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Fall 2019

Warm up
Given 5 points on the unit equilateral 
triangle, show there’s always a pair of 

distance ≤ "
#

apart
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If points 𝑝", 𝑝# in same quadrant, then 𝛿 𝑝", 𝑝# ≤ "
#

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Fall 2019
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Today’s Keywords

• Divide and Conquer
• Closest Pair of Points
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CLRS Readings

• Chapter 4
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Homeworks

• Hw1 due Saturday, September 14 at 11pm
– Written (use Latex!) – Submit BOTH pdf and zip!
– Asymptotic notation
– Recurrences
– Divide and Conquer

• Hw2 released today, due Thursday Sept 19 at 11pm
– Programming assignment (Python or Java)
– Divide and conquer
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Recurrence Solving Techniques

Tree

Guess/Check

“Cookbook”

Substitution
7

?



Master Theorem
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Case 1: if 𝑓 𝑛 = 𝑂(𝑛,-./ 0 12) for some constant 𝜀 > 0, 
then 𝑇 𝑛 = Θ 𝑛,-./ 0

Case 2: if 𝑓 𝑛 = Θ(𝑛,-./ 0), then 𝑇 𝑛 = Θ(𝑛,-./ 0 log 𝑛)

Case 3: if 𝑓 𝑛 = Ω(𝑛,-./ 0=2) for some constant 𝜀 > 0, 
and if 𝑎𝑓 ?

@
≤ 𝑐𝑓(𝑛) for some constant 𝑐 < 1

and all sufficiently large 𝑛, 
then 𝑇 𝑛 = Θ(𝑓 𝑛 )

𝑇 𝑛 = 𝑎𝑇
𝑛
𝑏
+ 𝑓(𝑛)



3 Cases
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𝑇 𝑛 = 𝑓 𝑛 + 𝑎𝑓
𝑛
𝑏
+ 𝑎#𝑓

𝑛
𝑏#

+ 𝑎F𝑓
𝑛
𝑏F

+⋯+ 𝑎H𝑓(
𝑛
𝑏H
)

Case 1:
Most work 
happens at 
the leaves

Case 2:
Work happens  
consistently 
throughout

Case 3:
Most work 
happens at 
top of tree

𝐿 = log@ 𝑛



Historical Aside: Master Theorem
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Substitution Method
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𝑇 𝑛 = 2𝑇 𝑛 + log# 𝑛

Let 𝑛 = 2K, i.e. 𝑚 = log# 𝑛

Let 𝑆 𝑚 = 2𝑆 K
#
+ 𝑚

𝑇 2K = 2𝑇 2
K
# + 𝑚 Rewrite in terms of exponent!

Case 2!

Let 𝑆 𝑚 = Θ(𝑚 log𝑚) Substitute Back

Let T 𝑛 = Θ(log 𝑛 log log 𝑛)

𝑇 𝑛 = 2𝑇 𝑛"/# + log# 𝑛
I don’t like the ½ in 

the exponent

Now the variable is in the 
exponent on both sides!

S will operate exactly as T, just 
redefined in terms of the 

exponent

𝑆 𝑚 = 𝑇(2K)



My Yard
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There has to be an easier way!
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Constraints: Trees and Plants

Need to find:
Closest Pair of Trees - how 
wide can the robot be?

1
2

3

4
5

6

7

8

ROBO

mulcher

3000
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Closest Pair of Points
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1
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8

Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart



Closest Pair of Points: Naïve
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Given: 
A list of points

Return: 
Pair of points with 
smallest distance apart

𝑂(𝑛#)Algorithm:
Test every pair of points, 
return the closest.

We can do better!
Θ(𝑛 log 𝑛)



Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: How?
At median x coordinate

Conquer: 
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Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
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Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

Divide: 
At median x coordinate

Conquer: 

LeftPoints RightPoints

Recursively find closest 
pairs from Left and Right

Combine: 
Return min of Left and 
Right pairs Problem? ?
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Closest Pair of Points: D&C

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2 Cases:

?

