"It's about the PB&J."

CS4102 Algorithms
"»‘ | \Illm

s

Today's Keywords

* Reductions

* NP Hard, NP Completeness
* k-Cligue

e Convex Hull

* Graham Scan

e Jarvis’ March

* Chan’s Algorithm

CLRS Readings

* Chapter 34

HomMeworks

* HWO9 due Thursday at 11pm

— Reductions, Graphs
— Written (LaTeX)

e HW10C due Thursday at 11pm

— Implement a problem from HW9
— No late submissions

 Monday, December 9, 7pm in Maury 209 (our section)
— Practice exam out! Solutions later this week
— Review session this weekend (look for an email)
— SDAC: please schedule for some time on Monday 12/9

e Algorithm technique of supreme ultimate power
* Convert instance of problem A to an instance of Problem B
* Convert solution of problem B back to a solution of problem A

Reductions

Possible uses
e Use solver for B to solve A

Don’t know . Do know
how to solve f (n)-reduces to how to solve
Problem A Problem B
Y can be used to make>
With O(f (n)) overhead
Algorithm for B Algorithm for A
[} [} ,
* Prove lower bound for B by showing it’s as hard as A
Problem we know Problem we
is slow to solve £ (n)-reduces to B | don’t know if
(proved) slow or fast to solve
Problem A Problem B

With O(f (n)) overhea
Y can be used to make
B is no faster than A

Algorithm for B Ais no harder than B Algorithm for A

Reduction Prootr Notation

f (n)-reduces to > B

Problem B

Problem A

Y can be used to make

With O(f (n)) overhead

Algorithm for B Algorithm for A

A is not a harder problem than B

A<B " Orwe
could have
solved A

If A requires time Q(f(n)) time then B also requires Q(f(n)) time u:?;;eg,s
A <fm B

solver!
4

Proof of Lower Bound by Reduction

To Show: Y is slow

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion: Y must not actually be quick

- vs NP

e P
— Deterministic Polynomial Time

— Problems solvable in polynomial time
e 0(nP) for some number p

* NP
— Non-Deterministic Polynomial Time

— Problems verifiable in polynomial time
e 0(nP) for some number p

 Open Problem: Does P=NP?
— Certainly P € NP

10

NP-Hard

* How can we try to figure out if P=NP?
* |dentify problems at least as “hard” as NP

— If any of these “hard” problems can be solved in
polynomial time, then all NP problems can be solved
in polynomial time.

e Definition: NP-Hard:
— B isNP-Hard if VA € NP,A <, B

— A <, B means A reduces to B in polynomial time

NP-Hardness Reduction

Any NP-Hard Problem O (Tlp) Problem to show is NP-Hard
Then this could be done If This could be done in
in polynomial time Polynomial time

Solution for 4 Solution for B

Y

Reduction
12

NP-Complete

|H

 “Together they stand, together they fal

* Problems solvable in polynomial time iff ALL NP
problems are

* NP-Complete = NP N NP-Hard

* How to show a problem is NP-Complete?

— Show it belongs to NP
* Give a polynomial time verifier

— Show it is NP-Hard

* Give a reduction from another NP-H problem
We now just need a FIRST NP-Hard problem

3-SAT

* Shown to be NP-Hard by Cook and Levin (independently)

* Given a 3-CNF formula (logical AND of clauses, each an OR of 3
variables), Is there an assignment of true/false to each variable

to make the formula true?

‘(xVva)/\(xvyVy)/\(uVsz‘)/\(szVu)/\(fvva‘)

Clause x = true
Variables y = false
z = false

14

u = true

k-Clique Problem

Given a graph G and a number k, 4-Clique
is there a clique of size k?

* Clique: A complete subgraph

\;oe

k-Cligue 1s NP-Complete

1. Show that it belongs to NP

— Give a polynomial time verifier

2. Show it is NP-Hard

— Give a reduction from a known NP-Hard problem
— We will show 35AT <, kClique

16

k-Cligue 1s NP
Given a Graph, k, and a potential /-\

solution 4-Clique
1. Check that the solution has k nodes
2. Check that every pair of nodes share

an edge w

Instance of 3SAT to Instance of kCligue

(xVYVZD)AXVYVY)A@VYVZI)ANEZVIVUANGEVYVZ)
=
(also do this for the other
s clauses, omitted due to clutter)

For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

Let kK = number of clauses

There is a k-Cligue in this graph iff there is a satisfying assignment 18

kCligue = Satistying Assignment

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGVYVZ)

x = true

y = false
z = false

u = true

There are k triplets in the graph, and no two nodes in the same triplet
are adjacent

To have a k-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

19

Satisfying Assignment = kClique

(xVYVZD)AXVYVY)A@VYVZI)AN@ZVIVU)ANGVYVZ)

X = true

y = false
z = false
u = true

Select one node for a true variable from each clause

There will be k nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent

20

35AT <, kClique

3SAT 0 (nP) kClique
Make a triplet per clause,
connect non-contraditcory

nodes among clauses > B

Solution for 3SAT

Solution for kClique

Y

Assign each variable
selected to True

Reduction
21

NP-Complete Problems

 We’ve now seen 4 NP-Complete problems
— 3SAT
— k-Independent Set
— k-Vertex Cover

— k-Clique

* You've seen 2 more in HW9
— Backpacking
— Subset Sum

22

The Convex Hull Problem

—

Problem: find the smallest convex polygon that bounds a shape (or more generally, a
collection of points)

Example application: collision detection in computer graphics, vision, robotics; also

useful for solving other problems, especially in computational geometry (e.g., furthest
pair of points)

30

The Convex Hull Problem

Convex polygon: all interior Equivalently: line drawn through
angles are less than 180° polygon will intersect exactly twice
-
-
———z———
—
-
- = ® o
o

Given a set of n points, find the smallest convex polygon such that every point
is either on the boundary or in the interior of the polygon 31

The Convex Hull Problem

Convex polygon: all interior

angles are less than 180° Not convex!

Intersects more than twice!

Given a set of n points, find the smallest convex polygon such that every point
is either on the boundary or in the interior of the polygon 32

The Convex Hull Problem

Rubber band analogy: imagine the points are nails sticking out of a board and
wrapping a rubber band to encompass the nails; convex hull is resulting shape

33

The Convex Hull Problem

® Otherwise, can add a
“shortcut” and
reduce the area

Observation: every point on the convex hull is one of the input points .

A Brute Force Approach

If there are points
on both sides of the

O ® line, then the pair
_=="" cannot be an edge
- .
=" in the convex hull
O
o
-
—”’ ®
e e ®
-
—’
"
”
° O
O

35

o
O
®
O
- .
D
D
<
D
O
.
O
Lnd
O
—+—
»
-
af
<

A Brute Force Approach

Brute force approach: for every pair of points, check if ;
all other points are on the same side of the line o(n>) .

Graham’s Algorithm

Observation: Extremal points must be part of the convex hull
(e.g., bottom-most point, left-most point, etc.)

38

Graham’s Algorithm

4 Polar Angle)
\ /
\‘ ,I
[\ /
‘\ \ /
h \ p °
\
\\ \ / /, ’ PR
\ \ 1 ¢ R PR
\\ \ \] U s /’
\ A | /1 /¢ 7 7
N AV /1 7 " L
N\ AYEEY /1 ¢/ 7 A
S \ / 7 -,
\ \ \] / / R
‘ \\ \‘ I, /’ s ;’
S~ W\ 1y ¢ /’I’ ——‘——"
~~N\ N i\ I,/,/,” _—————_——
T —— ‘

Consider the (polar) angle formed between base point u and every other point
39

Graham’s Algorithm

4 Polar Angle)

Scan the points in

@ (F) order of angle
\ ’
\‘ ,/
()] \ /!
AN \ o, o
A /
RN \ I D) _-
\ Q \] ¢ ”, PR
S \ 1 ¢ PR PR
S \ 1 7 R
N
\\ \\ 1 II ,I ,,/ . -’
\ -
\\ \\ \ II ,, ,@ IIII”
N \ AR
Q_ s\ 1) e
- e e e e Q

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity 40

Graham’s Algorithm

4 Polar Angle)

Scan the points in

@ (F) order of angle
\ ’
\‘ ,/
\ /
o, \ /
\\ \ @ ,,
~ \ !) ® JC,
\\ Q \ I ¢ ’¢’
S \ 1 7 PR PR
N LY i 7/ R
N A S | B 4 Re -’
N AV /1 7 R
RN \\ \ / I, @ Reftad
m~ \\\ \\“ ’II' /’:’ ’:/’ B
Seo NN e J—

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity 41

Graham’s Algorithm

4 Polar Angle)

Scan the points in

@ (F order of angle

\ ’

\‘ ,/
\ Y 4
o, \ /

> \ ©
™ \ s @
\\ Q \ I ¢ E ’¢’
\\ \ 1 ¢ PR PR
N A S | B 4 ,/ ”
\\ \\ \ I/ ,I PR ’,¢

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity 42

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

43

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

44

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

45

Graham’s Algorithm

4 Polar Angle)

Not convex anymore!

Scan the points in
q" order of angle
\
\
\

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity 46

Graham’s Algorithm

4 Polar Angle)

Not convex anymore!

Scan the points in
q" order of angle
\
\
\

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one 4

4 Polar Angle)

Graham’s Algorithm

Scan the points in
q" order of angle
\
\
\

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

48

Graham’s Algorithm

4 Polar Angle)

Observe: since points are sorted by
angle, backtracking will never remove
points from the convex hull

’
0\ “ ’
N \ © /
N \ / Y
S ‘\ II /
N Q \ I/
\\ AN /1 7
\ AY Y /7 ¢
N \\ \ / ,’ R
N \ \ II Y 4 P /’,&
Q oy ¢ sl
~ s AN Ay S
S S A\ 1y 72 70"

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one 49

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

50

Graham’s Algorithm

4 Polar Angle)

Not convex anymore!

Scan the points in
order of angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity 51

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

52

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

53

Graham’s Algorithm

4 Polar Angle)

Not convex anymore!

Scan the points in
order of angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity 54

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

55

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

56

4 Polar Angle)

Graham’s Algorithm

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in
order of angle

57

Graham’s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x-
coordinate if multiple points have the same minimum-y coordinate)
2. Add p4 to the convex hull C (represented as an ordered list)
Sort all of the points based on their angle relative to p4
4. For each of the points p; in sorted order:
* Try adding p; to the convex hull C
* |If adding p; makes C non-convex, then remove the last component of

C and repeat this check

w

How to implement this? S R R I TR
e B — Cisconvexif need to take a “left turn” to reach C
73BC Coﬂ\'e}_,— * B — (is non-convex if need to take a “non-left turn”
__,——’_goﬁqe% Decide “left turn” vs. “right turn” by computing the sign of the
Q/ =7 Wo® (vector) cross product between v,5 and U,
% 58

Vap

Graham’s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x-
coordinate if multiple points have the same minimum-y coordinate)
2. Add p; to the convex hull C (represented as an ordered list)
Sort all of the points based on their angle relative to p4
4. For each of the points p; in sorted order:
* Try adding p; to the convex hull C
* |f adding p; makes C non-convex, then remove the last component of

C and repeat this check

w

Which data structure to use?
Need to be able to insert elements and remove in order of most-recent insertion

Can implement both operations in constant-time using a stack

59

Graham’s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x-
coordinate if multiple points have the same minimum-y coordinate)
2. Add p4 to the convex hull C (represented as a stack)
Sort all of the points based on their angle relative to p4
4. For each of the points p; in sorted order:
* Try adding p; to the convex hull C
* |f adding p; makes C non-convex, then remove the last component of

C and repeat this check

w

Correctness?
See CLRS 33.3

60

Running Time of Graham’'s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x- 0(n)
coordinate if multiple points have the same minimum-y coordinate)

2. Add p, to the convex hull C (represented as a stack) 0(1)

3. Sort all of the points based on their angle relative to p, O(nlogn)

4. For each of the points p; in sorted order: 0(n)

* Try adding p; to the convex hull C
* |f adding p; makes C non-convex, then remove the last component of

C and repeat this check

O(nlogn)

Running Time of Graham’'s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x- 0(n)
coordinate if multiple points have the same minimum-y coordinate)

2. Add p; to the convex hull C (represented as a stack) 0(1)

3. Sort all of the points based on their angle relative to p, O(nlogn)

4. For each of the points p; in sorted order: 0(n)

* Try adding p; to the convex hull C
* |f adding p; makes C non-convex, then remove the last component of

C and repeat this check

We have essentially reduced the problem of
computing a convex hull to the problem of sorting! O(nlogn)

Convex Hull to sorting Reduction

convex hull

convex hull can be reduced to sorting in O(n) time

Map instances of problem

A to instances of B
0(n) >

Map solutions of problem
B to solutions of A

O(n)

Reduction

convex hull < sorting

sorting

[
o
A

-
Pt
Pt
7 e
s
gt
’f
ot

-

63

Running Time of Graham’'s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x- 0(n)
coordinate if multiple points have the same minimum-y coordinate)

2. Add p; to the convex hull C (represented as a stack) 0(1)

3. Sort all of the points based on their angle relative to p, O(nlogn)

4. For each of the points p; in sorted order: 0(n)

* Try adding p; to the convex hull C
* |f adding p; makes C non-convex, then remove the last component of

C and repeat this check

[O(nlogn) }

Running time of Graham’s algorithm: same as best sorting algorithm

Can we do better (without going through sorting)?

64

Running Time of Graham’'s Algorithm

1. Let p1 be the point with the smallest y-coordinate (and smallest x- 0(n)
coordinate if multiple points have the same minimum-y coordinate)

2. Add p, to the convex hull C (represented as a stack) 0(1)

3. Sort all of the points based on their angle relative to p; O(nlogn)

4. For each of the points p; in sorted order: 0(n)

* Try adding p; to the convex hull C
* |f adding p; makes C non-convex, then remove the last component of

C and repeat this check

Trivial lower bound: Q0(n) }h

e as best sorting algorithm

Can we do better (without going through sorting)?

65

Worst Case [L.ower Bound Proofs

f (n)-reduces to > B

Problem B

Problem A

Y can be used to make

With O(f(n)) overhead

Algorithm for B Algorithm for A

A is not a harder problem than B
A<B

4 N

If we know that A cannot be
solved in O(f(n)) time
o J

If there is a O(f(n)) reduction
from A to B, then B cannot be

solved in O(f(n)) time

66

Sorting to Convex Hull Reduction

Sorting O(Tl) Convex Hull
If this is Q(n logn) Then this is Q(n log n)

4

Solution for 4 < Solution for B

Reduction

67

Sorting to Convex Hull Reduction

Observe: convex hull consists of a subset of points in a prescribed order

68

Sorting to Convex Hull Reduction

N\

o 5. Canweuse
= this to sort?

Observe: convex hull consists of a subset of points in a prescribed order

69

Sorting to Convex Hull Reduction

/

o

To get full sorted ordering, convex
hull should contain all of the points
(i.e., values in the set)

\

/ \ Can we use

L ?
J f/ this to sort:

/

U
Observe: convex hull consists of a subset of points in a prescribed order

\
Want order of points in convex hull

to be the order of elements in
sorted order

)

70

Sorting to Convex Hull Reduction

* Goal: need a way to map list of (numeric) values onto a convex
hull instance

—Given:-21-3023-1
— Create some convex hull instance where all points on the convex hull

\ /

~
How do we map
values to points?

/

71

Sorting to Convex Hull Reduction

Given: -2 1 -30 2 3 -1

\ !
\ !
\ /
\‘(—3,9) (3,9) !
\ !
\ J
\ !
\ /
\ /
\ /
2 \\ ,I
x = (x,x°) \ Y,
sorting CH

[Creates a parabola! }
—3 —2 —1 0 1 2 3

72

Sorting to Convex Hull Reduction

Given: -2 1 -30 2 3 -1

\ /4
® | P
Claim: order of \ (=3,9) (3.9)
elements in convex hull \ /
coincide with elements \\ /
. /
in sorted order \ /

73

Sorting to Convex Hull Reduction

* Reduction Construction
=) — Convert each element to a 2D point, x = (x, x?) 0(n)

: — Find minimum x-coordinate in convex hull points 0(n)
— List convex hull points’ x-coordinate in prescribed order 0(n)

Reduction cost: O(n)

74

Convex Hull to sorting Reduction

sorting convex hull
Create 2D points LY o8
-2 1-30 2 3 -1
0 (n) ‘\\'(—2,4) @4 ./'/
S e | oany
9. |oo e
e
Find minimum x
ad CH solution in order
—3—-2-10 1 2 3 O(n)
Reduction

sorting numeric values < convex hull
sorting numeric values can be reduced to convex hull in O(n) time

