CS4102 Algorithms Fall 2019

$\frac{\text{Warm up}}{\text{Show } \log(n!)} = \Theta(n \log n)$

Hint: show $n! \le n^n$ Hint 2: show $n! \ge \left(\frac{n}{2}\right)^{\frac{n}{2}}$

$\log n! = O(n \log n)$

$$n! \le n^{n}$$

$$\Rightarrow \log(n!) \le \log(n^{n})$$

$$\Rightarrow \log(n!) \le n \log n$$

$$\Rightarrow \log(n!) = O(n \log n)$$

Today's Keywords

- Divide and Conquer
- Quicksort
- Decision Tree
- Worst case lower bound
- Sorting

CLRS Readings

- Chapter 7
- Chapter 8

Homeworks

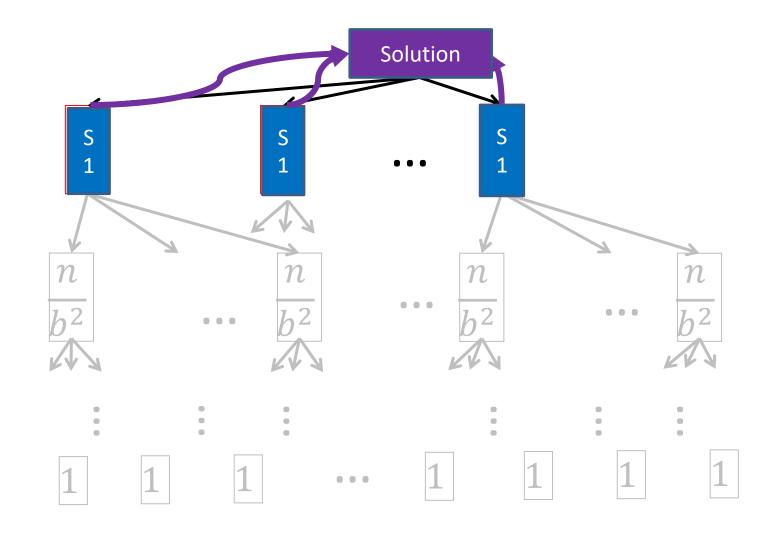
- HW3 due 11pm Tuesday, October 1
 - Divide and conquer
 - Written (use LaTeX!)
 - Submit BOTH a pdf and a zip file (2 separate attachments)
- Regrade Office Hours
 - Thursdays 11am-12pm
 - Thursdays 4pm-5pm

Aside: Divide and Conquer

Generic Divide and Conquer Solution

def **myDCalgo**(problem): if baseCase(problem): solution = solve(problem) #brute force if necessary return solution subproblems[] = Divide(problem) for subproblem in subproblems: subsolutions.append(myDCalgo(subproblem)) solution = Combine(subsolutions) return solution

Generic Divide and Conquer Solution

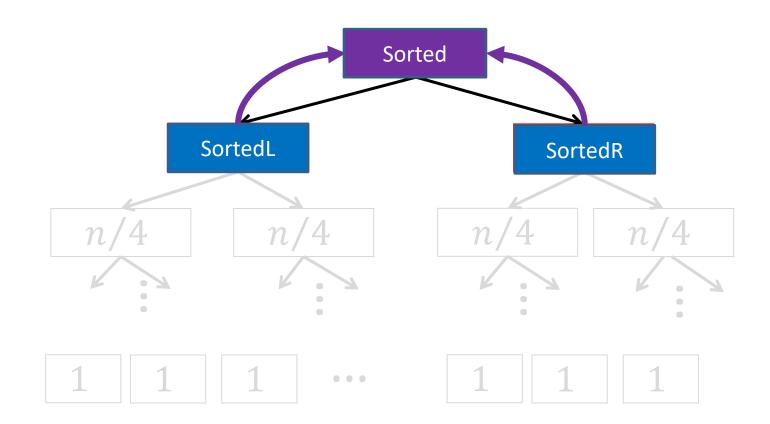


MergeSort Divide and Conquer Solution

```
def mergesort(list):
```

```
if list.length < 2:
      return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)
for list in {listL, listR}:
      sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)
return solution
```

MergeSort Divide and Conquer Solution



Back to Sorting!

Quicksort

- Idea: pick a pivot element, recursively sort two sublists around that element
- Divide: select an element *p*, Partition(*p*)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Random Pivot

- Using Quickselect to pick median guarantees $\Theta(n \log n)$ run time
 - Approach has very large constants
 - If you really want $\Theta(n \log n)$, better off using MergeSort
- Better approach: Random pivot
 - Very small constant (very fast algorithm)
 - Expected to run in $\Theta(n \log n)$ time
 - Why? Unbalanced partitions are very unlikely

- Remember, run time counts comparisons!
- Quicksort only compares against a pivot
 - Element *i* only compared to element *j* if one of them was the pivot

What is the probability of comparing two given elements?

Consider the sorted version of the list

$$Pr[we compare 1 and 12] = \frac{2}{12}$$

Assuming pivot is chosen uniformly at random

Only compared if 1 or 12 was chosen as the first pivot since otherwise they are in <u>different</u> sublists

What is the probability of comparing two given elements?

Case 3.1: Pivot contained in [i + 1, ..., j - 1]Then *i* and *j* are in different sublists and will <u>never</u> be compared

 $\Pr[\text{we compare } i \text{ and } j] = 0$

What is the probability of comparing two given elements?

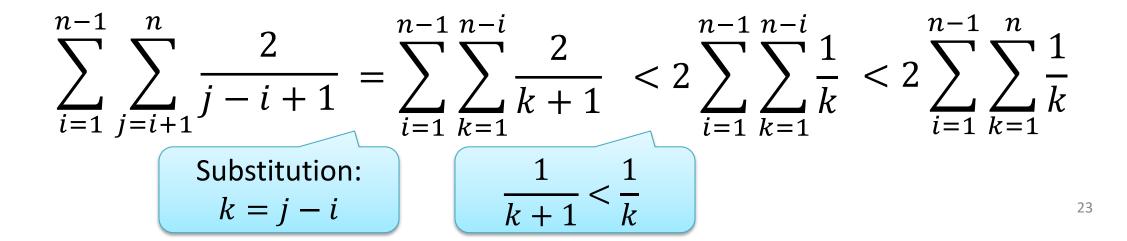
Case 3.2: Pivot is either *i* or *j* Then we will always compare *i* and *j*

 $\Pr[\text{we compare } i \text{ and } j] = 1$

• Probability of comparing element *i* with element *j*:

• Pr[we compare *i* and *j*] =
$$\frac{2}{j-i+1}$$

• Expected number of comparisons:



$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < 2\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} < 2\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}$$

$$= 2\sum_{i=1}^{n-1} \Theta(\log n) = \Theta(n\log n)$$

Quicksort overall: expected $\Theta(n \log n)$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

1	2	3	4	5	6	7	8	9	10	11	12	
---	---	---	---	---	---	---	---	---	----	----	----	--

Compared if 1 or 2 are chosen as pivot (these will always be compared)

Sum so far:
$$\frac{2}{2}$$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Compared if 1 or 3 are chosen as pivot (but never if 2 is ever chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3}$$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

1	2	3	4	5	6	7	8	9	10	11	12	
---	---	---	---	---	---	---	---	---	----	----	----	--

Compared if 1 or 4 are chosen as pivot (but never if 2 or 3 are chosen)

Sum so far:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4}$$

Consider when i = 1

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

Compared if 1 or 12 are chosen as pivot (but never if 2 -> 11 are chosen)

Overall sum:
$$\frac{2}{2} + \frac{2}{3} + \frac{2}{4} + \frac{2}{5} + \dots + \frac{2}{n}$$

$$\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

When
$$i = 1$$
:
 $2\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}\right) < 2\left[\sum_{x=1}^{n} \frac{1}{x}\right] \quad O(\log n)$

n terms overall in the outer sum

Quicksort overall: expected $O(n \log n)$

Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$
 - Quicksort $O(n \log n)$
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$

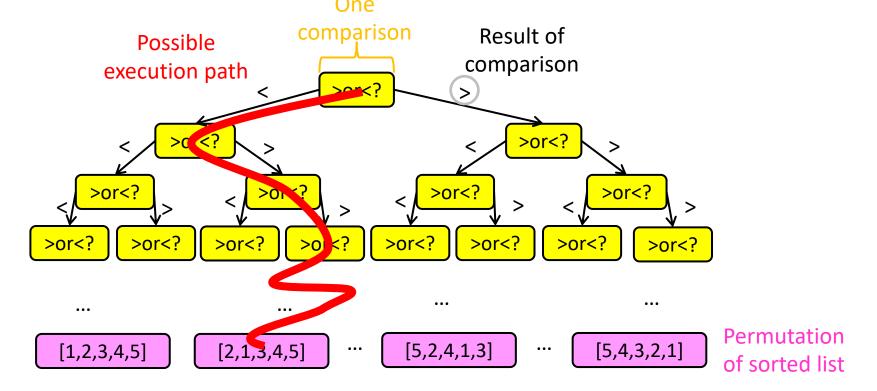
Can we do better than $O(n \log n)$?

