CS4102 Algorithms

Fall 2019

Reminder Warm-Up
Compare f(n + m) with f(n) + f(m)
When f(n) = 0(n)

When f(n) = Q(n)

f(n) € 0(n)

/

/

f(m)

Q)
f / A f(m) ()

| | | | |
n m n+m

fn+m) < f(n) + f(m)

f(n) € Q(n)
Fn+m) = f(n) + fom),/

f(m)

f(n)

120 140
n+m

f(n) € 6(n)

fn+m) = f(n) + f(m)

200

fom
ya 1
X
) f(m) f()

n m n+m

Guess the solution to this recurrence:

mn

T(n)=T(g)+T(1—O)+c-n

- —

wherec = 1

IS @ constant
N J

T(m)=Tn/5)+T(7n/10)+c-n abi'%

- A H\ ,T{L%"‘\

Z N
. N
2 T On If thiswas T (1—0), then can

c | 10 1—0 <n use Master’s Theorem to
& ¥ conclude O(n) -

Guess: O(n)
Suffices to show O(n) since non-recursive cost is already Q(n)

6

T(n) =T(n/5) +T(7n/10) +c-n

Claim: T(n) < 10cn

Base Case: T(0) =0
T(1) = ¢ < 10c whichis true sincec > 1

Strictly speaking, we can handle any
¢ > 0, butassumingc = 1to
simplify the analysis here

T(n) =T(n/5) +T(7n/10) +c-n

Inductive hypothesis: Vn < x, : T(n) < 10cn

Inductive step:

1 7
T(xog+1) =T(§(x0+1))+T(1—0(x0+1)>+c(x0+1)

1 7
<

= 9C(x0 + 1) + C(xo + 1) = 10C(x0 + 1)

Today's Keywords

* Divide and Conquer
e Strassen’s Algorithm
* Sorting

* Quicksort

CLRS Readings

* Chapter 7

HomMeworks

* Hw2 due 11pm Tonight!
— Programming (use Python or Java!)
— Divide and conquer
— Closest pair of points
* Hw3 coming Tonight!
— Written (LaTeX)

— Divide and Conquer

11

ldea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select pivot element p, Partition(p)
* Conquer: recursively sort left and right sublists

* Combine: Nothing!

12

Partition (Divide step)

Given: a list, a pivot p

Start: unordered list

7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

13

Partition summary

1. Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the
end of the list

3. While < End:

1. |If value < p, move right

2. Else swap value with End value, move End Left
4. If pointers meet at element : Swap p with

5. Else If pointers meet at element > p: Swap p with

Runtime? 0(n)

14

Conguer
|

All elements < p All elements > p

Exactly where it belongs!

Recursively sort and Right sublists

15

Quicksort Run Time (Best)

If the pivot is always the median:

T

Then we divide in half each time

T(n) = 2T (g) +n

T(n) = 0(nlogn)

16

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

_

Then we shorten by 1 each time
Tn)=Tn—1)+n

T(n) = 0(n?)

17

(Good Pivot

 What makes a good Pivot?
— Roughly even split between left and right

— Ideally: median

e Can we find median in linear time?
— Yes!
— Quickselect

19

Quickselect

e Finds it" order statistic

* |dea: pick a pivot element, partition, then recurse on sublist
containing index i

* Divide: select an element p, Partition(p)

* Conquer: if i = index of p, done!
— if i < index of p recurse left. Else recurse right

* Combine: Nothing!

20

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

21

Conguer

|
All elements < p All'elements > p

Exactly where it belongs!

Recurse on sublist that contains index i
(adjust i accordingly if recursing right)

22

Quickselect Run Time

If the pivot is always the median:

T[]

Then we divide in half each time

S(n) =S(g)+n

S(n) =0(n)

23

Quickselect Run Time

If the partition is always unbalanced:

_

Then we shorten by 1 each time

Sm)=Sn—1)+n

S(n) = 0(n?)

24

(Good Pivot

2
 What makes a good Pivot? - QQ
— Roughly even split between left and right 'e\’b

— Ideally: median

* Here’s what’s next:
— An algorithm for finding a “rough” split (Median of Medians)

— This algorithm uses Quickselect as a subroutine

25

(Good Pivot

 What makes a good Pivot?
— Both sides of Pivot >30%

>30% ‘
|

O Select Pivot from
r this range

>30%
26

Median of Medians

* Fast way to select a “good” pivot

* Guarantees pivot is greater than 30% of elements and less than
30% of the elements

* |dea: break list into chunks, find the median of each chunk, use
the median of those medians

27

Median of Medians

1. Break list into chunks of size 5

2. Find the median of each chunk

3. Return median of medians (using Quickselect)

28

Why is this good??

Each chunk sorted, chunks ordered by their medians

MedianofMedians l
is Greater than all NN TN A
of these x A x X n

29

Why Is this good?

MedianofMedians
is larger than all
of these ~ A X ~ n

Larger than 3 T
things in each E

(but one) list to 1 I i

the left (5 |~ 2) ~ - — 6 elements < L]

Similarly: 3 (1 = 2) ~ 2 _ 6 elements > [

| - ; 10 30

Quickselect

* Divide: select an element p using Median of Medians,
Partition(p) M(n) + ©(n)

* Conquer:ifi = index of p, done, if i < index of p recurse left.

Else recurse right 7
<3S (—n)
10

* Combine: Nothing!

S(h) < S (1—7011) + M(n) + 0(n) 31

Median of Medians, Run Time

1. Break list into chunks of 5 ©(1)

2. Find the median of each chunk ©(n)

3. Return median of medians (using Quickselect)
[S (E)
5

Mn) =S (g) + 0(n)

32

Quickselect

Sn)<S (Z—g) + M(n) + 0(n) M) =S (g) +0(n)
7
=5(15) +5 () + 0
... Guess and Check ... Warm Up!
S(n) = 0(n)
S(n) = Q(n) Linear work done at top level

S(n) =0(n)

Phew! Back to Quicksort

Using Quickselect, with a median-of-medians partition:

e[[rof]]

2 5 1 3 6 4

2 1.5 6 4

Then we divide in half each time

T(n) = 2T (g) + o)

T(n) = O(nlogn)

34

IS It worth it”?

* Using Quickselect to pick median guarantees ®(nlogn) run
time
* Approach has very large constants
— If you really want ©(n logn), better off using MergeSort
* Better approach: Random pivot
— Very small constant (very fast algorithm)

— Expected to run in ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

35

Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

36

n
T(n) =T(E)+T(1_O)+n
n n
n
‘4\ 9n/10
n/10 + 9n/10 n
m_%/mo —T7/100~ 817/100

n/100| + 9n/100| + 9n/100 + 81n/100 n

1

1

|

On

>10g(

10

)Tl

Quicksort Run Time

If the pivot is always 1%”‘ order statistic:

. 0
.
T(n) =T(1n—0)+T((i—g)+n

T(n) = O(nlogn)

38

Quicksort Run Time

If the pivot is always d™" order statistic:

_

Then we shorten by d each time
Tn)=Tn—d)+n
T(n) = 0(n?)
What'’s the probability of this occurring?

39

Probability of n# run time

We must consistently select pivot from within the first d terms

Probability first pivot is among d smallest: %

Probability second pivot is among d smallest: n;fd
Probability all pivots are among d smallest:
d d d d 1
nn—-dn-2d " 2d ()|

40

~ormal Argument for nlogn Average

* Remember, run time counts comparisons!

