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Today’s Keywords

• Divide and Conquer
• Quicksort
• Decision Tree
• Worst case lower bound
• Sorting
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CLRS Readings

• Chapter 7
• Chapter 8
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Homeworks

• HW3 due 11pm Tuesday, October 1
– Divide and conquer
– Written (use LaTeX!)
– Submit BOTH a pdf and a zip file (2 separate attachments)

• Regrade Office Hours
– Thursdays 11am-12pm
– Thursdays 4pm-5pm
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Aside: Divide and Conquer
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Generic Divide and Conquer Solution

def myDCalgo(problem):
if baseCase(problem):

solution = solve(problem) #brute force if necessary
return solution

subproblems[] = Divide(problem)
for subproblem in subproblems:

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution
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Generic Divide and Conquer Solution
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MergeSort Divide and Conquer Solution

def mergesort(list):
if list.length < 2:

return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)
for list in {listL, listR}:

sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)
return solution
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MergeSort Divide and Conquer Solution
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Back to Sorting!
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Quicksort

• Idea: pick a pivot element, recursively sort two sublists around 
that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!
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Random Pivot

• Using Quickselect to pick median guarantees Θ(𝑛 log 𝑛) run 
time
– Approach has very large constants
– If you really want Θ(𝑛 log 𝑛), better off using MergeSort

• Better approach: Random pivot
– Very small constant (very fast algorithm)
– Expected to run in Θ(𝑛 log 𝑛) time
• Why? Unbalanced partitions are very unlikely
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Formal Argument for 𝑛 log 𝑛 Average

• Remember, run time counts comparisons!
• Quicksort only compares against a pivot
– Element 𝑖 only compared to element 𝑗 if one of 

them was the pivot
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Formal Argument for 𝑛 log 𝑛 Average
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1 2 3 4 5 6 7 8 9 10 11 12

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

Consider the sorted version of the list

Pr we compare 1 and 12 =
2
12

Assuming pivot is chosen 
uniformly at random

What is the probability of comparing two given elements?



Case 3.1: Pivot contained in [𝑖 + 1,… , 𝑗 − 1]
Then 𝑖 and 𝑗 are in different sublists and will never be 
compared

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 0

What is the probability of comparing two given elements?



Case 3.2: Pivot is either 𝑖 or 𝑗
Then we will always compare 𝑖 and 𝑗

Formal Argument for 𝑛 log 𝑛 Average

1 2 3 4 5 6 7 8 9 10 11 12

𝑖 𝑗

Pr we compare 𝑖 and 𝑗 = 1

What is the probability of comparing two given elements?



Formal Argument for 𝑛 log 𝑛 Average

• Probability of comparing element 𝑖 with element 𝑗:

• Pr we compare 𝑖 and 𝑗 = -
OPQRS

• Expected number of comparisons:
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Substitution:
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Formal Argument for 𝑛 log 𝑛 Average
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Quicksort overall: expected Θ 𝑛 log 𝑛



Expected number of Comparisons
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Consider when 𝑖 = 1

Sum so far: -
-

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 2 are chosen as pivot 
(these will always be compared)

U
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U
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+
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𝑗 − 𝑖 + 1



Expected number of Comparisons
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Consider when 𝑖 = 1

Sum so far: -
-
+ -

X

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 3 are chosen as pivot 
(but never if 2 is ever chosen)

U
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U
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+
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𝑗 − 𝑖 + 1



Expected number of Comparisons
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Consider when 𝑖 = 1

Sum so far: -
-
+ -

X
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Y
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Expected number of Comparisons

28

Consider when 𝑖 = 1

Overall sum: -
-
+ -

X
+ -

Y
+ -

Z
+ ⋯+ -

+

1 2 3 4 5 6 7 8 9 10 11 12

Compared if 1 or 12 are chosen as pivot 
(but never if 2 -> 11 are chosen)
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U
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+
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𝑗 − 𝑖 + 1



Expected number of Comparisons
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When 𝑖 = 1:   
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𝑛 terms overall in the outer sum

Quicksort overall: expected O 𝑛 log 𝑛



Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort
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𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛 log 𝑛)

𝑂(𝑛-)

𝑂(𝑛-)

Can we do better than 𝑂(𝑛 log 𝑛)?



Worst Case Lower Bounds

• Prove that there is no algorithm which can sort faster than 
𝑂(𝑛 log 𝑛)
– Every algorithm, in the worst case, must have a certain lower bound

• Non-existence proof!
– Very hard to do
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Strategy: Decision Tree
• Sorting algorithms use comparisons to figure out the order of input 

elements
• Draw tree to illustrate all possible execution paths
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Strategy: Decision Tree
• Worst case run time is the longest execution path
• i.e., “height” of the decision tree
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Strategy: Decision Tree
• Conclusion: Worst Case Optimal run time of sorting is Θ(𝑛 log 𝑛)

– There is no (comparison-based) sorting algorithm with run time 
𝑜(𝑛 log 𝑛)
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Sorting, so far

• Sorting algorithms we have discussed:
– Mergesort
– Quicksort

• Other sorting algorithms (will discuss):
– Bubblesort
– Insertionsort
– Heapsort
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𝑂(𝑛 log 𝑛)
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Speed Isn’t Everything
• Important properties of sorting algorithms:
• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with multiple computers 36



Mergesort
• Divide: 

– Break 𝑛-element list into two lists of ⁄+ - elements
• Conquer:

– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable?
No No Yes!

(usually)



Merge
• Combine: Merge sorted sublists into one sorted list
• We have: 
– 2 sorted lists (𝐿S, 𝐿-)
– 1 output list (𝐿bcd)

While (𝐿S and 𝐿- not empty):
If 𝐿S 0 ≤ 𝐿-[0]: 

𝐿bcd.append(𝐿S.pop())
Else: 

𝐿bcd.append(𝐿-.pop())
𝐿bcd.append(𝐿S)
𝐿bcd.append(𝐿-)

Stable:
If elements are 
equal, leftmost 
comes first
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Mergesort
• Divide: 

– Break 𝑛-element list into two lists of ⁄+ - elements
• Conquer:

– If 𝑛 > 1: Sort each sublist recursively
– If 𝑛 = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(𝑛 log 𝑛)
Optimal!

In Place? Adaptive? Stable? Parallelizable?
No No Yes!

(usually)
Yes!

39



Mergesort

• Divide: 
– Break 𝑛-element list into two lists of ⁄+ - elements

• Conquer:
– If 𝑛 > 1:
• Sort each sublist recursively

– If 𝑛 = 1:
• List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

40

Parallelizable:
Allow different 
machines to work 
on each sublist



Mergesort (Sequential)

𝑛 total / level

log- 𝑛 levels
of recursion
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Run Time: Θ(𝑛 log 𝑛)



Mergesort (Parallel)
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Quicksort
Run Time?
Θ(𝑛 log 𝑛)

(almost always)
Better constants 
than Mergesort

In Place? Adaptive? Stable?
kinda No! No

Parallelizable?
Yes!

• Idea: pick a partition element, recursively sort 
two sublists around that element

• Divide: select an element 𝑝, Partition(𝑝)
• Conquer: recursively sort left and right sublists
• Combine: Nothing!

Uses stack for 
recursive calls



Bubble Sort

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted
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8 5 7 9 12 10 1 2 4 3 6 11

5 8 7 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11



Bubble Sort
Run Time?
Θ(𝑛-)

Constants worse 
than Insertion Sort

In Place? Adaptive?
Yes Kinda

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

“Compared to straight 
insertion […], bubble 
sorting requires a more 
complicated program and 
takes about twice as long!” 
–Donald Knuth



Bubble Sort is “almost” Adaptive

• Idea: March through list, swapping adjacent 
elements if out of order

46

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Only makes one “pass”

2 3 4 5 6 7 8 9 10 11 12 1

After one “pass”

2 3 4 5 6 7 8 9 10 11 1 12

Requires 𝑛 passes, thus is 𝑂(𝑛-)



Bubble Sort
Run Time?
Θ(𝑛-)

Constants worse 
than Insertion Sort

In Place? Adaptive? Stable?
Yes! Kinda

Not really
Yes

Parallelizable?
No

• Idea: March through list, swapping adjacent 
elements if out of order, repeat until sorted

"the bubble sort seems to have 
nothing to recommend it, except a 
catchy name and the fact that it leads 
to some interesting theoretical 
problems” –Donald Knuth, The Art of 
Computer Programming



Insertion Sort

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix



Insertion Sort
Run Time?

Θ(𝑛-)
(but with very small 

constants)
Great for short lists!In Place? Adaptive?

Yes! Yes

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element



Insertion Sort is Adaptive

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

Only one comparison needed per element! Runtime: 𝑂(𝑛)



Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element Θ(𝑛-)

(but with very small 
constants)

Great for short lists!



Insertion Sort is Stable

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element
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3 5 7 8 10 12 10’ 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 10’ 12 2 4 6 1 11

3 5 7 8 10 10’ 12 2 4 6 1 11

Sorted Prefix

The “second” 10 will stay to the right



Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

Parallelizable?
No

• Idea: Maintain a sorted list prefix, extend that 
prefix by “inserting” the next element

Online?
Yes

Can sort a list as it is received, 
i.e., don’t need the entire list 
to begin sorting“All things considered, it’s 

actually a pretty good sorting 
algorithm!” –Nate Brunelle

Θ(𝑛-)
(but with very small constants)

Great for short lists!



Heap Sort
• Idea: Build a Heap, repeatedly extract max element 

from the heap to build sorted list Right-to-Left
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Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the 

Heap: replace with last element, call Heapify(root)
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Max Heap 
Property: Each 
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1
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Heapify(node): if node satisfies heap 
property, done. Else swap with largest 
child and recurse on that subtree



Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse 
than Quick Sort

In Place?
Yes!

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left

When removing an element 
from the heap, move it to the 
(now unoccupied) end of the list



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list
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In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list
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In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list
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In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list

63

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

Max Heap 
Property: Each 
node is larger 
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8



In Place Heap Sort

• Idea: When removing an element from the heap, 
move it to the (now unoccupied) end of the list
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Heap Sort
Run Time?
Θ(𝑛 log 𝑛)

Constants worse 
than Quick Sort

In Place? Adaptive? Stable?
Yes! No No

Parallelizable?
No

• Idea: Build a Heap, repeatedly extract max 
element from the heap to build sorted list Right-
to-Left