Worst Case Lower Bounds

- Prove that there is no algorithm which can sort faster than O(n log n)
 - Every algorithm, in the worst case, must have a certain lower bound
- Non-existence proof!
 - Very hard to do

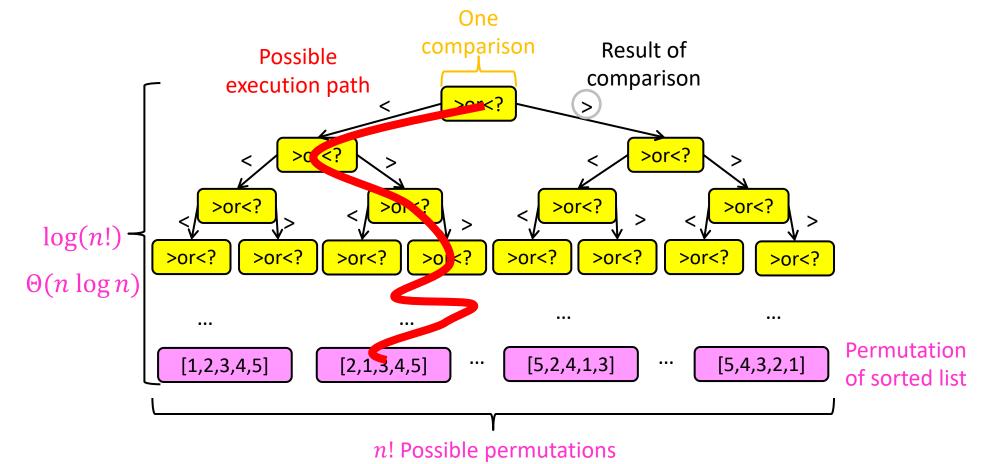
Strategy: Decision Tree

- Sorting algorithms use comparisons to figure out the order of input elements
- Draw tree to illustrate all possible execution paths



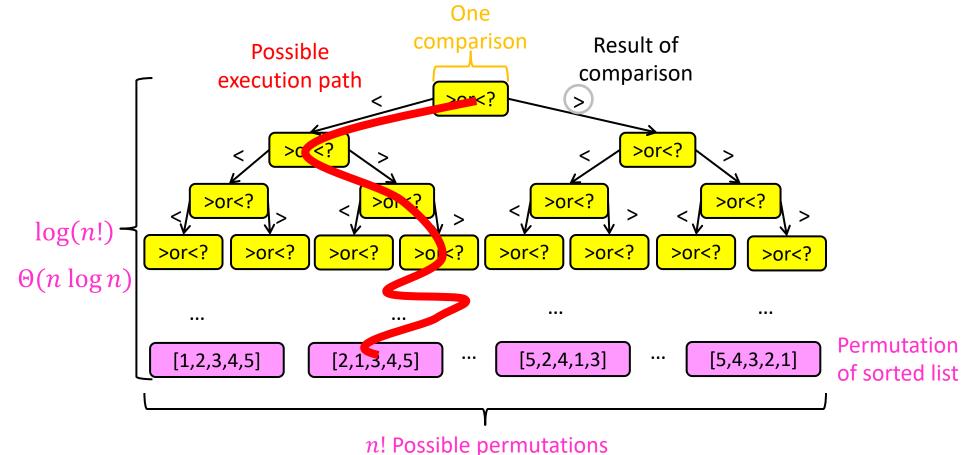
Strategy: Decision Tree

- Worst case run time is the longest execution path
- i.e., "height" of the decision tree



Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$



Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms (will discuss):
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

- Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with multiple computers

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

- Merge together sorted sublists into one sorted list

$\frac{\text{Run Time?}}{\Theta(n \log n)}$

Optimal!

In Place?	Adaptive?	Stable?
No	No	Yes!
		(usually)

Merge

- **Combine:** Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1 , L_2)
 - 1 output list (L_{out})

```
 \begin{array}{ll} \mbox{While } (L_1 \mbox{ and } L_2 \mbox{ not empty}): & & \\ \mbox{If } L_1[0] \leq L_2[0]: & & \\ \mbox{If } elements \mbox{ are } \\ \mbox{L}_{out}. \mbox{append}(L_1. \mbox{pop}()) & \\ \mbox{Else: } & & \\ \mbox{L}_{out}. \mbox{append}(L_2. \mbox{pop}()) & \\ \mbox{L}_{out}. \mbox{append}(L_1) & \\ \mbox{L}_{out}. \mbox{append}(L_2) & \\ \end{array}
```

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

- Merge together sorted sublists into one sorted list

$\frac{\text{Run Time?}}{\Theta(n \log n)}$ Optimal!

