
Reminder Warm-Up
Compare 𝑓 𝑛 +𝑚 with 𝑓 𝑛 + 𝑓(𝑚)

When 𝑓 𝑛 = 𝑂(𝑛)
When 𝑓 𝑛 = Ω(𝑛)

1

Fall 2019

2

𝑛 𝑚 𝑛 +𝑚

𝑓(𝑛) 𝑓(𝑚) 𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 ∈ O(𝑛)

𝑓 𝑥
= 𝑥

-./0

𝑓 𝑛 + 𝑚 ≤ 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ Ω(𝑛)

3

𝑓 𝑥
= 𝑥

2.3
0

𝑛 𝑚 𝑛 +𝑚

𝑓(𝑛)
𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 ≥ 𝑓 𝑛 + 𝑓(𝑚)

𝑓(𝑚)

4

𝑓 𝑥
= 𝑥

𝑛 𝑚 𝑛 +𝑚

𝑓(𝑛) 𝑓(𝑚) 𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 = 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ Θ(𝑛)

Warm Up

5

Guess the solution to this recurrence:

𝑇 𝑛 = 𝑇
𝑛
5 + 𝑇

7𝑛
10 + 𝑐 ⋅ 𝑛

where 𝑐 ≥ 1
is a constant

Warm Up

6

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛

𝑛
5 +

7𝑛
10 =

9𝑛
10 < 𝑛

If this was 𝑇 @A
2-

, then can
use Master’s Theorem to

conclude Θ 𝑛

Guess: Θ 𝑛
Suffices to show 𝑂 𝑛 since non-recursive cost is already Ω 𝑛

Warm Up

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛
Claim: 𝑇 𝑛 ≤ 10𝑐𝑛

Base Case: 𝑇 0 = 0
𝑇 1 = 𝑐 ≤ 10𝑐 which is true since 𝑐 ≥ 1

Strictly speaking, we can handle any
𝑐 > 0, but assuming 𝑐 ≥ 1 to

simplify the analysis here

Warm Up

8

𝑇 𝑛 = 𝑇 ⁄𝑛 5 + 𝑇 ⁄7𝑛 10 + 𝑐 ⋅ 𝑛
Inductive hypothesis: ∀𝑛 ≤ 𝑥- : 𝑇 𝑛 ≤ 10𝑐𝑛

𝑇 𝑥- + 1

Inductive step:

≤
1
5 +

7
10 10𝑐 𝑥- + 1 + 𝑐(𝑥- + 1)

= 9𝑐 𝑥- + 1 + 𝑐 𝑥- + 1 = 10𝑐(𝑥- + 1)

= 𝑇
1
5
𝑥- + 1 + 𝑇

7
10

𝑥- + 1 + 𝑐(𝑥- + 1)

Today’s Keywords

• Divide and Conquer
• Strassen’s Algorithm
• Sorting
• Quicksort

9

CLRS Readings

• Chapter 7

10

Homeworks

• Hw2 due 11pm Tonight!
– Programming (use Python or Java!)
– Divide and conquer
– Closest pair of points

• Hw3 coming Tonight!
– Written (LaTeX)
– Divide and Conquer

11

Quicksort

Idea: pick a pivot element, recursively sort two sublists around
that element
• Divide: select pivot element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

12

Partition (Divide step)

Given: a list, a pivot 𝑝

13

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Partition Summary

1. Put 𝑝 at beginning of list
2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the

end of the list
3. While Begin < End:

1. If Begin value < 𝑝, move Begin right
2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position
5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to

the left
14

Run time? 𝑂(𝑛)

Conquer

Recursively sort Left and Right sublists

15

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Quicksort Run Time (Best)

Then we divide in half each time

16

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ 𝑛

If the pivot is always the median:

𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Quicksort Run Time (Worst)

Then we shorten by 1 each time

17

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

If the pivot is always at the extreme:

𝑇 𝑛 = 𝑂(𝑛3)

How to pick the pivot?

18

Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Can we find median in linear time?
– Yes!
– Quickselect

19

Quickselect

• Finds 𝑖th order statistic
• Idea: pick a pivot element, partition, then recurse on sublist

containing index 𝑖
• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: if 𝑖 = index of 𝑝, done!
– if 𝑖 < index of 𝑝 recurse left. Else recurse right

• Combine: Nothing!

20

Partition (Divide step)

Given: a list, a pivot value 𝑝

21

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Conquer

22

2 5 7 3 6 4 1 8 10 9 11 12

All elements < 𝑝 All elements > 𝑝

Exactly where it belongs!

Recurse on sublist that contains index 𝑖
(adjust 𝑖 accordingly if recursing right)

Quickselect Run Time

Then we divide in half each time

23

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑆 𝑛 = 𝑆
𝑛
2
+ 𝑛

If the pivot is always the median:

𝑆 𝑛 = 𝑂(𝑛)

Quickselect Run Time

Then we shorten by 1 each time

24

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑆 𝑛 = 𝑆 𝑛 − 1 + 𝑛

If the partition is always unbalanced:

𝑆 𝑛 = 𝑂(𝑛3)

Good Pivot

• What makes a good Pivot?
– Roughly even split between left and right
– Ideally: median

• Here’s what’s next:
– An algorithm for finding a “rough” split (Median of Medians)
– This algorithm uses Quickselect as a subroutine

25

Déjà vu?

Good Pivot

• What makes a good Pivot?
– Both sides of Pivot >30%

26

Or

>30%

>30%

Select Pivot from
this range

Median of Medians

• Fast way to select a “good” pivot
• Guarantees pivot is greater than 30% of elements and less than

30% of the elements
• Idea: break list into chunks, find the median of each chunk, use

the median of those medians

27

Median of Medians

28

1. Break list into chunks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Why is this good?

29

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Each chunk sorted, chunks ordered by their medians
MedianofMedians
is Greater than all

of these

𝑛
5

5

Why is this good?

30

MedianofMedians
is larger than all

of these

Larger than 3
things in each
(but one) list to
the left <3 2

3
⋅ A
0
− 2 ≈ NA

2-
− 6 elements

Similarly: >3 2
3
⋅ A
0
− 2 ≈ NA

2-
− 6 elements

𝑛
5

<
<

<
<

<
<

<
<

<
<

<
<

< <

<
<

<
<

<

<
<

< <

Quickselect

• Divide: select an element 𝑝 using Median of Medians,
Partition(𝑝)

• Conquer: if 𝑖 = index of 𝑝, done, if 𝑖 < index of 𝑝 recurse left.
Else recurse right

• Combine: Nothing!

31

𝑀 𝑛 + Θ(𝑛)

≤ 𝑆
7

10
𝑛

𝑆 𝑛 ≤ 𝑆
7

10
𝑛 + 𝑀 𝑛 + Θ(𝑛)

Median of Medians, Run Time

32

1. Break list into chunks of 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

Θ(𝑛)

Θ(𝑛)

𝑆
𝑛
5

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)

Quickselect

33

𝑀 𝑛 = 𝑆
𝑛
5
+ Θ(𝑛)𝑆 𝑛 ≤ 𝑆

7𝑛
10

+𝑀 𝑛 + Θ(𝑛)

= 𝑆
7𝑛
10

+ 𝑆
𝑛
5
+ Θ(𝑛)

𝑆 𝑛 = O(𝑛)
Warm Up!... Guess and Check ...

𝑆 𝑛 = Θ(𝑛)

𝑆 𝑛 = Ω(𝑛) Linear work done at top level

Phew! Back to Quicksort

Then we divide in half each time

34

2 5 1 3 6 4 7 8 10 9 11 12

2 1 3 5 6 4 7 8 9 10 11 12

𝑇 𝑛 = 2𝑇
𝑛
2
+ Θ(𝑛)

Using Quickselect, with a median-of-medians partition:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Is it worth it?

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run
time

• Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

35

Quicksort Run Time

36

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

If the pivot is always A
2-

th order statistic:

𝑛

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

⁄𝑛 10 ⁄9𝑛 10

⁄𝑛 100 ⁄9𝑛 100 ⁄9𝑛 100 ⁄81𝑛 100

… … … …

1
1

1
1

𝑛

𝑛/10 9𝑛/10

𝑛/100 9𝑛/100 9𝑛/100 81𝑛/100

1

1
1

1

𝑛

𝑛

𝑛

+

+ + +

+

+
+

log 2-
@
𝑛

Quicksort Run Time

38

𝑇 𝑛 = 𝑇
𝑛
10

+ 𝑇
9𝑛
10

+ 𝑛

If the pivot is always A
2-

th order statistic:

𝑇 𝑛 = Θ(𝑛 log 𝑛)

Quicksort Run Time

Then we shorten by 𝑑 each time

39

1 5 2 3 6 4 7 8 10 9 11 12

1 2 3 5 6 4 7 8 10 9 11 12

𝑇 𝑛 = 𝑇 𝑛 − 𝑑 + 𝑛

If the pivot is always 𝑑th order statistic:

𝑇 𝑛 = 𝑂(𝑛3)
What’s the probability of this occurring?

Probability of 𝑛3 run time

We must consistently select pivot from within the first 𝑑 terms

40

Probability first pivot is among 𝑑 smallest: T
A

Probability second pivot is among 𝑑 smallest: T
AUT

Probability all pivots are among 𝑑 smallest:
𝑑
𝑛
⋅

𝑑
𝑛 − 𝑑

⋅
𝑑

𝑛 − 2𝑑
⋅ … ⋅

𝑑
2𝑑

⋅ 1 =
1
𝑛
𝑑 !

Formal Argument for 𝑛 log 𝑛 Average

• Remember, run time counts comparisons!
• Quicksort only compares against a pivot
– Element 𝑖 only compared to element 𝑗 if one of

them was the pivot

41

Partition (Divide step)

Given: a list, a pivot value 𝑝

42

8 5 7 3 12 10 1 2 4 9 6 11

Goal: All elements < 𝑝 on left, all > 𝑝 on right

Start: unordered list

5 7 3 1 2 4 6 8 12 10 9 11

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

What is the probability of comparing two given elements?

