Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
• Chapter 34
Homeworks

• HW8 due Saturday, 11/23, at 11pm
 – Python or Java
 – Marriage
• HW9 out tonight, due Thursday 12/5 at 11pm
 – Reductions, Graphs
 – Written (LaTeX)
• HW10C out tonight, due Thursday 12/5 at 11pm
 – Implement a problem from HW9
 – No late submissions
• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
MacGyver’s Reduction

Problem we don’t know how to solve
Opening a door
A

Solution for A
Keg cannon
battering ram

Problem we do know how to solve
Lighting a fire
B

Solution for B
Alcohol, wood,
matches

How?
Put fire under the Keg
Aim duct at door,
insert keg

Reduction
Maximum Bipartite Matching

Dog Lovers

Dogs
Maximum Bipartite Matching Using Max Flow

Make $G = (L, R, E)$ a flow network $G' = (V', E')$ by:

- Adding in a source and sink to the set of nodes:
 - $V' = L \cup R \cup \{s, t\}$
- Adding an edge from source to L and from R to sink:
 - $E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in R \mid (v, t)\}$
- Make each edge capacity 1:
 - $\forall e \in E', c(e) = 1$

Remember: need to show
1. How to map instance of MBM to MF (and back) - construction
2. A valid solution to MF instance is a valid solution to MBM instance
Bipartite Matching Reduction

Problem we don’t know how to solve

Bipartite Matching

Problem we do know how to solve

Max Flow

Solution for A

Ford Fulkerson

Solution for B
Bipartite Matching Reduction

Problem we don’t know how to solve

Problem we do know how to solve

Bipartite Matching

Max Flow

Solution for A

Solution for B

Then this is fast

If this is fast

Reduction

Then this is fast

If this is fast

Ford Fulkerson

If this is fast

If this is fast

If this is fast
Bipartite Matching Reduction

Problem we don’t know how to solve: Bipartite Matching

Problem we do know how to solve: Max Flow

Solution for \(A \)

If this is slow

Then this is slow

Solution for \(B \)

If this is slow

Then this is slow

Reduction
Edge-Disjoint Paths

Given a graph $G = (V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no edges.

Set of edge-disjoint paths of size 4
Make s and t the source and sink, give each edge capacity 1, find the max flow.

Set of edge-disjoint paths of size 4
Given a graph $G = (V, E)$, a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices.

Not a vertex-disjoint path!
Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths

Make two copies of each node, one connected to incoming edges, the other to outgoing edges

Compute Edge-Disjoint paths on new graph
In General: Reduction

Problem we don’t know how to solve

\[A \]

Problem we do know how to solve

\[B \]

Map Instances of problem \(A \) to Instances of \(B \)

Map Solutions of problem \(B \) to Solutions of \(A \)

Solution for \(A \)

\[X \]

Solution for \(B \)

\[Y \]

Remember: need to show
1. How to map instance of \(A \) to \(B \) (and back)
2. Why solution to \(B \) was a valid solution to \(A \)
Worst-case lower-bound Proofs

Opening a door
Problem A

reduces to

Lighting a fire
Problem B

Alcohol, wood, matches
Algorithm for B

Algorithm for A

\[A \text{ is not a harder problem than } B \]
\[A \leq B \]

The name “reduces” is confusing: it is in the opposite direction of the making...
Bipartite Matching Reduction

Problem we don’t know how to solve

Bipartite Matching

Solution for A

Then this is fast

Problem we do know how to solve

Max Flow

Ford Fulkerson

Solution for B

If this is fast
Bipartite Matching Reduction

Problem we don’t know how to solve

Bipartite Matching

Problem we do know how to solve

Max Flow

If this is slow

Then this is slow

Solution for A

Solution for B
To Show: Y is slow

1. We know X is slow (by a proof) (e.g., $X =$ some way to open the door)

2. Assume Y is quick [toward contradiction] ($Y =$ some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
 conclusion: Y must not actually be quick
Reduction Proof Notation

Problem A $\leq B$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time

$A \leq f(n) B$

Or we could have solved A faster using B's solver!
Party Problem

Draw Edges between people who don’t get along
Find the maximum number of people who get along
Maximum Independent Set

• Independent set: \(S \subseteq V \) is an independent set if no two nodes in \(S \) share an edge

• Maximum Independent Set Problem: Given a graph \(G = (V, E) \) find the maximum independent set \(S \)
Example

Independent set of size 6
Generalized Baseball
Generalized Baseball

Need to place defenders on bases such that every edge is defended

What’s the fewest number of defenders needed?
Minimum Vertex Cover

- **Vertex Cover**: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

- **Minimum Vertex Cover**: Given a graph $G = (V, E)$ find the minimum vertex cover C
Example

Vertex cover of size 5
MaxIndSet \leq^V MinVertCov

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time

$A \leq_V B$
We need to build this Reduction

Relate Instances of MaxIndSet to Instances of MinVertCov

Using any Algorithm for MinVertCov

Relate Solutions of MinVertCov to Solutions of MaxIndSet

Solution for MaxIndSet

Solution for MinVertCov
S is an independent set of G iff $V - S$ is a vertex cover of G
Reduction Idea