In Place?	Adaptive?	Stable?	Parallelizable?
No	No	Yes!	Yes!
		(usually)	

• Divide:

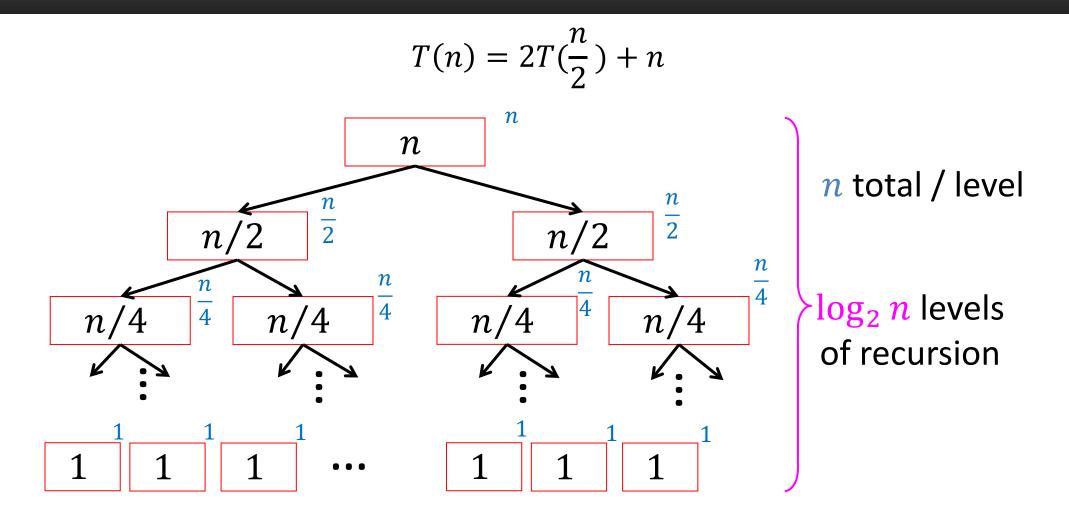
- Break *n*-element list into two lists of n/2 elements

Parallelizable: Allow different machines to work on each sublist

• Conquer:

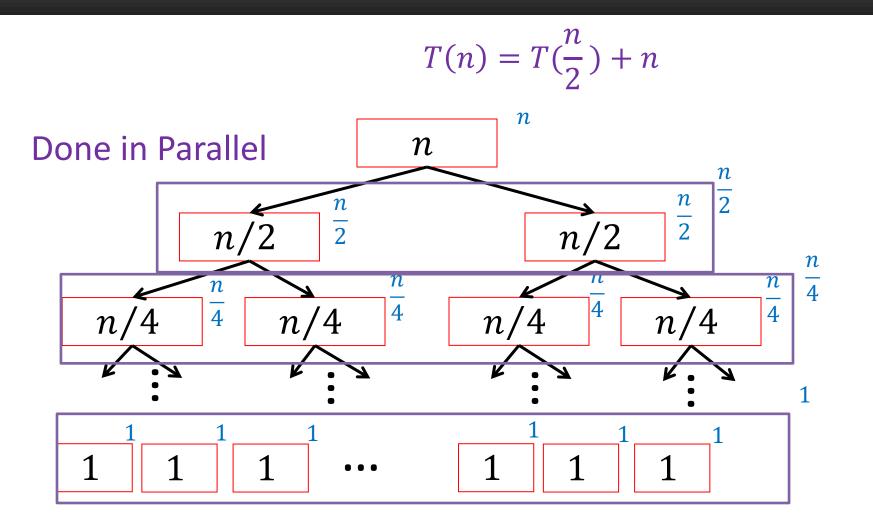
- If n > 1:
 - Sort each sublist recursively
- If n = 1:
 - List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

Mergesort (Sequential)



Run Time: $\Theta(n \log n)$

Mergesort (Parallel)



Run Time: $\Theta(n)$

Quicksort

- Idea: pick a partition element, recursively sort two sublists around that element
- Divide: select an element *p*, Partition(*p*)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

