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Today’s Keywords

• Reductions
• Bipartite Matching
• Vertex Cover
• Independent Set
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CLRS Readings

• Chapter 34
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Homeworks

• HW8 due Saturday, 11/23, at 11pm
– Python or Java
– Marriage

• HW9 out tonight, due Thursday 12/5 at 11pm
– Reductions, Graphs
– Written (LaTeX)

• HW10C out tonight, due Thursday 12/5 at 11pm
– Implement a problem from HW9
– No late submissions
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Maximum Bipartite Matching
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Dog Lovers Dogs



Maximum Bipartite Matching Using Max Flow
Make 𝐺 = (𝐿, 𝑅, 𝐸) a flow network 𝐺- = (𝑉-, 𝐸-) by:
• Adding in a source and sink to the set of nodes: 

– 𝑉- = 𝐿 ∪ 𝑅 ∪ {𝑠, 𝑡}
• Adding an edge from source to 𝐿 and from 𝑅 to 

sink:
– 𝐸- = 𝐸 ∪ 𝑢 ∈ 𝐿 𝑠, 𝑢 } ∪ 𝑣 ∈ 𝑟 𝑣, 𝑡 }

• Make each edge capacity 1:
– ∀𝑒 ∈ 𝐸-, 𝑐 𝑒 = 1
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Remember: need to show
1. How to map instance of MBM to 

MF (and back) - construction
2. A valid solution to MF instance is a 

valid solution to MBM instance
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Bipartite Matching Reduction
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Bipartite Matching
Problem we don’t know how to solve

Max Flow

Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨
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Bipartite Matching Reduction
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Then this is fast If this is fast



Bipartite Matching Reduction
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Bipartite Matching
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Solution for 𝑩
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Edge-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no edges

𝑠

𝑡

g

h

b
e

f

a
c

Set of edge-disjoint paths of size 4



Edge-Disjoint Paths Algorithm
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Make 𝑠 and 𝑡 the source and sink, give each edge 
capacity 1, find the max flow.

𝑠

𝑡
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Vertex-Disjoint Paths
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Given a graph 𝐺 = (𝑉, 𝐸), a start node 𝑠 and a 
destination node 𝑡, give the maximum number of paths 
from 𝑠 to 𝑡 which share no vertices

𝑠

𝑡

g

h

b
e

f

a
c

Not a vertex-disjoint path!



Vertex-Disjoint Paths Algorithm
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Idea: Convert an instance of the vertex-disjoint paths problem into an 
instance of edge-disjoint paths

𝑠

𝑡

g

h

b
e

f

a
c

g in

Make two copies of each node, one connected to incoming 
edges, the other to outgoing edges

g 
out

Restricts to 1 
edge

Compute Edge-Disjoint paths on new graph

1

1

1 1



In General: Reduction
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Problem we don’t know how to solve Problem we do know how to solve

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Map Instances of problem 𝑨 to 
Instances of 𝑩

Using any Algorithm 
for 𝑩

Map Solutions of problem 𝑩 to 
Solutions of 𝑨

𝑌𝑋

Remember: need to show
1. How to map instance of A to B 

(and back)
2. Why solution to B was a valid 

solution to A



Worst-case lower-bound Proofs

reduces to   

Algorithm for B

can be used 
to make  

Algorithm for A

The name “reduces” is confusing: it is in the opposite direction of the making

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

Opening a door Lighting a fire

Alcohol, wood, 
matches

Keg cannon 
battering ram

𝐵

𝑋𝑌

𝐴
Problem A

Problem B



Bipartite Matching Reduction
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Bipartite Matching Reduction
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Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead

Or we 
could have 

solved A 
faster 

using B’s 
solver!



