
Warm up:
Show that 𝑃 = 𝑁𝑃
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Today’s Keywords

• Reductions
• P vs NP
• NP Hard, NP Completeness
• k-Independent Set
• k-Vertex Cover
• 3SAT
• k-Clique
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CLRS Readings

• Chapter 34
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Homeworks

• HW9 due Thursday 12/5 at 11pm
– Reductions, Graphs
– Written (LaTeX)

• HW10C due Thursday 12/5 at 11pm
– Implement a problem from HW9
– No late submissions
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Final Exam

• Monday, December 9, 7pm in Maury 209 (our section)
– Practice exam coming soon
– Review session likely the weekend before
– SDAC: please schedule for some time on Monday 12/9
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Reductions
Possible uses
• Use solver for B to solve A

• Prove lower bound for B by showing it’s as hard as A
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛 ) overhead

Don’t know
how to solve

Do know
how to solve

𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛 ) overhead

Problem we know
is slow to solve

(proved)

Problem we
don’t know if
slow or fast to solve

B is no faster than A



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

How
?

Put fire under the Keg

Reduction



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead

Or we 
could have 

solved A 
faster 

using B’s 
solver!



Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



Maximum Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• Maximum Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸)
find the maximum independent set 𝑆
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Minimum Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• Minimum Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) find the 
minimum vertex cover 𝐶
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MaxIndSet 𝑉-Time Reducible to MinVertCover
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MaxIndSet MinVertCov

Solution for MinVertCov

𝐴 𝐵

Solution for MaxIndSet

Reduction

Do nothing

Using any Algorithm 
for MinVertCov

Take complement of solution

𝑌𝑋

O(V) Time



MinVertCover 𝑉-Time Reducible to MaxIndSet

14

𝐴 𝐵

Reduction

Do nothing

Take complement of solution

𝑌𝑋

O(V) Time

Using any Algorithm 
for MaxIndSet

MaxIndSet
MinVertCov

Solution for MinVertCov Solution for MaxIndSet



Conclusion

• MaxIndSet and MinVertCov are either both fast, or both slow
– Spoiler alert: We don’t know which!
• (But we think they’re both slow)

– Both problems are NP-Complete
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𝑘 Independent Set

• Independent set: 𝑆 ⊆ 𝑉 is an independent set if no two nodes 
in 𝑆 share an edge

• 𝑘 Independent Set Problem: Given a graph 𝐺 = (𝑉, 𝐸) and a 
number 𝑘, determine whether there is an independent set 𝑺
of size 𝒌
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𝑘 Vertex Cover

• Vertex Cover: 𝐶 ⊆ 𝑉 is a vertex cover if every edge in 𝐸 has 
one of its endpoints in 𝐶

• 𝑘 Vertex Cover: Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑘, 
determine whether there is a vertex cover 𝑪 of size 𝒌
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Problem Types

• Decision Problems:
– Is there a solution?

• Output is True/False
– Is there a vertex cover of size 𝑘?

• Search Problems:
– Find a solution

• Output is complex
– Give a vertex cover of size 𝑘

• Verification Problems:
– Given a potential solution, is it valid?

• Output is True/False
– Is this a vertex cover of size 𝑘?
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If we can solve this

Then we can solve this



Reduction
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𝑘-VertexCover Solver 𝑘-VertexCover Decider

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Remove a node, etc…

Using any Algorithm 
for 𝑩

Relate Solutions of problem 𝑩 to 
Solutions of 𝑨

𝑌𝑋



P vs NP

• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• 𝑂(𝑛>) for some number 𝑝

• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• 𝑂(𝑛>) for some number 𝑝

• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃
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P

NP



𝑘-Independent Set is NP

• To show: Given a potential solution, can we verify it in 𝑂(𝑛>)? 
[𝑛 = 𝑉 + 𝐸]
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How can we verify it?
1. Check that it’s of size 𝑘 𝑂(𝑉)
2. Check that it’s an independent set 𝑂(𝑉C)



𝑘-Vertex Cover is NP

• To show: Given a potential solution, can we verify it in 𝑂(𝑛>)? 
[𝑛 = 𝑉 + 𝐸]
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How can we verify it?
1. Check that it’s of size 𝑘 𝑂(𝑉)
2. Check that it’s a Vertex Cover 𝑂(𝐸)



NP-Hard

• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved in 

polynomial time, then all NP problems can be solved 
in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤> 𝐵
– 𝐴 ≤> 𝐵 means 𝐴 reduces to 𝐵 in polynomial time
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P

NP

NP-H
At least as 
“hard” as NP



NP-Hardness Reduction
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Any NP-Hard Problem Problem to show is NP-Hard

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛>)

Then this could be done 
in polynomial time

If This could be done in 
Polynomial time



NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff ALL NP 

problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP
• Give a polynomial time verifier

– Show it is NP-Hard
• Give a reduction from another NP-H problem
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We now just need a FIRST NP-Hard problem

P

NP

NP-H
At least as 
“hard” as NP

NP-C



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛>)

Then this could be done 
in polynomial time

If This could be done in 
polynomial time



NP-Completeness
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Any NP-Complete Problem Any other NP-Complete Problem

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛>)

Then this cannot be 
done in polynomial time

If this cannot be done 
in polynomial time



3-SAT

• Shown to be NP-Hard by Cook and Levin (independently)
• Given a 3-CNF formula (logical AND of clauses, each an OR of 3 

variables), Is there an assignment of true/false to each variable 
to make the formula true?
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

Clause
Variables

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– Show 3𝑆𝐴𝑇 ≤> 𝑘𝐼𝑛𝑑𝑆𝑒𝑡
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Remember: 𝑘-Independent Set is NP

• To show: Given a potential solution, can we 
verify it in 𝑂(𝑛>)? [𝑛 = 𝑉 + 𝐸]
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How can we verify it?
1. Check that it’s of size 𝑘 𝑂(𝑉)
2. Check that it’s an independent set 𝑂(𝑉C)



𝑘-Independent Set is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– Show 3𝑆𝐴𝑇 ≤> 𝑘𝐼𝑛𝑑𝑆𝑒𝑡
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3𝑆𝐴𝑇 ≤> 𝑘𝐼𝑛𝑑𝑆𝑒𝑡
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3SAT 𝑘-Ind Set

Solution for 𝑘-Ind Set

𝐴 𝐵

Solution for 3SAT

Reduction

𝑌𝑋

𝑂(𝑛>)



Instance of 3SAT to Instance of 𝑘IndSet
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

𝑥

𝑦𝑧

𝑥

L𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

𝑥̅𝑢

L𝑢

L𝑦̅𝑧

For each clause, produce a triangle graph with its three variables as nodes
Connect each node to all of its opposites

There is a 𝑘-IndSet in this graph iff there is a satisfying assignment
Let 𝑘 = number of clauses



𝑘IndSet ⇒ Satisfying Assignment
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

One node per triangle is in the Independent set: 
because we can have exactly 𝑘 total in the set, and 2 in a triangle would be adjacent

𝑥

𝑦𝑧

𝑥

L𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

𝑥̅𝑢

L𝑢

L𝑦̅𝑧

If 𝑥 is selected in some triangle, 𝑥̅ is not selected in any triangle:
Because every 𝑥 is adjacent to every 𝑥̅

Set the variable which each included node represents to “true”

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆



Satisfying Assignment ⇒ 𝑘IndSet
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

Use one true variable from the assignment for each triangle
The independent set has 𝑘 nodes, because there are 𝑘 clauses
If any variable 𝑥 is true then 𝑥̅ cannot be true

𝑥

𝑦𝑧

𝑥

L𝑦𝑦

𝑢

𝑦̅𝑧

𝑧

𝑥̅𝑢

L𝑢

L𝑦̅𝑧

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆



3𝑆𝐴𝑇 ≤> 𝑘𝐼𝑛𝑑𝑆𝑒𝑡
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3SAT 𝑘-Ind Set