76

Convex Hull to sorting Reduction

sorting convex hull

Create 2D points LY oS

-2 1-30 2 3 -1
0 (n) \“\ '1/
N (—24) 24) /

~

If this is Q(n logn) Then this is Q(n log n)

Find minimum x
ad CH solution in order

—3-2-10 1 2 3 0(n)

Reduction

sorting numeric values < convex hull
sorting numeric values can be reduced to convex hull in O(n) time 7

L ower Bound for Convex Hull

O(n) reduction

reduces to B

sorting numeric values convex hull

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Q(nlogn) for comparison-based sorts

Our reduction is not a comparison sort algorithm

Q(nlogn) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)
Implies (nlogn) lower bound for computing convex hull in this model

78

L ower Bound for Convex Hull

O(n) reduction

reduces to B

sorting numeric values convex hull

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Q(nlogn) for comparison-based sorts

Our reduction is nota (" N
In fact, this lower bound holds even for algorithms

that just identify the set of points on the convex .,
(U(nlogn) lower bound for s hull (and not necessarily their order)! > model

(i.e., decisions can be'. /
Implies Q(nlogn) lower bound for computing convex huII in thls model

79

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

80

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

81

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

82

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

83

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

84

Jarvis’ Algorithm (Gift Wrapping Method)

-
-
——_———
-
——

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

85

Jarvis’ Algorithm (Gift Wrapping Method)

'
-
-
-
-
4
-

-t
-
-
—f
-
L d

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

86

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

87

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

88

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

89

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

90

Jarvis’ Algorithm (Gift Wrapping Method)

91

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

Jarvis’ Algorithm (Gift Wrapping Method)

1
\
\
\
() \
o
o

1

1

1

1

1

1

1

® \
1

o "

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

92

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

93

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

94

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

95

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

96

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

97

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

98

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

99

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

100

Jarvis’ Algorithm (Gift Wrapping Method)

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

101

Jarvis’ Algorithm (Gift Wrapping Method)

Can find the “next” point using a linear scan
Number of iterations: number of points on convex hull
Run time: O (nh) where h is the number of points on the convex hull

102

Jarvis’ Algorithm (Gift Wrapping Method)

Output-dependent running time (similar to Ford-Fulkerson)
* (Can be better than Graham’s Algorithm when h < logn
Ce « Worst case: h = n, so 0(n?)

N T T T —

Run time: O (nh) where h is the number of points on the convex hull

103

(GRAHAM SCAN:OINLOGN
OR mmns Mnn‘“r'mn;n’

‘ﬁy don't we n ve both?
- A l‘
-«

i ',;//4’ \‘r
GIIANvS AlGlIIIITIIM
G 210INLOGH) \gar

Chan’'s Algorithm

Chan’'s Algorithm

Divide into smaller subsets

106

Chan’'s Algorithm

N
=

Use Graham’s Algorithm to conquer the smaller subsets

107

Chan’s Algorithm

Linear scan over smaller convex
hulls, binary search inside the
smaller convex hulls

Jarvis checks all other points, but.

/

W

 q;
-~

Use Jarvis” Algorithm to combine the solutions to the smaller subsets

108

Chan’s Algorithm

N
[

Use Jarvis’ Algorithm to combine the solutions to the smaller subsets

109

Chan’s Algorithm

Combines Graham’s Algorithm and Jarvis’ Algorithm
Given points P, size of subsets m, guess of number of hull points H

Partition P into subsets Py, Py, ..., Pp/m) Of size at most m 4 Divide }
fori = 1,...,[n/m] | | | | o I
Compute conv(P;) using Graham’s Algorithm, store in counter-clockwise order with
po < (0, —o) Graham'’s
p1 < rightmost point of P Algorithm -
fork = 1, ..., H (each hull point)
fori = 1,...,[n/m] (each subset)
Use binary search on conv(P;) to find point g; o b)
that maximizes the angle 4py_10rq; with
Pr+1 < 9 € {q1, 9>, ...,q[il} that maximizes the angle 2py_1pirq (Jarvis’ Algorithm) Jarvis’
if P11 = pq1, then return conv(P) = {p1,p2, .-, Px} Algorithm)

O(nlogh)
https://link.springer.com/content/pdf/10.1007%2FBF02712873.pdf Where h |S the number Of hu” pOIntS

110

https://link.springer.com/content/pdf/10.1007%2FBF02712873.pdf

