number of paths from s to £ which share no vertices

Not a vertex-disjoint path!

32



Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance
of edge-disjoint paths
Make two copies of each node, one connected to incoming edges, the other to

outgoing edges
Compute Edge-Disjoint Paths on new graph

Restricts to 1

33



Maximum Bipartite Matching

Dog Lovers Dogs

34




Maximum Bipartite Matching

Dog Lovers Dogs

35




Maximum Bipartite Matching

Dog Lovers Dogs

36




Maximum Bipartite Matching

Given agraph G = (L,R, E)
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges M € E such that each nodeu € L
or v € R is incident to at most one edge.

37



NVaximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V',E") by:
 Adding in a source and sink to the set of nodes:
— V'=LURU {s,t}
. Adging an edge from source to L and from R to
sink:
— E'=FEv{uel|(s,u)}uf{ver| i)}
 Make each edge capacity 1:
— Ve€E' cle)=1

38



NVaximum Bipartite Matching Using Max Flow

/ O -V)
1. Make G into G O(L + R)

2. Compute Max Flowon G' e v) |fl<L
3. Return M as all “middle” edges with flow 1 oew+r)

39



e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

40



Reductions

Shows how two different problems relate to each other

s
# F 4 | r |
I / N ( ] \ \ f <
) o . \ ! ) |

. A ' ‘ ‘ L 4

: ! . VY

y - I,'{; : .‘

‘A V/ ' Y
i .’J ‘-,_';‘ . P .l ! .J. » ~

HIS MIND IS THE'?UQT'QMATE WEAP

41




MacGyver's Reduction

Problem we don’t know how to solve

Opening a door

Solution for 4

Keg cannon
battering ram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

M ol
\ N\ :‘AJ"}))/'
R\ . p
A u ;% &%‘/c &i

-— e

Put fire under the Keg

Reduction

Solution for B

Alcohol, wood,
matches

42




Bipartite Matching Reduction

Problem we don’t know how to solve Problem we do know how to solve

Max Flow

5| 2P

3

Ford erson

Solution for B
47N

Must show (prove):
| 1) how to make construction

Reduction
\I\Z) Why it works

43




N General; Reduction

Problem we don’t know how to solve Problem we do know how to solve
Map Instances of problem A to
Instances of B
e B
\
4 I

. : Using any Algorithm
Injective: any instance of A for B

can be mapped to some
instance of B.
. /
Map Solutions of problem B to
Solutions of A

Solution for 4

Solution for B

Y

Reduction
a4




VWorst-case lower-bound Proofs

Opening a door Lighting a fire

ol
g ,Jt)‘, )
i i
Problem A

Alcohol, wood, Keg cannon
matches battering ram
% can be used
to make 3
I Algorithm for B AlgorithmforA £ )

A is not a harder problem than B
A<B

The name “reduces” is confusing: it is in the opposite direction of the making

reduces to B N




Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

oy S
i > e
2 <y
Uy L4
o Py A
/¥ .

} . 3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick




