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Today’s Keywords

• Reductions
• NP Hard, NP Completeness
• k-Clique
• Convex Hull
• Graham Scan
• Jarvis’ March
• Chan’s Algorithm
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CLRS Readings

• Chapter 34
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Homeworks

• HW9 due Thursday at 11pm
– Reductions, Graphs
– Written (LaTeX)

• HW10C due Thursday at 11pm
– Implement a problem from HW9
– No late submissions
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Final Exam

• Monday, December 9, 7pm in Maury 209 (our section)
– Practice exam out!  Solutions later this week
– Review session this weekend (look for an email)
– SDAC: please schedule for some time on Monday 12/9
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Reductions

• Algorithm technique of supreme ultimate power
• Convert instance of problem A to an instance of Problem B
• Convert solution of problem B back to a solution of problem A
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Reductions
Possible uses
• Use solver for B to solve A

• Prove lower bound for B by showing it’s as hard as A

7

𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛 ) overhead

Don’t know
how to solve

Do know
how to solve

𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝐵

𝑋𝑌

𝐴

Problem A
Problem B

With 𝑂(𝑓 𝑛 ) overhead

Problem we know
is slow to solve

(proved)

Problem we
don’t know if
slow or fast to solve

B is no faster than A
A is no harder than B



Reduction Proof Notation
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

If 𝑨 requires time 𝛀(𝒇 𝒏 ) time then 𝑩 also requires 𝛀(𝒇 𝒏 ) time
𝑨 ≤𝒇(𝒏) 𝑩

With 𝑂(𝑓 𝑛 ) overhead

Or we 
could have 

solved A 
faster 

using B’s 
solver!



Proof of Lower Bound by Reduction

1. We know X is slow (by a proof)
(e.g., X = some way to open the door)

2. Assume Y is quick [toward contradiction]
(Y = some way to light a fire)

3. Show how to use Y to perform X quickly

4. X is slow, but Y could be used to perform X quickly
conclusion:  Y must not actually be quick

𝑋

𝑌𝑋

𝑌

To Show: 𝑌 is slow



P vs NP

• P
– Deterministic Polynomial Time
– Problems solvable in polynomial time

• 𝑂(𝑛0) for some number 𝑝

• NP
– Non-Deterministic Polynomial Time
– Problems verifiable in polynomial time

• 𝑂(𝑛0) for some number 𝑝

• Open Problem: Does P=NP?
– Certainly 𝑃 ⊆ 𝑁𝑃
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P

NP



NP-Hard

• How can we try to figure out if P=NP?
• Identify problems at least as “hard” as NP
– If any of these “hard” problems can be solved in 

polynomial time, then all NP problems can be solved 
in polynomial time.

• Definition: NP-Hard:
– 𝐵 is NP-Hard if ∀𝐴 ∈ 𝑁𝑃, 𝐴 ≤0 𝐵
– 𝐴 ≤0 𝐵 means 𝐴 reduces to 𝐵 in polynomial time
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P

NP

NP-H
At least as 
“hard” as NP



NP-Hardness Reduction
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Any NP-Hard Problem Problem to show is NP-Hard

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛0)

Then this could be done 
in polynomial time

If This could be done in 
Polynomial time



NP-Complete

• “Together they stand, together they fall”
• Problems solvable in polynomial time iff ALL NP 

problems are
• NP-Complete = NP ∩ NP-Hard
• How to show a problem is NP-Complete?
– Show it belongs to NP
• Give a polynomial time verifier

– Show it is NP-Hard
• Give a reduction from another NP-H problem
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We now just need a FIRST NP-Hard problem

P

NP

NP-H
At least as 
“hard” as NP

NP-C



3-SAT

• Shown to be NP-Hard by Cook and Levin (independently)
• Given a 3-CNF formula (logical AND of clauses, each an OR of 3 

variables), Is there an assignment of true/false to each variable 
to make the formula true?
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

Clause
Variables

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆



𝑘-Clique Problem

Given a graph 𝐺 and a number 𝑘, 
is there a clique of size 𝑘?
• Clique: A complete subgraph 
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3-Clique

4-Clique



𝑘-Clique is NP-Complete

1. Show that it belongs to NP
– Give a polynomial time verifier

2. Show it is NP-Hard
– Give a reduction from a known NP-Hard problem
– We will show 3𝑆𝐴𝑇 ≤0 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
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𝑘-Clique is NP

Given a Graph, 𝑘, and a potential 
solution
1. Check that the solution has 𝑘 nodes
2. Check that every pair of nodes share 

an edge

17

3-Clique

4-Clique



Instance of 3SAT to Instance of 𝑘Clique
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𝑥

𝑦

𝑧

𝑥 >𝑦𝑦

𝑢𝑦 ̅𝑧

For each clause, produce a node for each of its three variables
Connect each node to all non-contradictory nodes in the other clauses
(i.e., anything that’s not its negation)

(also do this for the other 
clauses, omitted due to clutter)

There is a 𝑘-Clique in this graph iff there is a satisfying assignment
Let 𝑘 = number of clauses

𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

𝑧
�̅�

𝑢

>𝑢
>𝑦

̅𝑧



𝑘Clique ⇒ Satisfying Assignment
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

There are 𝑘 triplets in the graph, and no two nodes in the same triplet 
are adjacent

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 >𝑦𝑦

𝑢𝑦 ̅𝑧

𝑧
�̅�

𝑢

>𝑢
>𝑦

̅𝑧

To have a 𝑘-Clique, must have one node from each triplet
Cannot select a node for both a variable and its negation
Therefore selection of nodes is a satisfying assignment



Satisfying Assignment⇒ 𝑘Clique 
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𝑥 ∨ 𝑦 ∨ 𝑧 ∧ 𝑥 ∨ >𝑦 ∨ 𝑦 ∧ 𝑢 ∨ 𝑦 ∨ ̅𝑧 ∧ 𝑧 ∨ �̅� ∨ 𝑢 ∧ (�̅� ∨ >𝑦 ∨ ̅𝑧)

Select one node for a true variable from each clause

𝒙 = 𝒕𝒓𝒖𝒆
𝒚 = 𝒇𝒂𝒍𝒔𝒆
𝒛 = 𝒇𝒂𝒍𝒔𝒆
𝒖 = 𝒕𝒓𝒖𝒆

𝑥

𝑦

𝑧

𝑥 >𝑦𝑦

𝑢𝑦 ̅𝑧

𝑧
�̅�

𝑢

>𝑢
>𝑦

̅𝑧

There will be 𝑘 nodes selected
We can’t select both a node and its negation
All nodes will be non-contradictory, so they will be pairwise adjacent



3𝑆𝐴𝑇 ≤0 𝑘𝐶𝑙𝑖𝑞𝑢𝑒
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3𝑆𝐴𝑇

𝐴 𝐵

Solution for 3𝑆𝐴𝑇

Reduction

𝑌𝑋

𝑂(𝑛0)
Make a triplet per clause, 
connect non-contraditcory
nodes among clauses

Assign each variable 
selected to True

𝑘𝐶𝑙𝑖𝑞𝑢𝑒

Solution for 𝑘𝐶𝑙𝑖𝑞𝑢𝑒



NP-Complete Problems

• We’ve now seen 4 NP-Complete problems
– 3SAT
– k-Independent Set
– k-Vertex Cover
– k-Clique

• You’ve seen 2 more in HW9
– Backpacking
– Subset Sum

22



One More Reduction
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The Convex Hull Problem

30

Problem: find the smallest convex polygon that bounds a shape (or more generally, a 
collection of points)

Example application: collision detection in computer graphics, vision, robotics; also 
useful for solving other problems, especially in computational geometry (e.g., furthest 
pair of points)



The Convex Hull Problem
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Given a set of 𝑛 points, find the smallest convex polygon such that every point 
is either on the boundary or in the interior of the polygon

Convex polygon: all interior 
angles are less than 180∘

Equivalently: line drawn through 
polygon will intersect exactly twice



The Convex Hull Problem
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Given a set of 𝑛 points, find the smallest convex polygon such that every point 
is either on the boundary or in the interior of the polygon

Convex polygon: all interior 
angles are less than 180∘

Intersects more than twice!Not convex!

> 180∘
> 180∘



The Convex Hull Problem
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Rubber band analogy: imagine the points are nails sticking out of a board and 
wrapping a rubber band to encompass the nails; convex hull is resulting shape

Rubber band



The Convex Hull Problem

34Observation: every point on the convex hull is one of the input points

Otherwise, can add a 
“shortcut” and 
reduce the area



A Brute Force Approach
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If there are points 
on both sides of the 
line, then the pair
cannot be an edge 
in the convex hull



A Brute Force Approach
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A Brute Force Approach
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Brute force approach: for every pair of points, check if
all other points are on the same side of the line 𝑂 𝑛\



Graham’s Algorithm
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Observation: Extremal points must be part of the convex hull 
(e.g., bottom-most point, left-most point, etc.)

𝑢



Graham’s Algorithm
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𝑢

Consider the (polar) angle formed between base point 𝑢 and every other point 

𝜃

Polar Angle



Graham’s Algorithm
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H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm
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J

I

K

𝑢

E

G
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F
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D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm
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J
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𝑢

E

G
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F
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D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm
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𝑢
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm

45

H

J

I

K

𝑢

E

G

B

A

F
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D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Scan the points in 

order of angle



Graham’s Algorithm
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H

J

I

K

𝑢

E

G

B

A

F

C
D

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

𝜃

Polar Angle
Not convex anymore!

Scan the points in 
order of angle



Graham’s Algorithm
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H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Not convex anymore!
Scan the points in 

order of angle



Graham’s Algorithm
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H

J

I

K

𝑢

E

G
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D

𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Scan the points in 
order of angle



Graham’s Algorithm
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H

J

I

K

𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: Try extending the convex hull from the previous vertex
if we are unable to extend from the current one

Observe: since points are sorted by 
angle, backtracking will never remove 

points from the convex hull



Graham’s Algorithm
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J

I
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𝑢

E

G

B

A

F

C
D

𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in 
order of angle



Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Not convex anymore!
Scan the points in 

order of angle



Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
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Scan the points in 
order of angle



Graham’s Algorithm
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order of angle



Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Not convex anymore!
Scan the points in 

order of angle



Graham’s Algorithm
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Graham’s Algorithm
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Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in 
order of angle



Graham’s Algorithm
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H

J

I
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𝜃

Polar Angle

Idea: In order of angle, add points to the convex hull
as long as it preserves convexity

Scan the points in 
order of angle



Graham’s Algorithm

58

1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

How to implement this?

B
A

C
Convex

Non-convex

Imagine driving from 𝐴 → 𝐵
• 𝐵 → 𝐶 is convex if need to take a “left turn” to reach 𝐶
• 𝐵 → 𝐶 is non-convex if need to take a “non-left turn”

Decide “left turn” vs. “right turn” by computing the sign of the 
(vector) cross product between �⃗�cd and �⃗�de

�⃗�cd

�⃗�de



Graham’s Algorithm
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1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as an ordered list)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

Which data structure to use?
Need to be able to insert elements and remove in order of most-recent insertion

Can implement both operations in constant-time using a stack



Graham’s Algorithm
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1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

Correctness?
See CLRS 33.3



Running Time of Graham’s Algorithm
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1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)
𝑂(𝑛)

𝑂(𝑛 log 𝑛)



We have essentially reduced the problem of
computing a convex hull to the problem of sorting!

Running Time of Graham’s Algorithm
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1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)
𝑂(𝑛)

𝑂(𝑛 log 𝑛)



convex hull ≤ sorting
convex hull can be reduced to sorting in 𝑂 𝑛 time

Reduction

Convex Hull to Sorting Reduction

63

points sorted by angle
convex hull

𝑂 𝑛

𝑂 𝑛

Map instances of problem 
𝑨 to instances of 𝑩

Map solutions of problem 
𝑩 to solutions of 𝑨

convex hull sorting



Running Time of Graham’s Algorithm
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1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)

Running time of Graham’s algorithm: same as best sorting algorithm

𝑂 𝑛 log 𝑛

Can we do better (without going through sorting)?

