
Fall 2019

Today’s Keywords

• Reductions
• NP Hard, NP Completeness
• k-Clique
• Convex Hull
• Graham Scan
• Jarvis’ March
• Chan’s Algorithm

2

CLRS Readings

• Chapter 34

3

Homeworks

• HW9 due Thursday at 11pm
– Reductions, Graphs
– Written (LaTeX)

• HW10C due Thursday at 11pm
– Implement a problem from HW9
– No late submissions

4

Final Exam

• Monday, December 9, 7pm in Maury 209 (our section)
– Practice exam out! Solutions later this week
– Review session this weekend (look for an email)
– SDAC: please schedule for some time on Monday 12/9

5

Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A

6

Reductions
Possible uses
• Use solver for B to solve A

• Prove lower bound for B by showing it’s as hard as A

7

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛) overhead

Don’t know
how to solve

Do know
how to solve

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛) overhead

Problem we know
is slow to solve

(proved)

Problem we
don’t know if
slow or fast to solve

B is no faster than A
A is no harder than B

Reduction Proof Notation

8

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏) time then 𝑩 also requires 𝛀(𝒇 𝒏) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛) overhead

Or we
could have

solved A
faster

using B’s
solver!

Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow

P vs NP

• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• 𝑂(𝑛0) for some number 𝑝

• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• 𝑂(𝑛0) for some number 𝑝

• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃

10

P

NP

NP-Hard

• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved in

polynomial time, then all NP problems can be solved
in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤0 𝐵
– 𝐴 ≤0 𝐵 means 𝐴 reduces to 𝐵 in polynomial time

11

P

NP

NP-H
At least as
“hard” as NP

NP-Hardness Reduction

12

Any NP-Hard Problem Problem to show is NP-Hard

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛0)

Then this could be done
in polynomial time

If This could be done in
Polynomial time

NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff ALL NP

problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP
• Give a polynomial time verifier

– Show it is NP-Hard
• Give a reduction from another NP-H problem

13

We now just need a FIRST NP-Hard problem

P

NP

NP-H
At least as
“hard” as NP

NP-C

3-SAT

• Shown to be NP-Hard by Cook and Levin (independently)
• Given a 3-CNF formula (logical AND of clauses, each an OR of 3

variables), Is there an assignment of true/false to each variable
to make the formula true?

14

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

Clause
Variables

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑘-Clique Problem

Given a graph 𝐺 and a number 𝑘,
is there a clique of size 𝑘?
• Clique: A complete subgraph

15

3-Clique

4-Clique

𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3𝑆𝐴𝑇 ≤0 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

16

𝑘-Clique is NP

Given a Graph, 𝑘, and a potential
solution
1. Check that the solution has 𝑘 nodes
2. Check that every pair of nodes share

an edge

17

3-Clique

4-Clique

Instance of 3SAT to Instance of 𝑘Clique

18

𝑥

𝑦

𝑧

𝑥 >𝑦𝑦

𝑢𝑦 ̅𝑧

For each clause, produce a node for each of its three variables
Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

(also do this for the other
clauses, omitted due to clutter)

There is a 𝑘-Clique in this graph iff there is a satisfying assignment
Let 𝑘 = number of clauses

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

𝑧
�̅�

𝑢

>𝑢
>𝑦

̅𝑧

𝑘Clique ⇒ Satisfying Assignment

19

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

There are 𝑘 triplets in the graph, and no two nodes in the same triplet
are adjacent

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 >𝑦𝑦

𝑢𝑦 ̅𝑧

𝑧
�̅�

𝑢

>𝑢
>𝑦

̅𝑧

To have a 𝑘-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation
Therefore selection of nodes is a satisfying assignment

Satisfying Assignment⇒ 𝑘Clique

20

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

Select one node for a true variable from each clause

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 >𝑦𝑦

𝑢𝑦 ̅𝑧

𝑧
�̅�

𝑢

>𝑢
>𝑦

̅𝑧

There will be 𝑘 nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

3𝑆𝐴𝑇 ≤0 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

21

3𝑆𝐴𝑇

𝐴 𝐵

Solution for 3𝑆𝐴𝑇

Reduction

𝑌𝑋

𝑂(𝑛0)
Make a triplet per clause,
connect non-contraditcory
nodes among clauses

Assign each variable
selected to True

𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Solution for 𝑘𝐶𝑙𝑖𝑞𝑢𝑒

NP-Complete Problems

• We’ve now seen 4 NP-Complete problems
– 3SAT
– k-Independent Set
– k-Vertex Cover
– k-Clique

• You’ve seen 2 more in HW9
– Backpacking
– Subset Sum

22

One More Reduction

23

The Convex Hull Problem

30

Problem: find the smallest convex polygon that bounds a shape (or more generally, a
collection of points)

Example application: collision detection in computer graphics, vision, robotics; also
useful for solving other problems, especially in computational geometry (e.g., furthest
pair of points)

The Convex Hull Problem

31

Given a set of 𝑛 points, find the smallest convex polygon such that every point
is either on the boundary or in the interior of the polygon

Convex polygon: all interior
angles are less than 180∘

Equivalently: line drawn through
polygon will intersect exactly twice

The Convex Hull Problem

32

Given a set of 𝑛 points, find the smallest convex polygon such that every point
is either on the boundary or in the interior of the polygon

Convex polygon: all interior
angles are less than 180∘

Intersects more than twice!Not convex!

> 180∘
> 180∘

The Convex Hull Problem

33

Rubber band analogy: imagine the points are nails sticking out of a board and
wrapping a rubber band to encompass the nails; convex hull is resulting shape

Rubber band

The Convex Hull Problem

34Observation: every point on the convex hull is one of the input points

Otherwise, can add a
“shortcut” and
reduce the area

A Brute Force Approach

35

If there are points
on both sides of the
line, then the pair
cannot be an edge
in the convex hull

A Brute Force Approach

36

A Brute Force Approach

37

Brute force approach: for every pair of points, check if
all other points are on the same side of the line 𝑂 𝑛\

Graham’s Algorithm

38

Observation: Extremal points must be part of the convex hull
(e.g., bottom-most point, left-most point, etc.)

𝑢

Graham’s Algorithm

39

𝑢

Consider the (polar) angle formed between base point 𝑢 and every other point

𝜃

Polar Angle

Graham’s Algorithm

40

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in

order of angle

Graham’s Algorithm

41

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in

order of angle

Graham’s Algorithm

42

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in

order of angle

Graham’s Algorithm

43

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in

order of angle

Graham’s Algorithm

44

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in

order of angle

Graham’s Algorithm

45

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in

order of angle

Graham’s Algorithm

46

H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Not convex anymore!

Scan the points in
order of angle

Graham’s Algorithm

47

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Not convex anymore!
Scan the points in

order of angle

Graham’s Algorithm

48

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Scan the points in
order of angle

Graham’s Algorithm

49

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Observe: since points are sorted by
angle, backtracking will never remove

points from the convex hull

Graham’s Algorithm

50

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

Graham’s Algorithm

51

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Not convex anymore!
Scan the points in

order of angle

Graham’s Algorithm

52

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

Graham’s Algorithm

53

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

Graham’s Algorithm

54

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Not convex anymore!
Scan the points in

order of angle

Graham’s Algorithm

55

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

Graham’s Algorithm

56

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

Graham’s Algorithm

57

H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

Graham’s Algorithm

58

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

How to implement this?

B
A

C
Convex

Non-convex

Imagine driving from 𝐴 → 𝐵
• 𝐵 → 𝐶 is convex if need to take a “left turn” to reach 𝐶
• 𝐵 → 𝐶 is non-convex if need to take a “non-left turn”

Decide “left turn” vs. “right turn” by computing the sign of the
(vector) cross product between �⃗�cd and �⃗�de

�⃗�cd

�⃗�de

Graham’s Algorithm

59

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

Which data structure to use?
Need to be able to insert elements and remove in order of most-recent insertion

Can implement both operations in constant-time using a stack

Graham’s Algorithm

60

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

Correctness?
See CLRS 33.3

Running Time of Graham’s Algorithm

61

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)
𝑂(𝑛)

𝑂(𝑛 log 𝑛)

We have essentially reduced the problem of
computing a convex hull to the problem of sorting!

Running Time of Graham’s Algorithm

62

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)
𝑂(𝑛)

𝑂(𝑛 log 𝑛)

convex hull ≤ sorting
convex hull can be reduced to sorting in 𝑂 𝑛 time

Reduction

Convex Hull to Sorting Reduction

63

points sorted by angle
convex hull

𝑂 𝑛

𝑂 𝑛

Map instances of problem
𝑨 to instances of 𝑩

Map solutions of problem
𝑩 to solutions of 𝑨

convex hull sorting

Running Time of Graham’s Algorithm

64

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)

Running time of Graham’s algorithm: same as best sorting algorithm

𝑂 𝑛 log 𝑛

Can we do better (without going through sorting)?

𝑂(𝑛)

Running Time of Graham’s Algorithm

65

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)

Running time of Graham’s algorithm: same as best sorting algorithmTrivial lower bound: Ω 𝑛

Can we do better (without going through sorting)?

𝑂(𝑛)

Worst Case Lower Bound Proofs

66

𝑓(𝑛)-reduces to

Algorithm for B

can be used to make

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

With 𝑂(𝑓 𝑛) overhead

If we know that 𝐴 cannot be
solved in 𝑂 𝑓 𝑛 time

If there is a 𝑂 𝑓 𝑛 reduction
from 𝐴 to 𝐵, then 𝐵 cannot be

solved in 𝑂 𝑓 𝑛 time

Sorting to Convex Hull Reduction

67

Sorting Convex Hull

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛)

Then this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)If this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)

Sorting to Convex Hull Reduction

68

Observe: convex hull consists of a subset of points in a prescribed order

Sorting to Convex Hull Reduction

69

6

7

8

1

3

2

5

4

Can we use
this to sort?

Observe: convex hull consists of a subset of points in a prescribed order

Sorting to Convex Hull Reduction

70

6

7

8

1

3

2

5

4

Can we use
this to sort?

Want order of points in convex hull
to be the order of elements in

sorted order

To get full sorted ordering, convex
hull should contain all of the points

(i.e., values in the set)

Observe: convex hull consists of a subset of points in a prescribed order

Sorting to Convex Hull Reduction

• Goal: need a way to map list of (numeric) values onto a convex
hull instance
– Given: -2 1 -3 0 2 3 -1
– Create some convex hull instance where all points on the convex hull

71−3 −2 −1 0 1 2 3

How do we map
values to points?

Sorting to Convex Hull Reduction

72
−3 −2 −1 0 1 2 3

(−2,4)

(−1,1) (1,1)

(2,4)

(0,0)

(−3,9) (3,9)

−3−2 −101 2 3Given:

𝑥 (𝑥, 𝑥q)⇒
sorting CH

Creates a parabola!

Sorting to Convex Hull Reduction

73−3 −2 −1 0 1 2 3

Claim: order of
elements in convex hull
coincide with elements
in sorted order

(−3,9)

(−2,4)

(−1,1) (1,1)

(2,4)

(3,9)

(0,0)

−3−2 −101 2 3Given:

Sorting to Convex Hull Reduction

• Reduction Construction
– Convert each element to a 2D point, 𝑥 ⇒ (𝑥, 𝑥q)
– Run Convex Hull algorithm
– Find minimum 𝑥-coordinate in convex hull points
– List convex hull points’ 𝑥-coordinate in prescribed order

74

𝑂(𝑛)

𝑂(𝑛)

𝑂(𝑛)

Reduction cost: 𝑂(𝑛)

Reduction

Convex Hull to Sorting Reduction

76

𝑂 𝑛

𝑂 𝑛

Create 2D points

Find minimum 𝑥
Read CH solution in order

sorting numeric values ≤ convex hull
sorting numeric values can be reduced to convex hull in 𝑂 𝑛 time

sorting convex hull

−3−2 −101 2 3

−1−3 30−2 1 2

Reduction

Convex Hull to Sorting Reduction

77

𝑂 𝑛

𝑂 𝑛

Create 2D points

Find minimum 𝑥
Read CH solution in order

sorting numeric values ≤ convex hull
sorting numeric values can be reduced to convex hull in 𝑂 𝑛 time

sorting convex hull

−3−2 −101 2 3

−1−3 30−2 1 2

Then this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)If this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)

reduces to 𝐵𝐴
sorting numeric values convex hull

Lower Bound for Convex Hull

78

𝑂 𝑛 reduction

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Ω 𝑛 log 𝑛 for comparison-based sorts
Our reduction is not a comparison sort algorithm

