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Max Flow / Min Cut
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Railway map of Western USSR, 1955



Flow Network

Graph 𝐺 = (𝑉, 𝐸)
Source node 𝑠 ∈ 𝑉
Sink node 𝑡 ∈ 𝑉
Edge Capacities 𝑐 𝑒 ∈ Positive Real numbers

Max flow intuition: If 𝑠 is a faucet, 𝑡 is a drain, and 𝑠 connects to 𝑡
through a network of pipes with given capacities, what is the 
maximum amount of water which can flow from the faucet to the 
drain?
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Flow
• Assignment of values to edges

– 𝑓 𝑒 = 𝑛
– Amount of water going through that pipe

• Capacity constraint
– 𝑓 𝑒 ≤ 𝑐(𝑒)
– Flow cannot exceed capacity

• Flow constraint
– ∀𝑣 ∈ 𝑉 − {𝑠, 𝑡}, 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤(𝑣)
– 𝑖𝑛𝑓𝑙𝑜𝑤 𝑣 = ∑;∈< 𝑓(𝑥, 𝑣)
– 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑣 = ∑;∈< 𝑓(𝑣, 𝑥)
– Water going in must match water coming out

• Flow of 𝐺: |𝑓| = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
– Net outflow of 𝑠
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Max Flow

• Of all valid flows through the graph, find the one which 
maximizes:
– 𝑓 = 𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑠 − 𝑖𝑛𝑓𝑙𝑜𝑤(𝑠)
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Residual Graph 𝐺?
• Keep track of net available flow along each edge
• Forward edges: weight is equal to available flow along that edge in the flow 

graph 
– 𝑤 𝑒 = 𝑐 𝑒 − 𝑓(𝑒)

• Back edges: weight is equal to flow along that edge in the flow graph
– 𝑤 𝑒 = 𝑓(𝑒)
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Ford-Fulkerson

• Augmenting Path: a path of positive-weight edges from 𝑠 to 𝑡
in the residual graph

• Algorithm: Repeatedly add the flow of any augmenting path
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∀ 𝑢, 𝑣 ∈ 𝐸 Initialize 𝑓 𝑢, 𝑣 = 0
While there is an augmenting path 𝑝 in 𝐺?

let 𝑓 = min
G,H∈I

𝑐?(𝑢, 𝑣)
add 𝑓 to the flow of each edge in 𝑝



Ford Fulkerson: example
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Ford Fulkerson: example

9

0/3

1/3

1/3
0/1

𝑠
𝑡0/2

1/2

1/1

0/3 0/2

1/2

0/3

Flow Graph 𝑮
Residual Graph 𝑮𝒇

𝑠
𝑡3

2

2
1

2

1

0 3 2

1

3

1

0

1

1

1
0

1

Add flow of 1 to this path



Ford Fulkerson: example

10

0/3

1/3

1/3
0/1

𝑠
𝑡1/2

1/2

0/1

0/3 0/2

1/2

1/3

Flow Graph 𝑮
Residual Graph 𝑮𝒇

𝑠
𝑡3

2

2
2

1

1

1 3 2

1

2

1

1

1

1

0
0

1

Add flow of 1 to this path



Ford Fulkerson: example
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Showing Correctness of Ford-Fulkerson

• Consider cuts which separate 𝑠 and 𝑡
– Let 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇, s.t. 𝑉 = 𝑆 ∪ 𝑇

• Cost of cut 𝑆, 𝑇 = | 𝑆, 𝑇 |
– Sum capacities of edges which go from 𝑆 to 𝑇
– This example: 5
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Maxflow≤MinCut

• Max flow upper bounded by any cut separating 𝑠 and 𝑡
• Why? “Conservation of flow”
– All flow exiting 𝑠 must eventually get to 𝑡
– To get from 𝑠 to 𝑡, all “tanks” must cross the cut

• Conclusion: If we find the minimum-cost cut, we’ve found the 
maximum flow
– max

?
𝑓 ≤ min

O,P
| 𝑆, 𝑇 |
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Maxflow/Mincut Theorem
• To show Ford-Fulkerson is correct:
– Show that when there are no more augmenting paths, there is a cut 

with cost equal to the flow
• Conclusion: the maximum flow through a network matches the 

minimum-cost cut
–max

?
𝑓 = min

O,P
| 𝑆, 𝑇 |

• Duality
– When we’ve maximized max flow, we’ve minimized min cut (and vice-

versa), so we can check when we’ve found one by finding the other
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Example: Maxflow/Mincut
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Proof: Maxflow/Mincut Theorem
• If |𝑓| is a max flow, then 𝐺? has no augmenting path
– Otherwise, use that augmenting path to “push” more flow