43

1 2 3 4 5 6 7 8 9 10 11 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared
– Why?
– Every sorting algorithm must compare adjacent elements

Otherwise I would not know which came first

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

44

1 2 3 4 5 6 7 8 9 10 11 12

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2
12

Assuming pivot is chosen
uniformly at random

What is the probability of comparing two given elements?

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in right sublist and will be
processed in future recursive invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1,… , 𝑛]

What is the probability of comparing two given elements?

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

1 2 3 4 5 6 7 8 9 10 11 12

Case 1: Pivot less than 𝑖
Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in right sublist and will be
processed in future recursive invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1,… , 𝑛]

[𝑝 + 1,… , 𝑛] denotes the right
sublist (in some order) that we are

recursively sorting

What is the probability of comparing two given elements?

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

1 2 3 4 5 6 7 8 9 10 11 12

Case 2: Pivot greater than 𝑗
Then sublist 𝑖, 𝑖 + 1,… , 𝑗 will be in left sublist and will be
processed in future recursive invocation of Quicksort

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 1, … , 𝑝]

What is the probability of comparing two given elements?

Case 3.1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
Then 𝑖 and 𝑗 are in different sublists and will never be
compared

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

What is the probability of comparing two given elements?

Case 3.2: Pivot is either 𝑖 or 𝑗
Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

What is the probability of comparing two given elements?

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗
Case 1: Pivot less than 𝑖

Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 𝑝 + 1,… , 𝑛]

Case 2: Pivot greater than 𝑗
Pr we compare 𝑖 and 𝑗 = Pr[we compare 𝑖 and 𝑗 in Quicksort 1, … , 𝑝]

Case 3: Pivot in 𝑖, 𝑖 + 1,… , 𝑗
Pr we compare 𝑖 and 𝑗 = Pr 𝑖 or 𝑗 is selected as pivot =

What is the probability of comparing two given elements?

2
𝑗 − 𝑖 + 1

Formal Argument for 𝑛 log 𝑛 Average

Probability of comparing 𝑖 with 𝑗 (𝑗 > 𝑖):
– dependent on the number of elements between (and including)
𝑖 and 𝑗

2
𝑗 − 𝑖 + 1

Expected number of comparisons for Quicksort:

q
rst

2
𝑗 − 𝑖 + 1

51

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

52

Consider when 𝑖 = 1

Sum so far: 3
3

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

53

Consider when 𝑖 = 1

Sum so far: 3
3
+ 3

N

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

54

Consider when 𝑖 = 1

Sum so far: 3
3
+ 3

N
+ 3

w

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

55

Consider when 𝑖 = 1

Overall sum: 3
3
+ 3

N
+ 3

w
+ 3

0
+ ⋯+ 3

A

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

q
rst

2
𝑗 − 𝑖 + 1

56

When 𝑖 = 1:

2
1
2
+
1
3
+
1
4
+⋯+

1
𝑛

< 2 q
zu2

A
1
𝑥

Θ(log 𝑛)

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

• Probability of comparing element 𝑖 with element 𝑗:

• Pr we compare 𝑖 and 𝑗 = 3
tUrv2

• Expected number of comparisons:

57

Substitution:
𝑘 = 𝑗 − 𝑖

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1 = q
ru2

AU2

q
|u2

AUr
2

𝑘 + 1
< 2q

ru2

AU2

q
|u2

AUr
1
𝑘
< 2q

ru2

AU2

q
|u2

A
1
𝑘

1
𝑘 + 1

<
1
𝑘

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

58

Substitution:
𝑘 = 𝑗 − 𝑖

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1 = q
ru2

AU2

q
|u2

AUr
2

𝑘 + 1
< 2q

ru2

AU2

q
|u2

AUr
1
𝑘
< 2q

ru2

AU2

q
|u2

A
1
𝑘

1
𝑘 + 1 <

1
𝑘

Useful fact: q
ru2

A
1
𝑖
= Θ(log 𝑛)

Intuition (not proof!):

q
ru2

A
1
𝑖
≈ }

2

A 1
𝑥
𝑑𝑥 = ln 𝑛

Formal Argument for 𝒏 𝐥𝐨𝐠𝒏 Average

59

q
ru2

AU2

q
turv2

A
2

𝑗 − 𝑖 + 1 = q
ru2

AU2

q
|u2

AUr
2

𝑘 + 1
< 2q

ru2

AU2

q
|u2

AUr
1
𝑘
< 2q

ru2

AU2

q
|u2

A
1
𝑘

= 2q
ru2

AU2

Θ(log 𝑛) = Θ 𝑛 log 𝑛

Quicksort overall: expected Θ 𝑛 log 𝑛

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

60

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛3)

𝑂(𝑛3)

Can we do better than 𝑂(𝑛 log 𝑛)?