Ω(𝑛 log 𝑛) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)

Implies Ω 𝑛 log 𝑛 lower bound for computing convex hull in this model

reduces to 𝐵𝐴
sorting numeric values convex hull

Lower Bound for Convex Hull

79

𝑂 𝑛 reduction

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Ω 𝑛 log 𝑛 for comparison-based sorts
Our reduction is not a comparison sort algorithm

Ω(𝑛 log 𝑛) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)

Implies Ω 𝑛 log 𝑛 lower bound for computing convex hull in this model

In fact, this lower bound holds even for algorithms
that just identify the set of points on the convex

hull (and not necessarily their order)!

Jarvis’ Algorithm (Gift Wrapping Method)

80

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

81

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

82

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

83

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

84

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

85

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

86

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

87

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

88

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

89

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

90

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

91

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

92

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

93

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

94

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

95

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

96

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

97

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

98

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

99

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

100

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢

Jarvis’ Algorithm (Gift Wrapping Method)

101

𝑢

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

Jarvis’ Algorithm (Gift Wrapping Method)

102

𝑢

Can find the “next” point using a linear scan
Number of iterations: number of points on convex hull
Run time: 𝑂(𝑛ℎ) where ℎ is the number of points on the convex hull

Jarvis’ Algorithm (Gift Wrapping Method)

103

𝑢

Can find the “next” point using a linear scan
Number of iterations: number of points on convex hull
Run time: 𝑂(𝑛ℎ) where ℎ is the number of points on the convex hull

Output-dependent running time (similar to Ford-Fulkerson)
• Can be better than Graham’s Algorithm when ℎ ≪ log 𝑛
• Worst case: ℎ = 𝑛, so 𝑂 𝑛q

104

Chan’s Algorithm

105

Chan’s Algorithm

106

Divide into smaller subsets

Chan’s Algorithm

107

Use Graham’s Algorithm to conquer the smaller subsets

Chan’s Algorithm

108

Use Jarvis’ Algorithm to combine the solutions to the smaller subsets

𝑝tu^

𝑝t

𝑞^

𝑞q

𝑞\

maximize angle

Jarvis checks all other points, but...

Linear scan over smaller convex
hulls, binary search inside the

smaller convex hulls

Chan’s Algorithm

109

Use Jarvis’ Algorithm to combine the solutions to the smaller subsets

Chan’s Algorithm
Combines Graham’s Algorithm and Jarvis’ Algorithm
Given points 𝑃, size of subsets 𝑚, guess of number of hull points 𝐻

• Partition 𝑃 into subsets 𝑃 , 𝑃q, … , 𝑃 y/{ of size at most 𝑚
• for 𝑖 = 1,… , 𝑛/𝑚

– Compute 𝑐𝑜𝑛𝑣(𝑃_) using Graham’s Algorithm, store in counter-clockwise order
• 𝑝� ← 0,−∞
• 𝑝^ ← rightmost point of 𝑃
• for 𝑘 = 1,… , 𝐻 (each hull point)

– for 𝑖 = 1,… , 𝑛/𝑚 (each subset)
• Use binary search on 𝑐𝑜𝑛𝑣(𝑃_) to find point 𝑞_

that maximizes the angle ∠𝑝tu^𝑝t𝑞_
– 𝑝t�^ ← 𝑞 ∈ {𝑞^, 𝑞q, … , 𝑞 �

�
} that maximizes the angle ∠𝑝tu^𝑝t𝑞 (Jarvis’ Algorithm)

– if 𝑝t�^ = 𝑝^, then return 𝑐𝑜𝑛𝑣 𝑃 = {𝑝^, 𝑝q, … , 𝑝t}

110
𝑂(𝑛 log ℎ)
Where ℎ is the number of hull points

Divide

Conquer
with

Graham’s
Algorithm

Combine
with

Jarvis’
Algorithm

https://link.springer.com/content/pdf/10.1007%2FBF02712873.pdf

https://link.springer.com/content/pdf/10.1007%2FBF02712873.pdf

