CS4102 Algorithms Fall 2019

CS4102 Algorithms Fall 2019

Today's Keywords

- Reductions
- Bipartite Matching
- Vertex Cover
- Independent Set

CLRS Readings

• Chapter 34

Homeworks

- HW8 due Saturday, 11/23, at 11pm
 - Python or Java
 - Marriage
- HW9 out tonight, due Thursday 12/5 at 11pm
 - Reductions, Graphs
 - Written (LaTeX)
- HW10C out tonight, due Thursday 12/5 at 11pm
 - Implement a problem from HW9
 - No late submissions

Reductions

- Algorithm technique of supreme ultimate power
- Convert instance of problem A to an instance of Problem B
- Convert solution of problem B back to a solution of problem A

MacGyver's Reduction

Maximum Bipartite Matching

Maximum Bipartite Matching Using Max Flow

Make G = (L, R, E) a flow network G' = (V', E') by:

• Adding in a source and sink to the set of nodes:

 $- V' = L \cup R \cup \{s, t\}$

- Adding an edge from source to *L* and from *R* to sink:
 - $E' = E \cup \{u \in L \mid (s, u)\} \cup \{v \in r \mid (v, t)\}$
- Make each edge capacity 1:
 - $\forall e \in E', c(e) = 1$

Remember: need to show

- How to map instance of MBM to MF (and back) - construction
- 2. A valid solution to MF instance is a valid solution to MBM instance

Edge-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no edges

Edge-Disjoint Paths Algorithm

Make *s* and *t* the source and sink, give each edge capacity 1, find the max flow.

Vertex-Disjoint Paths

Given a graph G = (V, E), a start node s and a destination node t, give the maximum number of paths from s to t which share no vertices

Vertex-Disjoint Paths Algorithm

Idea: Convert an instance of the vertex-disjoint paths problem into an instance of edge-disjoint paths Make two copies of each node, one connected to incoming edges, the other to outgoing edges

In General: Reduction

Problem we don't know how to solve

- Remember: need to show
- How to map instance of A to B (and back)
- 2. Why solution to B was a valid solution to A

Solution for A

Problem we do know how to solve

Worst-case lower-bound Proofs

The name "reduces" is confusing: it is in the *opposite* direction of the making

Proof of Lower Bound by Reduction

To Show: Y is slow

We know X is slow (by a proof)
 (e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction](Y = some way to light a fire)

3. Show how to use *Y* to perform *X* quickly

4. *X* is slow, but *Y* could be used to perform *X* quickly conclusion: *Y* must not actually be quick

Reduction Proof Notation

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_{f(n)} B$

Or we could have solved A faster using B's solver!

Party Problem

Draw Edges between people who don't get along Find the maximum number of people who get along

Maximum Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

Example

Generalized Baseball

Generalized Baseball

Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

Example

$MaxIndSet \leq_{V} MinVertCov$

If A requires time $\Omega(f(n))$ time then B also requires $\Omega(f(n))$ time $A \leq_V B$

We need to build this Reduction

Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G

Reduction Idea

S is an independent set of G iff V - S is a vertex cover of G

Vertex Cover

Independent Set

MaxVertCov V-Time Reducible to MinIndSet

Proof: ⇒

S is an independent set of G iff V - S is a vertex cover of G

Let *S* be an independent set

Consider any edge $(x, y) \in E$

If $x \in S$ then $y \notin S$, because otherwise S would not be an independent set

Therefore $y \in V - S$, so edge (x, y) is covered by V - S

Proof: ⇐

At least one of x and y belong to V - S, because V - S is a vertex cover

Therefore x and y are not both in S,

No edge has both end-nodes in S, thus S is an independent set

MaxVertCov V-Time Reducible to MinIndSet

MaxVertCov V-Time Reducible to MinIndSet

MaxIndSet V-Time Reducible to MinVertCov

Corollary

Corollary

- MaxIndSet and MinVertCov are either both fast, or both slow
 - Spoiler alert: We don't know which!
 - (But we think they're both slow)
 - Both problems are NP-Complete

Mid-class warm up:

What is a Decision Problem?

Max Independent Set

Find the largest set of non-adjacent nodes

k Independent Set

Is there a set of non-adjacent nodes of size k?

Maximum Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

k Independent Set

- Independent set: S ⊆ V is an independent set if no two nodes in S share an edge
- k Independent Set Problem: Given a graph G = (V, E) and a number k, determine whether there is an independent set S of size k

Min Vertex Cover

k Vertex Cover

Minimum Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

k Vertex Cover

- Vertex Cover: C ⊆ V is a vertex cover if every edge in E has one of its endpoints in C
- k Vertex Cover: Given a graph G = (V, E) and a number k,
 determine whether there is a vertex cover C of size k

Problem Types

• Decision Problems:

If we can solve this

- Is there a solution?
 - Output is True/False
- Is there a vertex cover of size k?
- Search Problems:

Then we can solve this

- Find a solution
 - Output is complex
- Give a vertex cover of size k
- Verification Problems:
 - Given a potential solution, is it valid?
 - Output is True/False
 - Is this a vertex cover of size k?

Using a k-VertexCover decider to build a searcher

- Set i = k 1
- Remove nodes (and incident edges) one at a time
- Check if there is a vertex cover of size *i*
 - If so, then that removed node was part of the k vertex cover, set i = i 1
 - Else, it wasn't

Did I need this node to cover its edges to have a vertex cover of size k?

Reduction