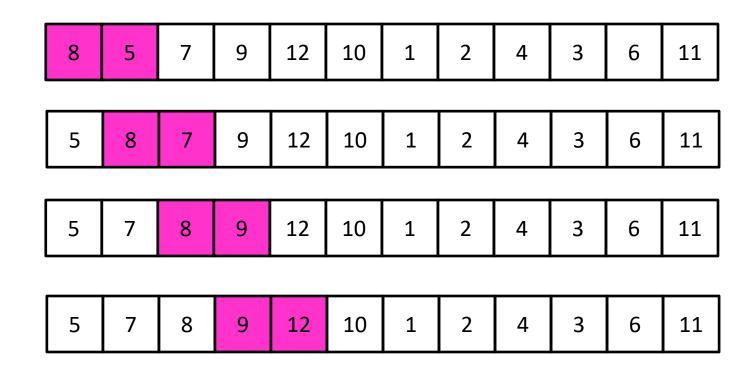
 $\frac{\text{Run Time?}}{\Theta(n \log n)}$ (almost always)
Better constants

than Mergesort

In Place?	Adaptive?	Stable?	Parallelizable?
kinda Uses stack for	No!	No	Yes!
recursive calls	5		

Bubble Sort

• Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

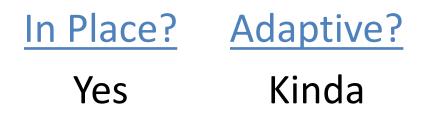


Bubble Sort

 Idea: March through list, swapping adjacent elements if out of order, repeat until sorted Run Time?

 $\Theta(n^2)$

Constants worse than Insertion Sort



"Compared to straight insertion [...], bubble sorting requires a more complicated program and takes about twice as long!" –Donald Knuth

Bubble Sort is "almost" Adaptive

 Idea: March through list, swapping adjacent elements if out of order

1	2	3	4	5	6	7	8	9	10	11	12	
---	---	---	---	---	---	---	---	---	----	----	----	--

1	2	3	4	5	6	7	8	9	10	11	12
---	---	---	---	---	---	---	---	---	----	----	----

Only makes one "pass"

2 3 4 5 6	7 8	9 10	11 12	1
-----------	-----	------	-------	---

After one "pass"

2	3	4	5	6	7	8	9	10	11	1	12	
---	---	---	---	---	---	---	---	----	----	---	----	--

Requires n passes, thus is $O(n^2)$

Bubble Sort

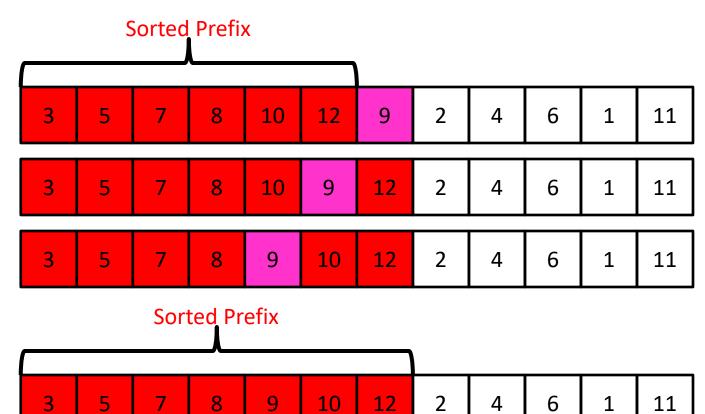
 Idea: March through list, swapping adjacent elements if out of order, repeat until sorted $\begin{bmatrix} Run Time? \\ \Theta(n^2) \\ Constants worse \\ than Insertion Sort \\ Parallelizable? \\ No \\ \end{bmatrix}$

In Place?	Adaptive?	Stable?
Yes!	Kinda	Yes
	Not really	

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" –Donald Knuth, The Art of Computer Programming

Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Run Time?

 $\Theta(n^2)$

(but with very small

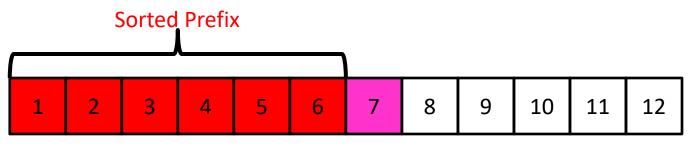
constants)

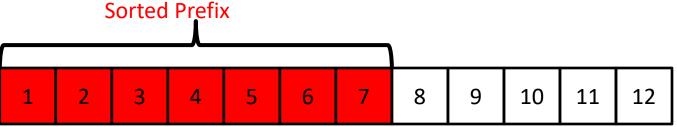
Great for short lists!

<u>In Place?</u> <u>Adaptive?</u> Yes! Yes

Insertion Sort is Adaptive

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element





Only one comparison needed per element! Runtime: O(n)

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

Run Time?

