CS4102 Algorithms

Fall 2019

Warm up

Show log(n!) = O(nlogn)

Hint: show n! < n"
n
2

Hint 2: show n! > (%)



logn! = O(nlogn)

nNn=n-n-1))-n—-2)-..-2-1

| N\ N\ N N
n=n- n . n  -.omn-n

n! <n"

= log(n!) < log(n™)
= log(n!) < nlogn

= log(n!) = O(nlogn)




nn=n-n—-—1)-(n—2) 3 o201
V V V | VAN
n
nz n n n n
Vo =_. Z _ _ 1.1
(Z) 2 2 2 2
n

= log(n!) = log ((g)g)

n
) > —
= log(n!) > log >

= log(n!) = Q(nlogn)



Today's Keywords

* Divide and Conquer

* Quicksort

* Decision Tree

* Worst case lower bound
* Sorting



CLRS Readings

* Chapter 7
* Chapter 8



HomMeworks

e HW3 due 11pm Tuesday, October 1

— Divide and conquer

— Written (use LaTeX!)

— Submit BOTH a pdf and a zip file (2 separate attachments)
* Regrade Office Hours

— Thursdays 11lam-12pm
— Thursdays 4pm-5pm






Generic Divide and Conguer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)
return solution

subproblems[] = Divide(problem)

for subproblem in subproblems:
subsolutions.append(myDCalgo(subproblem))

solution = Combine(subsolutions)

return solution



Generic Divide and Conguer Solution




MergeSort Divide and Conguer Solution

def mergesort(list):
if list.length < 2:
return list
{listL, listR} = Divide_by median(list)
for list in {listL, listR}:
sortedSublLists.append(mergesort(list))
solution = merge(sortedL, sortedR)

return solution

10



MergeSort Divide and Conguer Solution

II Sorted II

SortedL SortedR

11






* |dea: pick a pivot element, recursively sort two sublists around
that element

* Divide: select an element p, Partition(p)
* Conquer: recursively sort left and right sublists

* Combine: Nothing!

13



Random Pivot

* Using Quickselect to pick median guarantees ®(nlogn) run
time
— Approach has very large constants
— If you really want ©(n logn), better off using MergeSort

e Better approach: Random pivot
— Very small constant (very fast algorithm)

— Expected to run in ®(nlogn) time
 Why? Unbalanced partitions are very unlikely

18



~ormal Argument for nlogn Average

* Remember, run time counts comparisons!

* Quicksort only compares against a pivot

— Element i only compared to element j if one of
them was the pivot

19



~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1234567.9 10 | 11 | 12

Consider the sorted version of the list

E uniformly at random

Prlwe compare 1 and 12] = 2 L Assuming pivot is chosen }

Only compared if 1 or 12 was chosen as the first pivot
since otherwise they are in different sublists

20



~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

123456.8910 11 | 12

l' J

Case 3.1: Pivot contained in [i + 1, ...,j — 1]
Then i and j are in different sublists and will never be
compared

Pr[we compareiandj] = 0



~ormal Argument for nlogn Average

What is the probability of comparing two given elements?

1234.678910 11 | 12

l' J

Case 3.2: Pivotis eitheri orj
Then we will always compare i and j

Pr[we compareiandj] =1



~ormal Argument for nlogn Average

* Probability of comparing element i with element j:

2
j—i+1

* Prlwe compareiand j]| =

* Expected number of comparisons:

I
>
T
—
>
d
T
—

gl
N
—~.
|
_|_
p—
M
M
N
N
& =
N
N
1=
ol

n
—
x‘
I
—
n
p—
xt
I
p—

1 k= L
Substltutlon
— ] - l 23




~ormal Argument for nlogn Average

S 2 . n—-1n—i —1 n—i " -1 n "
o La j—i+1 _22 EZE ZZE
1=1 j=i+1 i=1 k=1 i=1 k=1 i=1 k=1

n-1
= 2 z O(logn) = O(nlogn)
i=1

Quicksort overall: expected O@(nlogn)

24



EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 2 are chosen as pivot
(these will always be compared)

2
Sum so far:E

25



EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 3 are chosen as pivot
(but never if 2 is ever chosen)

2 2
Sum so far:z + 3

26



EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 4 are chosen as pivot
(but never if 2 or 3 are chosen)

2 2 2
Sumso far:—=+ -+ -
2 3 4

27



EXpected number of Comparisons

n
Consider wheni =1 z z 2
o L j—i+1

1 2 3 4 5 6 7 8 9 110 | 11 | 12

Compared if 1 or 12 are chosen as pivot
(but never if 2 -> 11 are chosen)

Overallsum: 2+ 24+ 2424 ... 42
2 3 4 5 n

28



EXpected number of Comparisons

n-1 n
> >
=1 j=i+1] =

Wheni = 1:

2(%+%+%+---+%)<2 zn:% O(logn)

x=1

n terms overall in the outer sum

Quicksort overall: expected O(nlogn)

29



Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn)
— Quicksort O(nlogn)

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort  0(n?)

— Heapsort O(nlogn)

Can we do better than O(nlogn)?

30



Worst Case [Lower Bounds

* Prove that there is no algorithm which can sort faster than
O(nlogn)
— Every algorithm, in the worst case, must have a certain lower bound

* Non-existence proof!
— Very hard to do

31



Strategy: Decision Tree

e Sorting algorithms use comparisons to figure out the order of input
elements

* Draw tree to illustrate all possible execution paths

Possible Result of

execution path comparison

>or<?

[ >0or<? ][ >0or<? ][ >or<? ] : [ >0or<? ] >or<? ][ >0or<? [ >or<?

Permutation

[ 5,2,4,1,3] ] [ 54,3211 ] of sorted list

[ [1,2,3,4,5] ] [ [2,1,3,4,5] ]

32



Strategy: Decision Tree

* Worst case run time is the longest execution path

* i.e., “height” of the decision tree

log(n!) =
O(nlogn)

Possible
execution path

>or<?

Result of

comparison

[ >or<? ][ >or<? ][ >or<? ] " [ >0or<? ] >or<? ][ >or<? [ >or<?

[ [1,2,3,4,5] ] [ [2,1,3,4,5] ]

| 524131 | -

—

\

| 154321 |

J

|
n! Possible permutations

Permutation
of sorted list

33



Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is @(nlogn)
— There is no (comparison-based) sorting algorithm with run time

o(nlogn)
Possible Result of
— execution path comparison
<
< >or<?
log(n!)"[ >or<? ][ >or<? ][ >or<? ] . [ >or<? ] >or<? ][ >or<? [ >or<?
O(nlogn)
(2345 ) (21345 | - | 524131 | ~ | 54321 | E?Z:riteztiﬁsz

\ )
|

n! Possible permutations

34



Sorting, so far

e Sorting algorithms we have discussed:
— Mergesort O(nlogn) Optimal!
— Quicksort O(nlogn) Optimal!

e Other sorting algorithms (will discuss):
— Bubblesort 0(n?)
— Insertionsort  0(n?)

— Heapsort O(nlogn) Optimal!

35



Speed Isn't BEverything

* Important properties of sorting algorithms:

* Run Time
— Asymptotic Complexity
— Constants
* In Place (or In-Situ)
— Done with only constant additional space
* Adaptive
— Faster if list is nearly sorted
* Stable
— Equal elements remain in original order

e Parallelizable
— Runs faster with multiple computers 3



NVergesort

. Divide: Run Time?

— Break n-element list into two lists of */, elements
* Conquer: G)(n lOg Tl)

— If n > 1: Sort each sublist recursively Opt| mal |

— Ifn = 1: List is already sorted (base case)
 Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)




* Combine: Merge sorted sublists into one sorted list

e We have:
— 2 sorted lists (L1, L)
— 1 output list (Lyy¢)

While (L1 and L, not empty):
Stable:

If L1[0] = L[0]: If elements are
Loyt-append(Lq.pop()) equal, leftmost

Else: comes first
Loyt-append(L;.pop())

Lyyt-append(Lq)

Lyy¢-append(Ly)

38



NVergesort

Divide:

— Break n-element list into two lists of */, elements
Conquer:

— Ifn > 1: Sort each sublist recursively

— Ifn = 1: List is already sorted (base case)
Combine:

— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

No No Yes!
(usually)

Run Time?

O(nlogn)
Optimall

Parallelizable?

Yes!

39



NVergesort

Parallelizable:
- All iff
* Divide: OW.dI erent
machines to work

— Break n-element list into two lists of "/, elements |, cach sublist
* Conquer:

—Ifn > 1:
e Sort each sublist recursively

—Ifn = 1:
* List is already sorted (base case)
 Combine:
— Merge together sorted sublists into one sorted list

40



Mergesort (sequential)

T(n) = zr(g) tn

n ’ |
— T . n total / level
n/2 |2 n/2 |2
— " N7 e N >1
n/4 |4| n/4 |* n/4 | n/4 og, n levels
AW /N AN AN of recursion
1 1 . i 1 1
1 1 1 || 1 1 )

Run Time: O(n logn)



Mergesort (Parallel)

T(n) = T(g) +n

n

Done in Parallel n i
n/2 |2 n/2 |2 i
/lfé\ n /4—}\ Tla
n/4 |4+ n/4 |* n/4 *| n/4 |*
7 7~ VAN 7~
|74 :\ | 4 :\ "4 :\ K: N 1
1 1 1 1 1 1
1 1 1 1 1

Run Time: O(n)



Quicksort

. - . Run Time?
* ldea: pick a partition element, recursively sort

two sublists around that element @ (n l()g n)
 Divide: select an element p, Partition(p) (almost always)

Better constants
than Mergesort

* Conquer: recursively sort left and right sublists
* Combine: Nothing!

In Place? Adaptive?  Stable? Parallelizable?

kinda Nol! No Yes!
Uses stack for

recursive calls




Bubble Sort

* |dea: March through list, swapping adjacent
elements if out of order, repeat until sorted

9 112|110 | 1 2 4 3 6 | 11

] 9 112|110} 1 2 4 3 6 | 11
5 7 - 12 1 10 | 1 2 4 3 6 | 11

7
5 7 8 -10 1 2 4 3 6 | 11

44



Bubble Sort

Run Time?

Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

O(n?)

In Place? Adaptive?

Yes Kinda

Constants worse
than Insertion Sort

“Compared to straight
insertion [...], bubble
sorting requires a more
complicated program and
takes about twice as long
—Donald Knuth

II)



Bubble Sort is “almost” Adaptive

* |dea: March through list, swapping adjacent
elements if out of order

4 5 6 7 8 9 110 | 11 | 12

5 6 7 8 9 110 | 11 | 12

Only makes one “pass”

2 3 4 5 6 7 8 9 11011 |12 ] 1

After one “pass”

2 3 4 5 6 7 8 9 10| 11| 1 | 12

Requires n passes, thus is 0(n?) 46



Bubble Sort

I ?
* Idea: March through list, swapping adjacent Run Time:
elements if out of order, repeat until sorted @ (nZ)
Constants worse

than Insertion Sort
In Place? Adaptive? Stable? Parallelizable?

Yes! Kinda Yes No
Not really

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” —Donald Knuth, The Art of
Computer Programming




INsertion Sort

* |dea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix

11

I—
N
I
(@)}
[N

48




INsertion Sort

* |dea: Maintain a sorted list prefix, extend that Run Time?
prefix by “inserting” the next element @ (le)
(but with very small
constants)
In Place? Adaptive? Great for short lists!

Yes! Yes



Insertion Sort Is Adaptive

* |dea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix

Only one comparison needed per element!  Runtime: O(n)

8 9 110 | 11 | 12

50



INsertion Sort

' ?
* Idea: Maintain a sorted list prefix, extend that Run Time:
prefix by “inserting” the next element @ (le)

(but with very small
constants)

In Place? Adaptive? Stable?  Greatiorshortlists!

Yes! Yes Yes




INnsertion Sort s Staple

* |dea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix

11

I—
N
I
(@)}
[N

The “second” 10 will stay to the right

52



INsertion Sort

— . . Run Time?
* |dea: Maintain a sorted list prefix, extend that >
prefix by “inserting” the next element @ (Tl )

(but with very small constants)
Great for short lists!

In Place? Adaptive? Stable? Parallelizable?

Yes! Yes Yes No

Can sort a list as it is received, Online?
i.e., don’t need the entire list

“All things considered, it’s to begin sorting Yes
actually a pretty good sorting

algorithm!” —Nate Brunelle




Heap Sort

* |dea: Build a Heap, repeatedly extract max element
from the heap to build sorted list Right-to-Left

101 9 6 3 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children

54



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

6 3 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 55



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

9.6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9 10

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 56



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

9 8 5 2 4 1

Max Heap ° 1 2

Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 57



Heap Sort

 Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

9 8 6 4 7 5 2 3 1

Max Heap 0 1 2 3 4 5 6 7 8 9 10

Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
3 9 property, done. Else swap with largest
child and recurse on that subtree 58



Heap Sort

' ?

* |dea: Build a Heap, repeatedly extract max Run Time:
element from the heap to build sorted list Right-

to-Left @(Tl 108 Tl)

Constants worse

than Quick Sort
In Place? When removing an element
from the heap, move it to the
Yes! (now unoccupied) end of the list




N Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

101 9 6 3 7 5 2 4 1 3

MaxHeap ° 1 2 3 4 5 6 7 8 9 10

Property: Each
node is larger
than its children

60



N Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

:.9687524110
Max Heap

Property: Each
node is larger
than its children

61



N Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

9 8 6 4 7 5 2 3 1 | 10

MaXHeap012345678910

Property: Each
node is larger
than its children

62



N Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

8 7 6 4 1 5 2 3 9 | 10

MaXHeap012345678910

Property: Each
node is larger
than its children

63



N Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

7 4 6 3 1 5 2 8 9 | 10

Property: Each
node is larger
than its children

64



Heap Sort

' ?
|dea: Build a Heap, repeatedly extract max Run Time:
element from the heap to build sorted list Right-
to-Left @(Tl 108 Tl)

Constants worse
than Quick Sort
In Place? Adaptive? Stable? Parallelizable?

Yes! No No No




