CS4102 Algorithms

Fall 2019

Warm up:
Show that P = NP




Today's Keywords

* Reductions

* Pvs NP

* NP Hard, NP Completeness
* k-Independent Set

e k-Vertex Cover

e 3SAT

* k-Cligue



CLRS Readings

* Chapter 34



HomMeworks

* HW9 due Thursday 12/5 at 11pm

— Reductions, Graphs
— Written (LaTeX)

e HW10C due Thursday 12/5 at 11pm

— Implement a problem from HW9
— No late submissions



 Monday, December 9, 7pm in Maury 209 (our section)
— Practice exam coming soon
— Review session likely the weekend before
— SDAC: please schedule for some time on Monday 12/9



e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A



Reductions

Possible uses
e Use solver for B to solve A

Don’t know . Do know
how to solve f (n)-reduces to how to solve
Problem A Problem B
Y can be used to make>
With O(f (n)) overhead
Algorithm for B Algorithm for A
[} [} ,
* Prove lower bound for B by showing it’s as hard as A
Problem we know Problem we
is slow to solve £ (n)-reduces to B | don’t know if
(proved) slow or fast to solve
Problem A Problem B

Y can be used to make >
With O(f(n)) overhea 7

Algorithm for B B is no faster than A Algorithm for A




MacGyver's Reduction

Problem we don’t know how to solve

Opening a door

Solution for 4

Keg cannon
battering ram

Aim duct at door,
insert keg

Problem we do know how to solve

B

Lighting a fire

M ol
\ N\ :‘AJ"}))/'
R\ . p
A u ;% &%‘/c &i

-— e

Put fire under the Keg

Reduction

Solution for B

Alcohol, wood,
matches




Reduction Prootr Notation

f (n)-reduces to > B

Problem B

Problem A

Y can be used to make

With O(f (n)) overhead

Algorithm for B Algorithm for A

A is not a harder problem than B

A<B " Orwe
could have
solved A

If A requires time Q(f(n)) time then B also requires Q(f(n)) time u:?;;eg,s
A <fm B

solver!
4




Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

oy S
i > e
2 <y
Uy L4
o Py A
/¥ .

} . 3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick




Vaximum Independent Set

* Independentset: S € I/ is an independent set if no two nodes
in S share an edge

* Maximum Independent Set Problem: Given a graph G = (V, E)
find the maximum independent set S

11



Minimum Vertex Cover

* Vertex Cover: C € V is a vertex cover if every edge in E has
one of its endpoints in C

* Minimum Vertex Cover: Given a graph ¢ = (V, E) find the
minimum vertex cover C

12



MaxindSet V-Time Reducible to MinVertCover

MaxIndSet

Solution for MaxIindSet

O(V) Time

Do nothing >

Take complement of solution

MinVertCov

Using any Algorithm
for MinVertCov

Solution for MinVertCov

Reduction

Y

13



MinVertCover V-Time Reducible to MaxindSet

MinVertCov

Solution for MinVertCov

wE

O(V) Time

Do nothing >

Take complement of solution

MaxIndSet

Using any Algorithm
for MaxIndSet

Solution for MaxIndSet

Reduction

14



Conclusion

e MaxindSet and MinVertCov are either both fast, or both slow

— Spoiler alert: We don’t know which!
e (But we think they’re both slow)

— Both problems are NP-Complete

15



k Independent Set

* Independentset: S € I/ is an independent set if no two nodes
in S share an edge

* k Independent Set Problem: Given a graph G = (V,E) and a
number k, determine whether there is an independent set

of size k

16



k \Vertex Cover

* Vertex Cover: C € V is a vertex cover if every edge in E has
one of its endpoints in C

* k Vertex Cover: Given a graph ¢ = (V/, E) and a number k,
determine whether there is a vertex cover C of size k

17



Problem Types

* Decision Problems: If we can solve this

— Is there a solution?
* Qutput is True/False

— |s there a vertex cover of size k?
e Search Problems: Then we can solve this

— Find a solution
e Output is complex

— Give a vertex cover of size k
 Verification Problems:

— Given a potential solution, is it valid?
e Qutput is True/False

— |s this a vertex cover of size k?

18



k-VertexCover Solver

Solution for 4

Reduction

Remove a node, etc...

Relate Solutions of problem B to
Solutions of A

Reduction

k-VertexCover Decider

B

Using any Algorithm
for B

Solution for B

Y

19



- vs NP

e P
— Deterministic Polynomial Time

— Problems solvable in polynomial time
e 0(nP) for some number p

* NP
— Non-Deterministic Polynomial Time

— Problems verifiable in polynomial time
e 0(nP) for some number p

 Open Problem: Does P=NP?
— Certainly P € NP

20



k-Independent Set 1s NP

* To show: Given a potential solution, can we verify it in O(nP)?
In=V + E]

How can we verify it?
1. Check thatit’s of size k O(V)

2. Check that it’s an independent set O (V?)

21



k-\ertex Cover is NP

* To show: Given a potential solution, can we verify it in O(nP)?
In=V + E]

How can we verify it?