 $\Theta(n^2)$

(but with very small

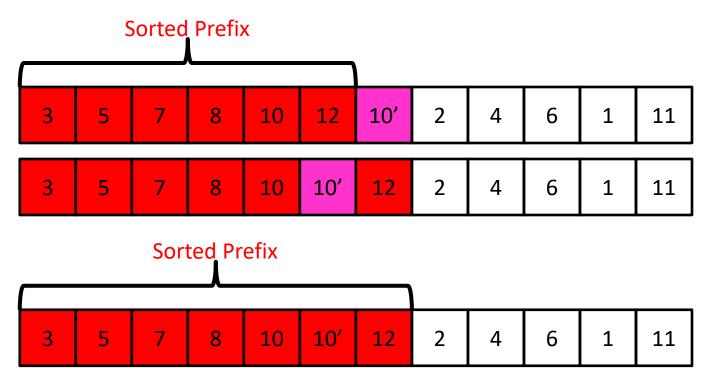
constants)

Great for short lists!

In Place?Adaptive?Stable?Yes!YesYes

Insertion Sort is Stable

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



The "second" 10 will stay to the right

Insertion Sort

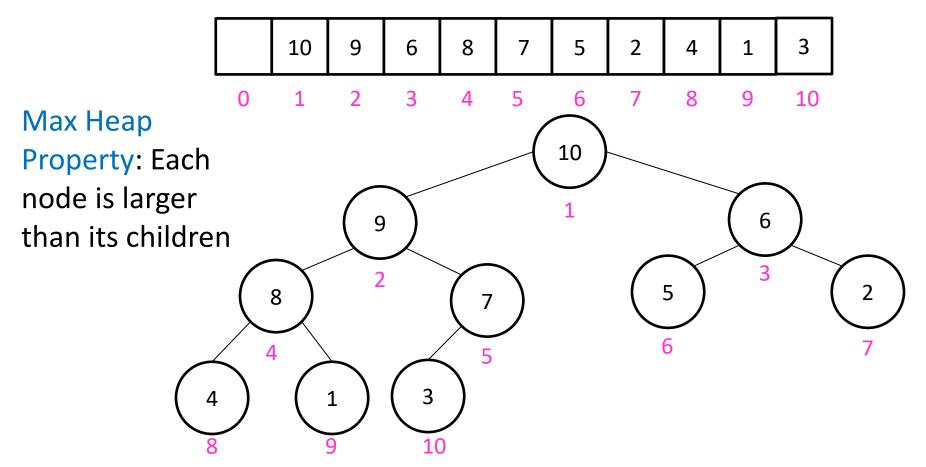
 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element $\frac{\text{Run Time?}}{\Theta(n^2)}$ (but with very small constants) Great for short lists!

In Place?	Adaptive?	Stable?	Parallelizable?
Yes!	Yes	Yes	No

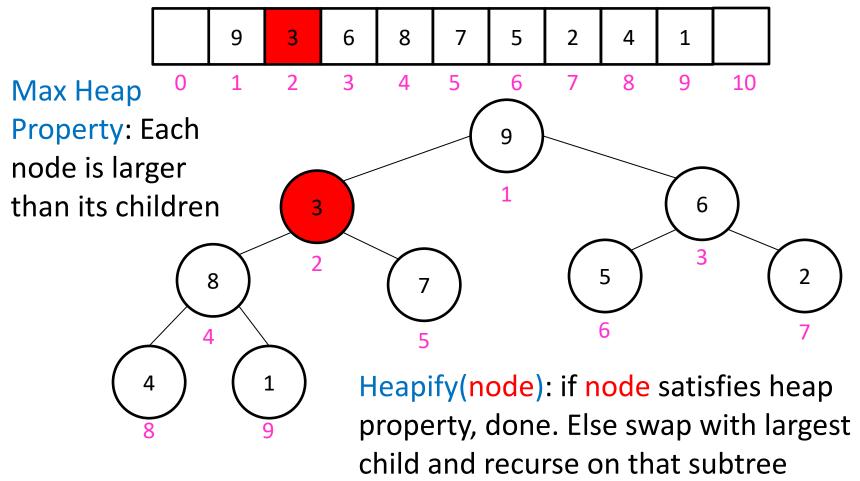
"All things considered, it's actually a pretty good sorting algorithm!" –Nate Brunelle Can sort a list as it is received, i.e., don't need the entire list to begin sorting