1. Closest Pair is 
completely in Left or 
Right

2. Closest Pair Spans our 
“Cut”

Need to test points 
across the cut
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Spanning the Cut

1
2

3

4
5

6

7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿H

𝛿O
Compare all points 
within 𝛿 = min{𝛿H, 𝛿O}
of the cut.

2𝛿
How many are there?
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Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿H

𝛿O

2𝛿

Compare all points 
within 𝛿 = min{𝛿H, 𝛿O}
of the cut.

How many are there?

𝑇 𝑛 = 2𝑇
𝑛
2 +

𝑛
2

#
= Θ 𝑛#
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Spanning the Cut

1
2

3

4
5

6
7

8

LeftPoints RightPoints

Combine: 
2. Closest Pair Spanned 
our “Cut”
Need to test points 
across the cut

𝛿H

𝛿O

2𝛿

We don’t need to test all 
pairs!

Only need to test points 
within 𝛿 of one another
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Reducing Search Space
Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

2 ⋅ 𝛿

𝛿
2

𝛿
2

Divide the “runway” into 
square cubbies of size V

#

Each cubby will have at most 1 
point!
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Reducing Search Space

25

2 ⋅ 𝛿

7

How many cubbies could 
contain a point < 𝜹 away?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Each point compared to 
≤ 15 other points

Combine: 
2. Closest Pair Spanned our 
“Cut”
Need to test points across the 
cut

Divide the “runway” into 
square cubbies of size V

#



Closest Pair of Points: Divide and Conquer

1
2

3

4
5

6

7

8

LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer

1
2
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LeftPoints RightPoints

?

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points

But sorting is an 𝑂 𝑛 log 𝑛
algorithm – combine step is still 
too expensive! We need 𝑂(𝑛)



Closest Pair of Points: Divide and Conquer

Solution: Maintain additional 
information in the recursion
• Minimum distance among pairs of 

points in the list
• List of points sorted according to 
𝑦-coordinate

Sorting runway points by 
𝑦-coordinate now becomes a merge

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Listing Points in the Runway

1
2

3

4
5

6

7

8

29

Output on Left:

LeftPoints RightPoints

Closest Pair: (1, 5), 𝛿",[
Sorted Points: [3,7,5,1]

Output on Right:
Closest Pair: (4,6), 𝛿b,c
Sorted Points: [8,6,4,2]

Merged Points: 8,3,7,6,4,5,1,2

Runway Points: 8,7,6,5,2

Both of these lists can be computed 
by a single pass over the lists



Closest Pair of Points: Divide and Conquer
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points

Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Base case?

Combine: 
• Construct list of points in the runway 

(𝑥-coordinate within distance 𝛿 of median)
• Sort runway points by 𝑦-coordinate
• Compare each point in runway to 15 points 

above it and save the closest pair
• Output closest pair among left, right, and 

runway points



Closest Pair of Points: Divide and Conquer
Θ 𝑛 log 𝑛

Θ 1

2𝑇(𝑛/2)

Θ 𝑛

Θ 𝑛

Θ 1

𝑇(𝑛) = 2𝑇(𝑛/2) + Θ(𝑛)

Case 2 of Master’s Theorem
𝑇 𝑛 = Θ 𝑛 log 𝑛

What is the running time?

𝑇(𝑛)

Θ(𝑛 log 𝑛)
Initialization: Sort points by 𝑥-coordinate

Divide: Partition points into two lists of points 
based on 𝑥-coordinate (split at the median 𝑥)

Conquer: Recursively compute the closest pair 
of points in each list

Combine: 
• Merge sorted list of points by 𝑦-coordinate 

and construct list of points in the runway 
(sorted by 𝑦-coordinate)

• Compare each point in runway to 15 points 
above it and save the closest pair

• Output closest pair among left, right, and 
runway points



Matrix Multiplication
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1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12
14 16 18

=
60 72 84
132 162 192
204 252 300

=
2 + 16 + 42 4 + 20 + 48 6 + 24 + 54

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛F)