1. Check thatit’s of size k O (V)
2. Check that it’s a Vertex Cover O(E)

22



NP-Hard

* How can we try to figure out if P=NP?
* |dentify problems at least as “hard” as NP

— If any of these “hard” problems can be solved in
polynomial time, then all NP problems can be solved
in polynomial time.

e Definition: NP-Hard:
— B isNP-Hard if VA € NP,A <, B

— A <, B means A reduces to B in polynomial time

23



NP-Hardness Reduction

Any NP-Hard Problem O (Tlp) Problem to show is NP-Hard
Then this could be done If This could be done in
in polynomial time Polynomial time

Solution for 4 Solution for B

Y

Reduction
24




NP-Complete

|H

 “Together they stand, together they fal

* Problems solvable in polynomial time iff ALL NP
problems are

* NP-Complete = NP N NP-Hard

* How to show a problem is NP-Complete?

— Show it belongs to NP
* Give a polynomial time verifier

— Show it is NP-Hard

* Give a reduction from another NP-H problem
We now just need a FIRST NP-Hard problem

25



NP-Completeness

Any NP-Complete Problem O (Tlp) Any other NP-Complete Problem
Then this could be done If This could be done in
in polynomial time polynomial time

Solution for 4 Solution for B

Y

Reduction
26




NP-Completeness

Any NP-Complete Problem O (np) Any other NP-Complete Problem
If this cannot be done Then this cannot be
in polynomial time done in polynomial time

Solution for 4 Solution for B

Y

Reduction
27




3-SAT

* Shown to be NP-Hard by Cook and Levin (independently)

* Given a 3-CNF formula (logical AND of clauses, each an OR of 3
variables), Is there an assignment of true/false to each variable

to make the formula true?

‘(xVva)/\(xvyVy)/\(uVsz‘)/\(szVu)/\(fvva‘)

Clause x = true
Variables y = false
z = false

28

u = true



k-Independent Set iIs NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard
— Give a reduction from a known NP-Hard problem
— Show 3SAT <, kIndSet

29



Remember: k-Independent Set is NP

* To show: Given a potential solution, can we
verifyitinO(n?)? [n =V + E]

How can we verify it?
1. Check thatit’s of size k O(V)

2. Check that it’s an independent set O(V #)

30



k-Independent Set iIs NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard
— Give a reduction from a known NP-Hard problem
— Show 3SAT <, kIndSet

31



3SAT <, kindSet

Solution for 3SAT <:::j Solution for k-Ind Set

Reduction

32




Instance of 3SAT to Instance of kindSet

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

N

For each clause, produce a triangle graph with its three variables as nodes

Connect each node to all of its opposites

Let kK = number of clauses
There is a k-IndSet in this graph iff there is a satisfying assignment

33



kindSet = Satistying Assignment

(xVYVZ)AXVYVY)A@VYVZI)AN@ZVIVU)ANGEVYVZ)

'z 7 X = true
é y = false

z = false

E \\ u = true

One node per triangle is in the Independent set:
because we can have exactly k total in the set, and 2 in a triangle would be adjacent

If x is selected in some triangle, x is not selected in any triangle:
Because every x is adjacent to every x

Set the variable which each included node represents to “true”

34



Satisfying Assignment = klndSet

p—
O x = true

y = false

z = false

Use one true variable from the assignment for each triangle

The independent set has k nodes, because there are k clauses
If any variable x is true then X cannot be true

35



3SAT <, kindSet

3SAT 0 (nP) k-Ind Set

B

Make triangles, connect
opposites, k = num clauses

Then This could be done If This could be done in
in polynomial time Polynomial time

lution f AT
Solution for 3S Solution for k-Ind Set

Y

Assign true to variables
from selected nodes

Reduction
36




k-\ertex Cover is NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We showed kIndSet <,, kVertCov

37



Remember: k-Vertex Cover is NP

* To show: Given a potential solution, can we verify itin O(nP)?
In=V + E]

How can we verify it?

1. Check thatit’s of size k O (V)
2. Check that it’s a Vertex Cover O(E)

38



k-\ertex Cover is NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We showed kIndSet <,, kVertCov

39



Remember: kIndSet <0 kVertCov

kindSet 0 (np) kVertCov
k=V—k > B
Then This could be done If This could be done in
in polynomial time Polynomial time

Solution for kIndSet Solution for kVertCov

Y

Take Complement of
nodes

Reduction
40




k-Clique Problem

Given a graph ¢ and a number k, 4-Clique
is there a clique of size k?

* Clique: A complete subgraph

\;oe

41



k-Cligue 1s NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 35AT <, kClique

42



k-Cligue 1s NP
Given a Graph, k, and a potential /-\

solution 4-Clique
1. Check that the solution has k nodes
2. Check that every pair of nodes share

an edge w




35AT <, kClique

3SAT 0 (np) kClique

Solution for 3SAT < Solution for kClique

Reduction

44




Instance of 3SAT to Instance of kCligue

(xVYVZD)AXVYVY)A@VYVZI)ANEZVIVUANGEVYVZ)
=
(also do this for the other
s clauses, omitted due to clutter)

For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

Let kK = number of clauses

There is a k-Cligue in this graph iff there is a satisfying assignment 5



kCligue = Satistying Assignment

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGVYVZ)

x = true

y = false
z = false

u = true

There are k triplets in the graph, and no two nodes in the same triplet
are adjacent

To have a k-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

46



Satisfying Assignment = kClique

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGVYVZ)

X = true

y = false
z = false
u = true

Select one node for a true variable from each clause

There will be k nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

47



35AT <, kClique

3SAT 0 (np) kClique
Make a triplet per clause,
connect non-contraditcory
nodes among clauses B
Then This could be done If This could be done in
in polynomial time Polynomial time

Solution for 3SAT

Solution for kClique

Y

Assign each variable
selected to True

Reduction
48