𝑂(𝑛)



Running Time of Graham’s Algorithm
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1. Let 𝑝^ be the point with the smallest 𝑦-coordinate (and smallest 𝑥-
coordinate if multiple points have the same minimum-𝑦 coordinate)

2. Add 𝑝^ to the convex hull 𝐶 (represented as a stack)
3. Sort all of the points based on their angle relative to 𝑝^
4. For each of the points 𝑝_ in sorted order:

• Try adding 𝑝_ to the convex hull 𝐶
• If adding 𝑝_ makes 𝐶 non-convex, then remove the last component of 
𝐶 and repeat this check

𝑂(𝑛)

𝑂(1)
𝑂(𝑛 log 𝑛)

Running time of Graham’s algorithm: same as best sorting algorithmTrivial lower bound: Ω 𝑛

Can we do better (without going through sorting)?

𝑂(𝑛)



Worst Case Lower Bound Proofs
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𝑓(𝑛)-reduces to   

Algorithm for B

can be used to make  

Algorithm for A

𝑨 is not a harder problem than 𝑩
𝑨 ≤ 𝑩

𝐵

𝑋𝑌

𝐴
Problem A

Problem B

With 𝑂(𝑓 𝑛 ) overhead

If we know that 𝐴 cannot be 
solved in 𝑂 𝑓 𝑛 time

If there is a 𝑂 𝑓 𝑛 reduction 
from 𝐴 to 𝐵, then 𝐵 cannot be 

solved in 𝑂 𝑓 𝑛 time 



Sorting to Convex Hull Reduction
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Sorting Convex Hull

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛)

Then this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)If this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)



Sorting to Convex Hull Reduction
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Observe: convex hull consists of a subset of points in a prescribed order



Sorting to Convex Hull Reduction
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6

7

8

1

3

2

5

4

Can we use
this to sort?

Observe: convex hull consists of a subset of points in a prescribed order



Sorting to Convex Hull Reduction
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6

7

8

1

3

2

5

4

Can we use
this to sort?

Want order of points in convex hull 
to be the order of elements in 

sorted order

To get full sorted ordering, convex 
hull should contain all of the points 

(i.e., values in the set)

Observe: convex hull consists of a subset of points in a prescribed order



Sorting to Convex Hull Reduction

• Goal: need a way to map list of (numeric) values onto a convex 
hull instance
– Given: -2 1 -3 0 2 3 -1
– Create some convex hull instance where all points on the convex hull 

71−3 −2 −1 0 1 2 3

How do we map 
values to points?
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−3 −2 −1 0 1 2 3

(−2,4)

(−1,1) (1,1)

(2,4)

(0,0)

(−3,9) (3,9)

−3−2 −101 2 3Given:

𝑥 (𝑥, 𝑥q)⇒
sorting CH

Creates a parabola!



Sorting to Convex Hull Reduction
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Claim: order of 
elements in convex hull 
coincide with elements 
in sorted order

(−3,9)

(−2,4)

(−1,1) (1,1)

(2,4)

(3,9)

(0,0)

−3−2 −101 2 3Given:



Sorting to Convex Hull Reduction

• Reduction Construction
– Convert each element to a 2D point, 𝑥 ⇒ (𝑥, 𝑥q)
– Run Convex Hull algorithm
– Find minimum 𝑥-coordinate in convex hull points
– List convex hull points’ 𝑥-coordinate in prescribed order
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𝑂(𝑛)

𝑂(𝑛)

𝑂(𝑛)

Reduction cost: 𝑂(𝑛)



Reduction

Convex Hull to Sorting Reduction
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𝑂 𝑛

𝑂 𝑛

Create 2D points

Find minimum 𝑥
Read CH solution in order

sorting numeric values ≤ convex hull
sorting numeric values can be reduced to convex hull in 𝑂 𝑛 time

sorting convex hull

−3−2 −101 2 3

−1−3 30−2 1 2



Reduction

Convex Hull to Sorting Reduction
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𝑂 𝑛

𝑂 𝑛

Create 2D points

Find minimum 𝑥
Read CH solution in order

sorting numeric values ≤ convex hull
sorting numeric values can be reduced to convex hull in 𝑂 𝑛 time

sorting convex hull

−3−2 −101 2 3

−1−3 30−2 1 2

Then this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)If this is 𝛀(𝒏 𝐥𝐨𝐠 𝒏)



reduces to   𝐵𝐴
sorting numeric values convex hull

Lower Bound for Convex Hull
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𝑂 𝑛 reduction