Party Problem
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Draw Edges between people who don’t get along
Find the maximum number of people who get along



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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Example
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Independent set of size 6



Generalized Baseball
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Generalized Baseball

27

Need to place defenders on 
bases such that every edge is 
defended

What’s the fewest number 
of defenders needed?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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Example
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Vertex cover of size 5



MaxIndSet≤HMinVertCov
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𝑂(𝑉)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝑽 𝑩

With 𝑂(𝑉) overhead



We need to build this Reduction
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𝐴 𝐵

Reduction

Relate Instances of MaxIndSet
to Instances of MinVertCov

Using any Algorithm 
for MinVertCov

Relate Solutions of MinVertCov to 
Solutions of MaxIndSet

𝑌𝑋

O(V) TimeMaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Reduction Idea

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent Set Vertex Cover



Reduction Idea

𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Independent SetVertex Cover



MaxVertCov 𝑉-Time Reducible to MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time



Proof: ⇒
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let 𝑆 be an independent set

Consider any edge 𝑥, 𝑦 ∈ 𝐸

If 𝑥 ∈ 𝑆 then 𝑦 ∉ 𝑆, because otherwise 𝑆 would not be an 
independent set

Therefore 𝑦 ∈ 𝑉 − 𝑆, so edge (𝑥, 𝑦) is covered by 𝑉 − 𝑆



Proof: ⇐
𝑆 is an independent set of 𝐺 iff 𝑉 − 𝑆 is a vertex cover of 𝐺
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Let V − 𝑆 be a vertex cover

Consider any edge 𝑥, 𝑦 ∈ 𝐸

At least one of 𝑥 and 𝑦 belong to 𝑉 − 𝑆, because V − 𝑆 is a 
vertex cover

Therefore 𝑥 and 𝑦 are not both in 𝑆, 
No edge has both end-nodes in 𝑆, thus 𝑆 is an independent set 



MaxVertCov 𝑉-Time Reducible to MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time



MaxVertCov 𝑉-Time Reducible to MinIndSet
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time

We needed our proof to 
show that this works!

If there was a larger 
independent set, there 

would have been a smaller 
vertex cover!



MaxIndSet 𝑉-Time Reducible to MinVertCov
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Using any Algorithm 
for MinIndSet

Take complement of solution

𝑌𝑋

O(V) Time

If Solving 𝑨 was 
always slow

Then this shows 
solving 𝑩 is also slow

MaxIndSet MinVertCov

Solution for MinVertCovSolution for MaxIndSet



Corollary
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𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxVertCovIf Solving 𝑨 was 

always slow
Then this shows 
solving 𝑩 is also slow

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete
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Mid-class warm up:
What is a Decision Problem?



Max Independent Set
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Find the largest set of non-adjacent nodes



𝑘 Independent Set
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Is there a set of non-adjacent nodes of size 𝑘?



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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𝑘 Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• 𝑘 Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸) and a 
number 𝑘, determine whether there is an independent set 𝑺
of size 𝒌
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Min Vertex Cover
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Find the smallest set of 
nodes which covers every 
edge



𝑘 Vertex Cover
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Is there a set of nodes of 
size 𝑘 which covers every 
edge?



Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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𝑘 Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• 𝑘 Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, 
determine whether there is a vertex cover 𝑪 of size 𝒌
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Problem Types

• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size 𝑘?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size 𝑘

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size 𝑘?
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If we can solve this

Then we can solve this



Using a 𝑘-VertexCover decider to build a searcher

• Set 𝑖 = 𝑘 − 1
• Remove nodes (and incident edges) one at a time 
• Check if there is a vertex cover of size 𝑖
– If so, then that removed node was part of the 𝑘 vertex cover, 

set 𝑖 = 𝑖 − 1
– Else, it wasn’t
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Did I need this node to 
cover its edges to have 
a vertex cover of size k?



5 Vertex Cover (Decision)
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Is there a set of nodes of size 5
which covers every edge?

Yes!



4 Vertex Cover (Decision)
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Is there a set of nodes of size 4
which covers every edge?

No!



4 Vertex Cover (Decision)
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Is there a set of nodes of size 4
which covers every edge?

Yes!



3 Vertex Cover (Decision)
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Is there a set of nodes of size 3
which covers every edge?

No!



Reduction
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𝑘-VertexCover Solver 𝑘-VertexCover Decider

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Remove a node, etc…

Using any Algorithm 
for 𝑩

Relate Solutions of problem 𝑩 to 
Solutions of 𝑨

𝑌𝑋


