CS4102 Algorithms

Fall 2019

CS4102 Algorithms Fall 2019

Warm up

Given 5 points on the unit equilateral triangle, show there's always a pair of distance $\leq \frac{1}{2}$ apart

CS4102 Algorithms Fall 2019

If points p_1, p_2 in same quadrant, then $\delta(p_1, p_2) \le \frac{1}{2}$

Given 5 points, two must share the same quadrant

Pigeonhole Principle!

Today's Keywords

- Divide and Conquer
- Closest Pair of Points

CLRS Readings

• Chapter 4

Homeworks

- Hw1 due Saturday, September 14 at 11pm
 - Written (use Latex!) Submit BOTH pdf and zip!
 - Asymptotic notation
 - Recurrences
 - Divide and Conquer
- Hw2 released today, due Thursday Sept 19 at 11pm
 - Programming assignment (Python or Java)
 - Divide and conquer

Recurrence Solving Techniques

"Cookbook"

Substitution

Master Theorem

$$T(n) = \frac{a}{b}T\left(\frac{n}{b}\right) + f(n)$$

Case 1: if
$$f(n) = O(n^{\log_b a} - \varepsilon)$$
 for some constant $\varepsilon > 0$,
then $T(n) = \Theta(n^{\log_b a})$

Case 2: if
$$f(n) = \Theta(n^{\log_b a})$$
, then $T(n) = \Theta(n^{\log_b a} \log n)$

Case 3: if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant c < 1and all sufficiently large n, then $T(n) = \Theta(f(n))$

3 Cases

Historical Aside: Master Theorem

Jon Bentley

Dorothea Haken

James Saxe

Substitution Method

$$T(n) = 2T(\sqrt{n}) + \log_2 n$$

= $2T(n^{1/2}) + \log_2 n$
I don't l
the e

like the ½ in exponent

Let
$$n = 2^m$$
, i.e. $m = \log_2 n$
 $T(2^m) = 2T\left(2^{\frac{m}{2}}\right) + m$ Rewrite in terms of exponent!
Let $S(m) = 2S\left(\frac{m}{2}\right) + m$ Case 2!
Let $S(m) = \Theta(m \log m)$ Substitute Back
Let $T(n) = \Theta(\log n \log \log n)$
Let $T(n) = \Theta(\log n \log \log n)$

There has to be an easier way!

Constraints: Trees and Plants

Need to find: Closest Pair of Trees - how wide can the robot be?

Closest Pair of Points

Given: A list of points

Return: Pair of points with smallest distance apart

Closest Pair of Points: Naïve

Given: A list of points

Return: Pair of points with smallest distance apart

Algorithm: $O(n^2)$ Test every pair of points, return the closest.

We can do better! 16 $\Theta(n \log n)$

Combine: 2 Cases:

 Closest Pair is completely in Left or Right

2. Closest Pair Spans our "Cut"

Need to test points across the cut

Spanning the Cut

Combine:

- 2. Closest Pair Spanned our "Cut"Need to test points
- across the cut
- Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut.

How many are there?

Spanning the Cut

Combine:

2. Closest Pair Spanned our "Cut"Need to test points

across the cut

Compare all points within $\delta = \min\{\delta_L, \delta_R\}$ of the cut.

How many are there?

$$T(n) = 2T\left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)^2 = \Theta(n^2)$$

Spanning the Cut

Combine:

- 2. Closest Pair Spanned our "Cut"Need to test points across the cut
- We don't need to test all pairs!

Only need to test points within δ of one another

Reducing Search Space

Combine:

- 2. Closest Pair Spanned our "Cut"
- Need to test points across the cut
- Divide the "runway" into square cubbies of size $\frac{\delta}{2}$

Each cubby will have at most 1 point!

Reducing Search Space

Combine:

- 2. Closest Pair Spanned our "Cut"
- Need to test points across the cut
- Divide the "runway" into square cubbies of size $\frac{\delta}{2}$ How many cubbies could contain a point < δ away? Each point compared to
- ≤ 15 other points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on x-coordinate (split at the median x)

But sorting is an $O(n \log n)$ algorithm – combine step is still too expensive! We need O(n)

- Construct list of points in way (x-coordinate within distant of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Solution: Maintain additional

information in the recursion

- Minimum distance among pairs of points in the list
- List of points sorted according to y-coordinate

Sorting runway points by y-coordinate now becomes a **merge**

Listing Points in the Runway

Output on Left:

Closest Pair: (1, 5), $\delta_{1,5}$ Sorted Points: [3,7,5,1]

Output on Right:

Closest Pair: (4,6), $\delta_{4,6}$ Sorted Points: [8,6,4,2]

Merged Points: [8,3,7,6,4,5,1,2]

Runway Points: [8,7,6,5,2]

Both of these lists can be computed by a *single* pass over the lists

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list Base case?

Combine:

- Construct list of points in the runway (x-coordinate within distance δ of median)
- Sort runway points by *y*-coordinate
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Initialization: Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

 $\Theta(n \log n)$

 $\Theta(1)$

What is the running time?

 $\Theta(n\log n)$

 $T(n) \stackrel{2T(n)}{\prec}$

 $T(n) = 2T(n/2) + \Theta(n)$

Case 2 of Master's Theorem $T(n) = \Theta(n \log n)$ $\Theta(n)$ $\Theta(n)$ $\Theta(1)$ **Initialization:** Sort points by *x*-coordinate

Divide: Partition points into two lists of points based on *x*-coordinate (split at the median *x*)

Conquer: Recursively compute the closest pair of points in each list

Combine:

- Merge sorted list of points by y-coordinate and construct list of points in the runway (sorted by y-coordinate)
- Compare each point in runway to 15 points above it and save the closest pair
- Output closest pair among left, right, and runway points

Multiply
$$n \times n$$
 matrices (A and B)
Divide:

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16} \end{bmatrix} \qquad B = \begin{bmatrix} b_1 & b_2 & b_3 & b_4 \\ b_5 & b_6 & b_7 & b_8 \\ b_9 & b_{10} & b_{11} & b_{12} \\ b_{13} & b_{14} & b_{15} & b_{16} \end{bmatrix}$$

Multiply $n \times n$ matrices (A and B)

Combine:

$$AB = \begin{bmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{bmatrix}$$

Run time?
$$T(n) = 8T\left(\frac{n}{2}\right) + \left[4\left(\frac{n}{2}\right)^2\right] \quad \begin{array}{c} \text{Cost of} \\ \text{additions} \end{array}$$

$$T(n) = 8T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2$$
$$T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$$

. .

$$a = 8, b = 2, f(n) = n^2$$

Case 1!
 $n^{\log_b a} = n^{\log_2 8} = n^3$
 $T(n) = \Theta(n^3)$
We can do better.

Multiply $n \times n$ matrices (A and B)

Idea: Use a Karatsuba-like technique on this

Strassen's Algorithm

Strassen's Algorithm

Case 1!

$$T(n) = 7T\left(\frac{n}{2}\right) + \frac{9}{2}n^2$$

$$a = 7, b = 2, f(n) = \frac{9}{2}n^2$$

 $n^{\log_b a} = n^{\log_2 7} \approx n^{2.807}$

$$T(n) = \Theta\left(n^{\log_2 7}\right) \approx \Theta(n^{2.807})$$

Strassen's Algorithm

Is this the fastest?

43