* Quicksort only compares against a pivot

— Element i only compared to element j if one of
them was the pivot

41

Partition (Divide step)

Given: a list, a pivot value p

Start: unordered list

. 5 7 3 112110 1 2 4 9 6 | 11

Goal: All elements on left, all > p on right

42

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Consider the sorted version of the list

Observation: Adjacent elements must be compared

— Why? Otherwise | would not know which came first
— Every sorting algorithm must compare adjacent elements

In quicksort: adjacent elements always end up in
same sublist, unless one is the pivot 43

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

E uniformly at random

Prlwe compare 1 and 12] = 2 L Assuming pivot is chosen }

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

44

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

33 4 5 6 7 8 9 10| 11 | 12

l' J

Case 1: Pivot less than i
Then sublist [i,i + 1, ..., j] will be in right sublist and will be
processed in future recursive invocation of Quicksort

Pr[we compare i and j] = Pr[we compare i and j in Quicksort(|p + 1, ...,n])]

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

33 4 5 6 7 8 9 110 | 11 | 12

l' J

Case 1: Pivot less than i 4 |)
Then sublist [i,i + 1, ..., j] willbe, P T L -.,n] denotes the right

din fut o sublist (in some order) that we are
processea in ruture recursive invo recursively sorting

g M—/

Pr[we compare i and j] = Pr[we compare i and j in Quicksort(|p + 1, ...,n])]

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

l' J

Case 2: Pivot greater than j
Then sublist [i,i + 1, ..., j] will be in left sublist and will be
processed in future recursive invocation of Quicksort

Pr[we compare i and j] = Pr[we compare i and j in Quicksort(|1, ...,])]

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

123456.8910 11 | 12

l' J

Case 3.1: Pivot contained in [i + 1, ...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiandj] = 0

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1234.678910 11 | 12

l' J

Case 3.2: Pivotis eitheri orj
Then we will always compare i and j

Pr[we compareiandj] =1

~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1 2 3 4 5 6 7 8 9 10| 11 | 12

l' J

Case 1: Pivot less than i
Pr[we compare i and j] = Pr[we compare i and j in Quicksort(|p + 1, ...,n])]
Case 2: Pivot greater than j
Pr[we compare i and j] = Pr[we compare i and j in Quicksort([1, ..., p])]

Case 3: Pivotin [i,i + 1, ...,]]

2
Pr[we compare i and j] = Pr|i or j is selected as pivot]| =

j—i+1

~ormal Argument for nlogn Average

Probability of comparing i with j (j > i):

— dependent on the number of elements between (and including)
[and j
2
j—i+1

Expected number of comparisons for Quicksort:

2
n—1 n
2 j—i+1 A 2
t<J Z Z j—i+1

51

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

2
Sum so far:E

52

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

2 2
Sum so far:z + 3

53

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

2 2 2
Sumso far:—=+ -+ -
2 3 4

54

EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

Overallsum: 2+ 24+ 2424 ... 42
2 3 4 5 n

55

EXpected number of Comparisons

z 2
j—i+1

i<j

Wheni = 1:

2(%+%+%+---+%)<2 zn:% O(logn)

56

~ormal Argument for nlogn Average

* Probability of comparing element i with element j:

2
j—i+1

* Prlwe compareiand j]| =

* Expected number of comparisons:

I
>
T
—
>
d
T
—

gl
N
—~.
|
|
p—
M
M
N
N
& =
N
N
1=
ol

iy
Il
—
x‘
Il
—
o~
Il
p—
x‘
Il
p—

1 k= J
Substitution: [- 1
k=j—i k+1 k 7

~ormal Argument for nlogn Average

} n
ZZ 2 B 2 5 1<2 zl
j—i+1 k+1 < k k

=1 j=i+1 i=1 k=1 i=1 k=1 i=1 k=1
Substitution: 1 - 1
k=j—1 k+1 "k
4 - N
n 1 Intuition (not proof!):
Useful fact: 7= O(logn) Elzf e = T
i=1 i=1l 1 X

K / 58

~ormal Argument for nlogn Average

S 2 . n—-1n—i —1 n—i " -1 n "
o La j—i+1 _22 EZE ZZE
1=1 j=i+1 i=1 k=1 i=1 k=1 i=1 k=1

n-1
= 2 z O(logn) = O(nlogn)
i=1

Quicksort overall: expected O@(nlogn)

59

Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn)
— Quicksort O(nlogn)

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort 0(n?)

— Heapsort O(nlogn)

Can we do better than O(nlogn)?

60