• Define 𝑆 = nodes reachable from source node 𝑠 by positive-weight 
edges in the residual graph
– 𝑇 = 𝑉 − 𝑆
– 𝑆 separates 𝑠 , 𝑡 (otherwise there’s an augmenting path)
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Proof: Maxflow/Mincut Theorem
• To show: 𝑆, 𝑇 = |𝑓|

– Weight of the cut matches the flow across the cut
• Consider edge (𝑢, 𝑣) with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇

– 𝑓 𝑢, 𝑣 = 𝑐(𝑢, 𝑣), because otherwise 𝑤 𝑢, 𝑣 > 0 in 𝐺?, which would mean 𝑣 ∈ 𝑆
• Consider edge (𝑦, 𝑥) with 𝑦 ∈ 𝑇, 𝑥 ∈ 𝑆

– 𝑓 𝑦, 𝑥 = 0, because otherwise the back edge 𝑤 𝑦, 𝑥 > 0 in 𝐺?, 
which would mean y ∈ 𝑆
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Proof Summary
1. The flow |𝑓| of 𝐺 is upper-bounded by the sum of capacities of edges crossing 

any cut separating source 𝑠 and sink 𝑡

2. When Ford-Fulkerson terminates, there are no more augmenting paths in 𝐺?

3. When there are no more augmenting paths in 𝐺? then we can define a cut 
𝑆 = nodes reachable from source node 𝑠 by positive-weight edges in the 
residual graph

4. The sum of edge capacities crossing this cut must match the flow of the graph

5. Therefore this flow is maximal
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Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
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CLRS Readings

• Chapter 34
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Homeworks

• HW8 due Thursday, 11/21, at 11pm
– Python or Java
– Marriage

• HW9 out Thursday, due Thursday 12/5 at 11pm
– Reductions, Graphs
– Written (LaTeX)

• HW10C out Thursday, due Thursday 12/5 at 11pm
– Implement a problem from HW9
– No late submissions
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Final Exam

• Monday, December 9, 7pm in Maury 209 (our section)
– Practice exam coming next week
– Review session likely the weekend before
– Conflict form coming by email 

(if you have another exam scheduled for 7pm)

22



Divide and Conquer*

• Divide: 
– Break the problem into multiple subproblems, each smaller instances of 

the original
• Conquer:
– If the suproblems are “large”:

• Solve each subproblem recursively
– If the subproblems are “small”:

• Solve them directly (base case)

• Combine:
– Merge together solutions to subproblems

*CLRS Chapter 4



Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
2. Select a good order for solving subproblems
• Usually smallest problem first
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Greedy Algorithms

• Require Optimal Substructure
– Solution to larger problem contains the solution to a smaller one
– Only one subproblem to consider!

• Idea:
1. Identify a greedy choice property
• How to make a choice guaranteed to be included in some optimal solution

2. Repeatedly apply the choice property until no subproblems remain
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So far

• Divide and Conquer, Dynamic Programming, Greedy
– Take an instance of Problem A, relate it to smaller instances of 

Problem A

• Next:
– Take an instance of Problem A, relate it to an instance of Problem B
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
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Edge-Disjoint Paths Algorithm
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Make 𝑠 and 𝑡 the source and sink, give each edge capacity 1, find the max flow.

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4

1/1

1/1

1/1

1/1

1/1

1/1
1/1

1/1

1/1
1/1

0/1

0/1

0/1

0/1
0/1

Max flow = 4



Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c



Vertex-Disjoint Paths
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Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an instance 
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Maximum Bipartite Matching
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Maximum Bipartite Matching
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Maximum Bipartite Matching
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Maximum Bipartite Matching

Given a graph 𝐺 = 𝐿, 𝑅, 𝐸
a set of left nodes, right nodes, and edges between left and right

Find the largest set of edges 𝑀 ⊆ 𝐸 such that each node 𝑢 ∈ 𝐿
or 𝑣 ∈ 𝑅 is incident to at most one edge.
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Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺Z = (𝑉Z, 𝐸Z) by:
• Adding in a source and sink to the set of nodes: 

– 𝑉Z = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}
• Adding an edge from source to 𝐿 and from 𝑅 to 

sink:
– 𝐸Z = 𝐸 ∪ 𝑢 ∈ 𝐿 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸Z, 𝑐 𝑒 = 1
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Maximum Bipartite Matching Using Max Flow

1. Make 𝐺 into 𝐺′
2. Compute Max Flow on 𝐺′
3. Return 𝑀 as all “middle” edges with flow 1
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Reductions
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Shows how two different problems relate to each other

MOVIE TIME!



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow
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Solution for 𝑩
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In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨 to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩 to 
Solutions of 𝑨

𝑌𝑋

Injective: any instance of A
can be mapped to some 

instance of B.



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow