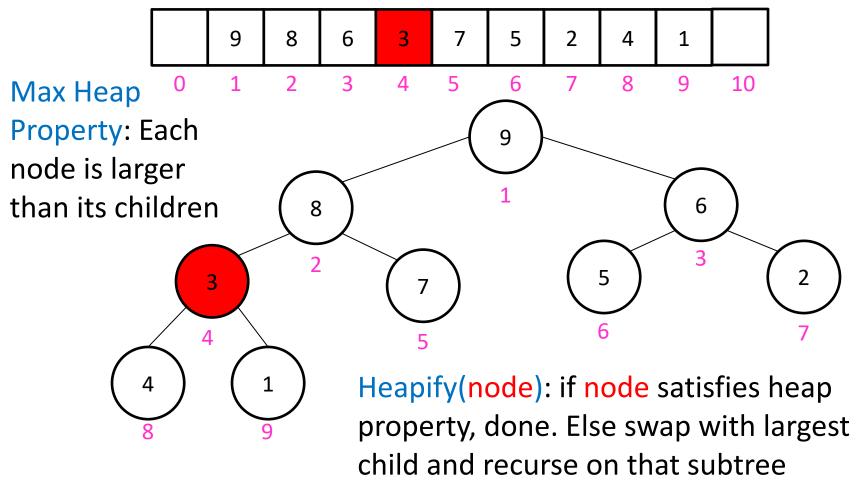
Yes

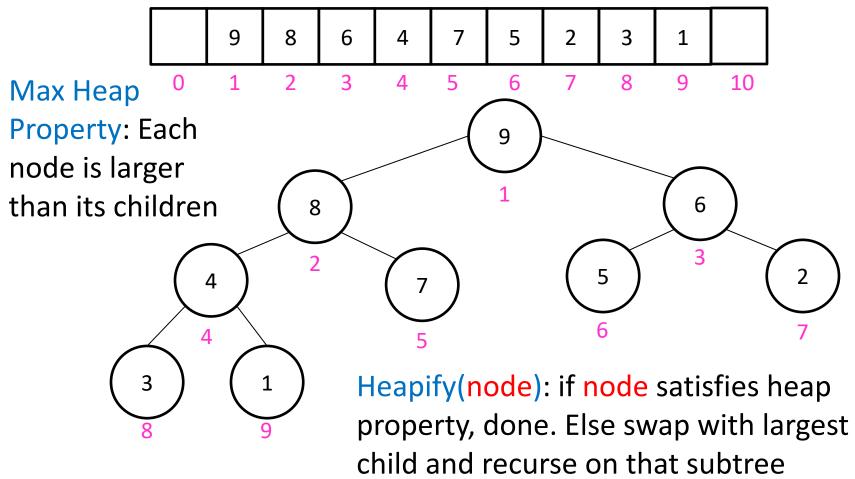
• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left