S is an independent set of G iff $V - S$ is a vertex cover of G
MaxVertCov V-Time Reducible to MinIndSet

MaxIndSet

Solution for MaxIndSet

MinVertCov

Solution for MinVertCov

O(V) Time

Do nothing

Take complement of solution

Reduction

Using any Algorithm for MinVertCov

Reduce

Do nothing

Take complement of solution

Solution for MinVertCov

MinVertCov

MaxIndSet

Solution for MaxIndSet
Proof: \(\Rightarrow \)

\(S \) is an independent set of \(G \) iff \(V - S \) is a vertex cover of \(G \)

Let \(S \) be an independent set

Consider any edge \((x, y) \in E\)

If \(x \in S \) then \(y \notin S \), because otherwise \(S \) would not be an independent set

Therefore \(y \in V - S \), so edge \((x, y)\) is covered by \(V - S\)
Proof: \iff

S is an independent set of G iff $V - S$ is a vertex cover of G

Let $V - S$ be a vertex cover

Consider any edge $(x, y) \in E$

At least one of x and y belong to $V - S$, because $V - S$ is a vertex cover

Therefore x and y are not both in S,

No edge has both end-nodes in S, thus S is an independent set
MaxVertCov V-Time Reducible to MinIndSet

- **MaxIndSet**
- **Solution for MaxIndSet**
- **MinVertCov**
- **Solution for MinVertCov**

Reduction
- **O(V) Time**
- **Do nothing**
- **Take complement of solution**

Using any Algorithm for MinVertCov
MaxVertCov V-Time Reducible to MinIndSet

MaxIndSet A

Solution for MaxIndSet X

MinVertCov B

Using any Algorithm for MinVertCov

Solution for MinVertCov Y

O(V) Time

Do nothing

We needed our proof to show that this works!

Take complement of solution

If there was a larger independent set, there would have been a smaller vertex cover!

Reduction

If there was a larger independent set, there would have been a smaller vertex cover!
MaxIndSet V-Time Reducible to MinVertCov

MinVertCov

$\text{Solution for MinVertCov}$

A

$O(V)$ Time

Do nothing

Take complement of solution

Reduction

B

MaxIndSet

$\text{Solution for MaxIndSet}$

Using any Algorithm for MaxIndSet

Y
If Solving A was always slow

Then this shows solving B is also slow

MaxIndSet

Solution for MaxIndSet

MinVertCov

Solution for MinVertCov

Reduction

O(V) Time

Do nothing

Using any Algorithm for MinIndSet
Corollary

If Solving A was always slow

Then this shows solving B is also slow

MinVertCov

Solution for MinVertCov

O(V) Time

Take complement of solution

Reduction

Do nothing

MaxIndSet

Solution for MaxIndSet

Using any Algorithm for MaxVertCov
Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
 – Spoiler alert: We don’t know which!
 • (But we think they’re both slow)
 – Both problems are NP-Complete
Mid-class warm up:
What is a Decision Problem?
Max Independent Set

Find the largest set of non-adjacent nodes
Is there a set of non-adjacent nodes of size k?
Maximum Independent Set

- Independent set: $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph $G = (V, E)$ find the maximum independent set S
k Independent Set

- Independent set: \(S \subseteq V \) is an independent set if no two nodes in \(S \) share an edge
- \(k \) Independent Set Problem: Given a graph \(G = (V, E) \) and a number \(k \), determine whether there is an independent set \(S \) of size \(k \)
Min Vertex Cover

Find the smallest set of nodes which covers every edge
Is there a set of nodes of size k which covers every edge?
Minimum Vertex Cover

• Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

• Minimum Vertex Cover: Given a graph $G = (V, E)$ find the minimum vertex cover C
• Vertex Cover: $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C

• k Vertex Cover: Given a graph $G = (V, E)$ and a number k, determine whether there is a vertex cover C of size k
Problem Types

• Decision Problems: If we can solve this
 – Is there a solution?
 • Output is True/False
 – Is there a vertex cover of size \(k \)?

• Search Problems: Then we can solve this
 – Find a solution
 • Output is complex
 – Give a vertex cover of size \(k \)

• Verification Problems:
 – Given a potential solution, is it valid?
 • Output is True/False
 – Is this a vertex cover of size \(k \)?
Using a k-VertexCover decider to build a searcher

- Set $i = k - 1$
- Remove nodes (and incident edges) one at a time
- Check if there is a vertex cover of size i
 - If so, then that removed node was part of the k vertex cover, set $i = i - 1$
 - Else, it wasn’t

Did I need this node to cover its edges to have a vertex cover of size k?
Is there a set of nodes of size 5 which covers every edge?

Yes!
Is there a set of nodes of size 4 which covers every edge? No!
Is there a set of nodes of size 4 which covers every edge?

Yes!
3 Vertex Cover (Decision)

Is there a set of nodes of size 3 which covers every edge?

No!
Reduction

k-VertexCover Solver

Remove a node, etc...

Relate Solutions of problem B to Solutions of A

Solution for A

X

k-VertexCover Decider

Using any Algorithm for B

Solution for B

Y