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Ω 𝑛 log 𝑛 for comparison-based sorts
Our reduction is not a comparison sort algorithm

Ω(𝑛 log 𝑛) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)

Implies Ω 𝑛 log 𝑛 lower bound for computing convex hull in this model



reduces to   𝐵𝐴
sorting numeric values convex hull

Lower Bound for Convex Hull
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𝑂 𝑛 reduction

Conclusion: a lower bound for sorting translates into one for convex hull

Our lower bound for sorting: Ω 𝑛 log 𝑛 for comparison-based sorts
Our reduction is not a comparison sort algorithm

Ω(𝑛 log 𝑛) lower bound for sorting also holds in an “algebraic decision tree model”
(i.e., decisions can be an algebraic function of inputs)

Implies Ω 𝑛 log 𝑛 lower bound for computing convex hull in this model

In fact, this lower bound holds even for algorithms 
that just identify the set of points on the convex 

hull (and not necessarily their order)!



Jarvis’ Algorithm (Gift Wrapping Method)
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Idea: Start with extremal point and “wrap” points in counter-clockwise fashion

𝑢
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𝑢

Idea: Start with extremal point and “wrap” points in counter-clockwise fashion



Jarvis’ Algorithm (Gift Wrapping Method)
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𝑢

Can find the “next” point using a linear scan
Number of iterations: number of points on convex hull
Run time: 𝑂(𝑛ℎ) where ℎ is the number of points on the convex hull



Jarvis’ Algorithm (Gift Wrapping Method)
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𝑢

Can find the “next” point using a linear scan
Number of iterations: number of points on convex hull
Run time: 𝑂(𝑛ℎ) where ℎ is the number of points on the convex hull

Output-dependent running time (similar to Ford-Fulkerson)
• Can be better than Graham’s Algorithm when ℎ ≪ log 𝑛
• Worst case: ℎ = 𝑛, so 𝑂 𝑛q
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Chan’s Algorithm
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Chan’s Algorithm
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Divide into smaller subsets



Chan’s Algorithm

107

Use Graham’s Algorithm to conquer the smaller subsets



Chan’s Algorithm
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Use Jarvis’ Algorithm to combine the solutions to the smaller subsets

𝑝tu^

𝑝t

𝑞^

𝑞q

𝑞\

maximize angle

Jarvis checks all other points, but...

Linear scan over smaller convex 
hulls, binary search inside the 

smaller convex hulls



Chan’s Algorithm
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Use Jarvis’ Algorithm to combine the solutions to the smaller subsets



Chan’s Algorithm
Combines Graham’s Algorithm and Jarvis’ Algorithm
Given points 𝑃, size of subsets 𝑚, guess of number of hull points 𝐻

• Partition 𝑃 into subsets 𝑃 , 𝑃q, … , 𝑃 y/{ of size at most 𝑚
• for 𝑖 = 1,… , 𝑛/𝑚

– Compute 𝑐𝑜𝑛𝑣(𝑃_) using Graham’s Algorithm, store in counter-clockwise order
• 𝑝� ← 0,−∞
• 𝑝^ ← rightmost point of 𝑃
• for 𝑘 = 1,… , 𝐻 (each hull point)

– for 𝑖 = 1,… , 𝑛/𝑚 (each subset)
• Use binary search on 𝑐𝑜𝑛𝑣(𝑃_) to find point 𝑞_

that maximizes the angle ∠𝑝tu^𝑝t𝑞_
– 𝑝t�^ ← 𝑞 ∈ {𝑞^, 𝑞q, … , 𝑞 �

�
} that maximizes the angle ∠𝑝tu^𝑝t𝑞 (Jarvis’ Algorithm)

– if 𝑝t�^ = 𝑝^, then return 𝑐𝑜𝑛𝑣 𝑃 = {𝑝^, 𝑝q, … , 𝑝t}
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𝑂(𝑛 log ℎ)
Where ℎ is the number of hull points

Divide

Conquer
with

Graham’s
Algorithm

Combine
with

Jarvis’ 
Algorithm

https://link.springer.com/content/pdf/10.1007%2FBF02712873.pdf

https://link.springer.com/content/pdf/10.1007%2FBF02712873.pdf

