
Warm up
Show log 𝑛! = Θ(𝑛 log 𝑛)

Hint: show 𝑛! ≤ 𝑛+

Hint 2: show 𝑛! ≥ +
-

.
/

1

Fall 2019

2

log 𝑛! = 𝑂 𝑛 log 𝑛

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅ 2 ⋅ 1

𝑛+ = 𝑛 ⋅ 𝑛 ⋅ 𝑛 ⋅ … ⋅ 𝑛 ⋅ 𝑛

= < < < <

𝑛! ≤ 𝑛+
⇒ log 𝑛! ≤ log 𝑛+

⇒ log 𝑛! ≤ 𝑛 log 𝑛
⇒ log 𝑛! = 𝑂(𝑛 log 𝑛)

3

log 𝑛! = Ω 𝑛 log 𝑛
𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ 𝑛 − 2 ⋅ … ⋅

𝑛
2
⋅
𝑛
2
− 1 ⋅ … ⋅ 2 ⋅ 1

𝑛
2

+
- =

𝑛
2
⋅

𝑛
2

⋅
𝑛
2

⋅ … ⋅
𝑛
2
⋅ 1 ⋅ … ⋅ 1 ⋅ 1

> > > >=

𝑛! ≥
𝑛
2

+
-

⇒ log 𝑛! ≥ log
𝑛
2

+
-

⇒ log 𝑛! ≥
𝑛
2
log

𝑛
2

⇒ log 𝑛! = Ω(𝑛 log 𝑛)

> =

Today’s Keywords

• Divide and Conquer
• Quicksort
• Decision Tree
• Worst case lower bound
• Sorting

4

CLRS Readings

• Chapter 7
• Chapter 8

5

Homeworks

• HW3 due 11pm Tuesday, October 1
– Divide and conquer
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Regrade Office Hours
– Thursdays 11am-12pm
– Thursdays 4pm-5pm

6

Aside: Divide and Conquer

7

Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems[] = Divide(problem)
for subproblem in subproblems:

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution

8

Generic Divide and Conquer Solution

9

𝑛

𝑛
𝑏

𝑛
𝑏

𝑛
𝑏

…𝑛
𝑏-

𝑛
𝑏-

𝑛
𝑏-

𝑛
𝑏-

… … … … … …

1 1 1 1 1 1 1…

…

… …

S
1

S
1

S
1

Solution

MergeSort Divide and Conquer Solution

def mergesort(list):
if list.length < 2:

return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)
for list in {listL, listR}:

sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)
return solution

10

MergeSort Divide and Conquer Solution

11

𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

SortedL SortedR

Sorted

Back to Sorting!

12

Quicksort

• Idea: pick a pivot element, recursively sort two sublists around
that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

13

Random Pivot

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run
time
– Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely

18

Formal Argument for 𝑛 log 𝑛 Average

• Remember, run time counts comparisons!
• Quicksort only compares against a pivot
– Element 𝑖 only compared to element 𝑗 if one of

them was the pivot

19

Formal Argument for 𝑛 log 𝑛 Average

20

1 2 3 4 5 6 7 8 9 10 11 12

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2
12

Assuming pivot is chosen
uniformly at random

What is the probability of comparing two given elements?

Case 3.1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
Then 𝑖 and 𝑗 are in different sublists and will never be
compared

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

What is the probability of comparing two given elements?

Case 3.2: Pivot is either 𝑖 or 𝑗
Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

What is the probability of comparing two given elements?

Formal Argument for 𝑛 log 𝑛 Average

• Probability of comparing element 𝑖 with element 𝑗:

• Pr we compare 𝑖 and 𝑗 = -
OPQRS

• Expected number of comparisons:

23

Substitution:
𝑘 = 𝑗 − 𝑖

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1 = U
QVS

+PS

U
WVS

+PQ
2

𝑘 + 1
< 2U

QVS

+PS

U
WVS

+PQ
1
𝑘
< 2U

QVS

+PS

U
WVS

+
1
𝑘

1
𝑘 + 1

<
1
𝑘

Formal Argument for 𝑛 log 𝑛 Average

24

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1 = U
QVS

+PS

U
WVS

+PQ
2

𝑘 + 1
< 2U

QVS

+PS

U
WVS

+PQ
1
𝑘
< 2U

QVS

+PS

U
WVS

+
1
𝑘

= 2U
QVS

+PS

Θ(log 𝑛) = Θ 𝑛 log 𝑛

Quicksort overall: expected Θ 𝑛 log 𝑛

Expected number of Comparisons

25

Consider when 𝑖 = 1

Sum so far: -
-

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

26

Consider when 𝑖 = 1

Sum so far: -
-
+ -

X

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

27

Consider when 𝑖 = 1

Sum so far: -
-
+ -

X
+ -

Y

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

28

Consider when 𝑖 = 1

Overall sum: -
-
+ -

X
+ -

Y
+ -

Z
+ ⋯+ -

+

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1

Expected number of Comparisons

29

When 𝑖 = 1:

2
1
2
+
1
3
+
1
4
+⋯+

1
𝑛

< 2 U
]VS

+
1
𝑥

O(log 𝑛)

U
QVS

+PS

U
OVQRS

+
2

𝑗 − 𝑖 + 1

𝑛 terms overall in the outer sum

Quicksort overall: expected O 𝑛 log 𝑛

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

30

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛-)

𝑂(𝑛-)

Can we do better than 𝑂(𝑛 log 𝑛)?

Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than
𝑂(𝑛 log 𝑛)
– Every algorithm, in the worst case, must have a certain lower bound

• Non-existence proof!
– Very hard to do

31

Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the order of input

elements
• Draw tree to illustrate all possible execution paths

32

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

Strategy: Decision Tree
• Worst case run time is the longest execution path
• i.e., “height” of the decision tree

33

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is Θ(𝑛 log 𝑛)

– There is no (comparison-based) sorting algorithm with run time
𝑜(𝑛 log 𝑛)

34

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

Possible
execution path

𝑛! Possible permutations

log 𝑛!

Θ(𝑛 log 𝑛)

Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort

35

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛-)

𝑂(𝑛-)

Optimal!

Optimal!

Optimal!

Speed Isn’t Everything
• Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with multiple computers 36

Mergesort
• Divide:

– Break 𝑛-element list into two lists of ⁄+ - elements
• Conquer:

– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable?
No No Yes!

(usually)

Merge
• Combine: Merge sorted sublists into one sorted list
• We have:
– 2 sorted lists (𝐿S, 𝐿-)
– 1 output list (𝐿bcd)

While (𝐿S and 𝐿- not empty):
If 𝐿S 0 ≤ 𝐿-[0]:

𝐿bcd.append(𝐿S.pop())
Else:

𝐿bcd.append(𝐿-.pop())
𝐿bcd.append(𝐿S)
𝐿bcd.append(𝐿-)

Stable:
If elements are
equal, leftmost
comes first

38

Mergesort
• Divide:

– Break 𝑛-element list into two lists of ⁄+ - elements
• Conquer:

– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable? Parallelizable?
No No Yes!

(usually)
Yes!

39

Mergesort

• Divide:
– Break 𝑛-element list into two lists of ⁄+ - elements

• Conquer:
– If 𝑛 > 1:
• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

40

Parallelizable:
Allow different
machines to work
on each sublist

Mergesort (Sequential)

𝑛 total / level

log- 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇(
𝑛
2
) + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Run Time: Θ(𝑛 log 𝑛)

Mergesort (Parallel)

𝑛

𝑇 𝑛 = 𝑇(
𝑛
2
) + 𝑛

⁄𝑛 2 ⁄𝑛 2

⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4 ⁄𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛
2

𝑛
2

𝑛
4

𝑛
4

𝑛
4

𝑛
4

1 1 1 1 1 1

Run Time: Θ(𝑛)

Done in Parallel
𝑛
2

𝑛
4

1

Quicksort
Run Time?
Θ(𝑛 log 𝑛)

(almost always)
Better constants
than Mergesort

In Place? Adaptive? Stable?
kinda No! No

Parallelizable?
Yes!

• Idea: pick a partition element, recursively sort
two sublists around that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

Uses stack for
recursive calls

Bubble Sort

• Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

44

8 5 7 9 12 10 1 2 4 3 6 11

5 8 7 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

Bubble Sort
Run Time?
Θ(𝑛-)

Constants worse
than Insertion Sort

In Place? Adaptive?
Yes Kinda

• Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

“Compared to straight
insertion […], bubble
sorting requires a more
complicated program and
takes about twice as long!”
–Donald Knuth

Bubble Sort is “almost” Adaptive

• Idea: March through list, swapping adjacent
elements if out of order

46

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Only makes one “pass”

2 3 4 5 6 7 8 9 10 11 12 1

After one “pass”

2 3 4 5 6 7 8 9 10 11 1 12

Requires 𝑛 passes, thus is 𝑂(𝑛-)

Bubble Sort
Run Time?
Θ(𝑛-)

Constants worse
than Insertion Sort

In Place? Adaptive? Stable?
Yes! Kinda

Not really
Yes

Parallelizable?
No

• Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” –Donald Knuth, The Art of
Computer Programming

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

48

3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix

Insertion Sort
Run Time?

Θ(𝑛-)
(but with very small

constants)
Great for short lists!In Place? Adaptive?

Yes! Yes

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Insertion Sort is Adaptive

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

50

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

Only one comparison needed per element! Runtime: 𝑂(𝑛)

Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element Θ(𝑛-)

(but with very small
constants)

Great for short lists!

Insertion Sort is Stable

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

52

3 5 7 8 10 12 10’ 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 10’ 12 2 4 6 1 11

3 5 7 8 10 10’ 12 2 4 6 1 11

Sorted Prefix

The “second” 10 will stay to the right

Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

Parallelizable?
No

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Online?
Yes

Can sort a list as it is received,
i.e., don’t need the entire list
to begin sorting“All things considered, it’s

actually a pretty good sorting
algorithm!” –Nate Brunelle

Θ(𝑛-)
(but with very small constants)

Great for short lists!

Heap Sort
• Idea: Build a Heap, repeatedly extract max element

from the heap to build sorted list Right-to-Left

54

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

55

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

56

9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

57

9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

58

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse
than Quick Sort

In Place?
Yes!

• Idea: Build a Heap, repeatedly extract max
element from the heap to build sorted list Right-
to-Left

When removing an element
from the heap, move it to the
(now unoccupied) end of the list

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

60

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

61

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

62

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

63

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

64

7

4 6

3 1 5 2

7 4 6 3 1 5 2 8 9 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse
than Quick Sort

In Place? Adaptive? Stable?
Yes! No No

Parallelizable?
No

• Idea: Build a Heap, repeatedly extract max
element from the heap to build sorted list Right-
to-Left