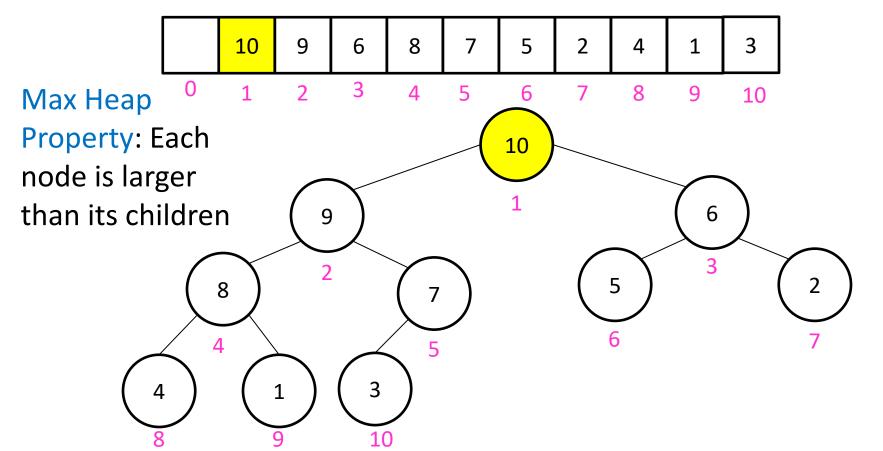


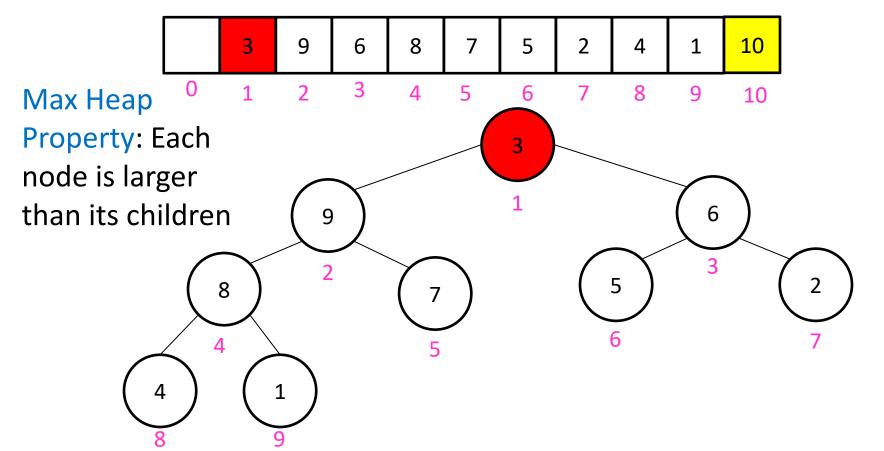


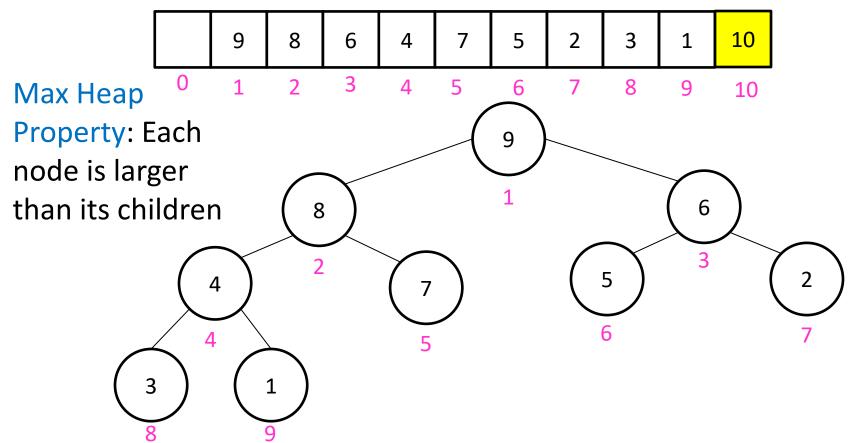


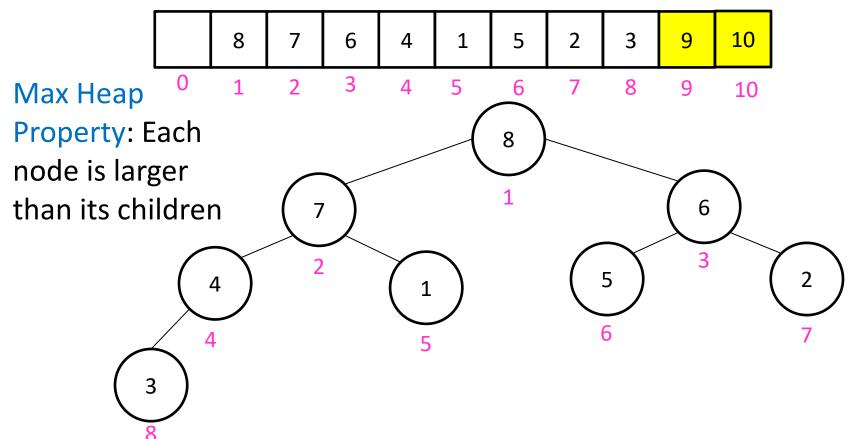


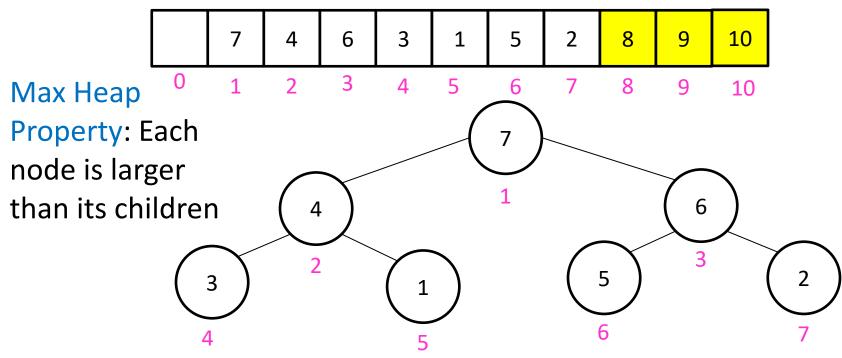
 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left $\frac{\text{Run Time?}}{\Theta(n \log n)}$ Constants worse
than Quick Sort











• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left

<u>In Place?</u> <u>Adaptive?</u> <u>Stable?</u> Yes! No No Run Time? Θ(n log n) Constants worse than Quick Sort Parallelizable? No