𝑛

𝑛



Matrix Multiplication D&C

36

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎i 𝑎j
𝑎k 𝑎"l 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏i 𝑏j
𝑏k 𝑏"l 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

Divide:



Matrix Multiplication D&C

37

Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎i 𝑎j
𝑎k 𝑎"l 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐴"," 𝐴",#

𝐴#," 𝐴#,#

𝐴𝐵 =
𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏i 𝑏j
𝑏k 𝑏"l 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

𝐵"," 𝐵",#

𝐵#," 𝐵#,#

Run time? 𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

# Cost of 
additions

Combine:



Matrix Multiplication D&C
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𝑇 𝑛 = 8𝑇
𝑛
2
+ 4

𝑛
2

#

𝑇 𝑛 = 8𝑇
𝑛
2
+ Θ(𝑛#)

𝑎 = 8, 𝑏 = 2, 𝑓 𝑛 = 𝑛#

𝑛,-./ 0 = 𝑛,-.m j = 𝑛F
Case 1!

𝑇 𝑛 = Θ(𝑛F)
We can do better…



Matrix Multiplication D&C
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎i 𝑎j
𝑎k 𝑎"l 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐴"," 𝐴",#

𝐴#," 𝐴#,#

𝐴𝐵 =
𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏i 𝑏j
𝑏k 𝑏"l 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

𝐵"," 𝐵",#

𝐵#," 𝐵#,#

Idea: Use a Karatsuba-like technique on this



Strassen’s Algorithm
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Multiply 𝑛×𝑛 matrices (𝐴 and 𝐵) 

𝐴 =

𝑎" 𝑎# 𝑎F 𝑎b
𝑎[ 𝑎c 𝑎i 𝑎j
𝑎k 𝑎"l 𝑎"" 𝑎"#
𝑎"F 𝑎"b 𝑎"[ 𝑎"c

𝐴"," 𝐴",#

𝐴#," 𝐴#,#
𝐵 =

𝑏" 𝑏# 𝑏F 𝑏b
𝑏[ 𝑏c 𝑏i 𝑏j
𝑏k 𝑏"l 𝑏"" 𝑏"#
𝑏"F 𝑏"b 𝑏"[ 𝑏"c

𝐵"," 𝐵",#

𝐵#," 𝐵#,#
Calculate:

𝑄" = 𝐴"," + 𝐴#,# (𝐵"," + 𝐵#,#)
𝑄# = 𝐴#," + 𝐴#,# 𝐵","
𝑄F = 𝐴","(𝐵",# − 𝐵#,#)
𝑄b = 𝐴#,#(𝐵#," − 𝐵",")

𝑄c = 𝐴#," − 𝐴"," (𝐵"," + 𝐵",#)
𝑄[ = 𝐴"," + 𝐴",# 𝐵#,#

𝑄i = 𝐴",# − 𝐴#,# (𝐵#," + 𝐵#,#)

𝐴","𝐵"," + 𝐴",#𝐵#," 𝐴","𝐵",# + 𝐴",#𝐵#,#
𝐴#,"𝐵"," + 𝐴#,#𝐵#," 𝐴#,"𝐵",# + 𝐴#,#𝐵#,#

𝑄" + 𝑄b − 𝑄[ + 𝑄i 𝑄F + 𝑄[
𝑄# + 𝑄b 𝑄" − 𝑄# + 𝑄F + 𝑄c

Find 𝐴𝐵:

Number Mults.: 7 Number Adds.: 18

𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛#



Strassen’s Algorithm
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𝑇 𝑛 = 7𝑇
𝑛
2
+
9
2
𝑛#

𝑎 = 7, 𝑏 = 2, 𝑓 𝑛 =
9
2
𝑛#

𝑛,-./ 0 = 𝑛,-.m i ≈ 𝑛#.jli
Case 1!

𝑇 𝑛 = Θ 𝑛,-.m i ≈ Θ(𝑛#.jli)
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𝑛F

𝑛,-.m i

Strassen’s Algorithm



Is this the fastest?
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Best possible 
is unknown

May not even 
exist!