Solution for 𝑘-Ind Set

𝐴 𝐵

Solution for 3SAT

Reduction

𝑌𝑋

𝑂(𝑛>)

Make triangles, connect 
opposites, 𝑘 = num clauses

Assign true to variables 
from selected nodes

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time



𝑘-Vertex Cover is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We showed 𝑘𝐼𝑛𝑑𝑆𝑒𝑡 ≤> 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣
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Remember: 𝑘-Vertex Cover is NP

• To show: Given a potential solution, can we verify it in 𝑂(𝑛>)? 
[𝑛 = 𝑉 + 𝐸]
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How can we verify it?
1. Check that it’s of size 𝑘 𝑂(𝑉)
2. Check that it’s a Vertex Cover 𝑂(𝐸)



𝑘-Vertex Cover is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We showed 𝑘𝐼𝑛𝑑𝑆𝑒𝑡 ≤> 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣
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Remember: kIndSet ≤j kVertCov
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𝑘𝐼𝑛𝑑𝑆𝑒𝑡 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣

Solution for 𝑘𝑉𝑒𝑟𝑡𝐶𝑜𝑣

𝐴 𝐵

Solution for  𝑘𝐼𝑛𝑑𝑆𝑒𝑡

Reduction

𝑌𝑋

𝑂(𝑛>)

𝑘 = 𝑉 − 𝑘

Take Complement of 
nodes

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time



𝑘-Clique Problem

Given a graph 𝐺 and a number 𝑘, 
is there a clique of size 𝑘?
• Clique: A complete subgraph 
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3-Clique

4-Clique



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3𝑆𝐴𝑇 ≤> 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
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𝑘-Clique is NP

Given a Graph, 𝑘, and a potential 
solution
1. Check that the solution has 𝑘 nodes
2. Check that every pair of nodes share 

an edge
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3-Clique

4-Clique



3𝑆𝐴𝑇 ≤> 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
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3𝑆𝐴𝑇 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Solution for 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

𝐴 𝐵

Solution for 3𝑆𝐴𝑇

Reduction

𝑌𝑋

𝑂(𝑛>)



Instance of 3SAT to Instance of 𝑘Clique
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𝑥

𝑦

𝑧

𝑥 L𝑦𝑦

𝑢𝑦 ̅𝑧

For each clause, produce a node for each of its three variables
Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

(also do this for the other 
clauses, omitted due to clutter)

There is a 𝑘-Clique in this graph iff there is a satisfying assignment
Let 𝑘 = number of clauses

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

𝑧
𝑥̅

𝑢

L𝑢
L𝑦

̅𝑧



𝑘Clique ⇒ Satisfying Assignment
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

There are 𝑘 triplets in the graph, and no two nodes in the same triplet 
are adjacent

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 L𝑦𝑦

𝑢𝑦 ̅𝑧

𝑧
𝑥̅

𝑢

L𝑢
L𝑦

̅𝑧

To have a 𝑘-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation
Therefore selection of nodes is a satisfying assignment



Satisfying Assignment⇒ 𝑘Clique 
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ L𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ 𝑥̅ ∨ 𝑢 ∧ (𝑥̅ ∨ L𝑦 ∨ ̅𝑧)

Select one node for a true variable from each clause

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 L𝑦𝑦

𝑢𝑦 ̅𝑧

𝑧
𝑥̅

𝑢

L𝑢
L𝑦

̅𝑧

There will be 𝑘 nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent



3𝑆𝐴𝑇 ≤> 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
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3𝑆𝐴𝑇

𝐴 𝐵

Solution for 3𝑆𝐴𝑇

Reduction

𝑌𝑋

𝑂(𝑛>)
Make a triplet per clause, 
connect non-contraditcory
nodes among clauses

Assign each variable 
selected to True

𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Solution for 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Then This could be done 
in polynomial time

If This could be done in 
Polynomial time


