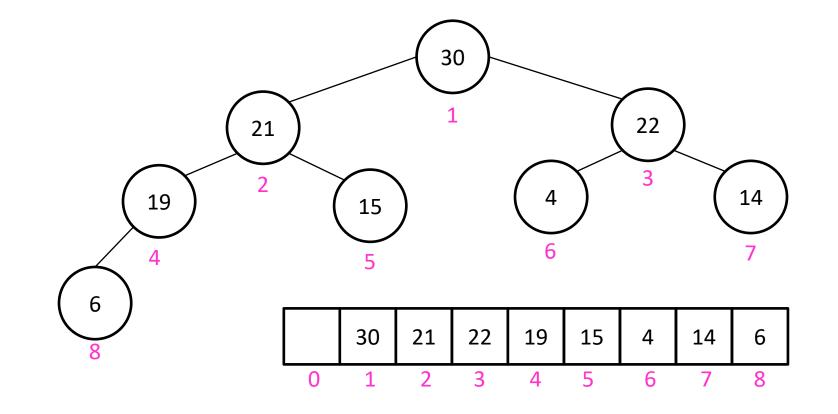
CS4102 Algorithms Spring 2019

Warm up

Build a Max Heap from the following Elements: 4, 15, 22, 6, 18, 30, 14, 21

Неар

• Heap Property: Each node must be larger than its children



Today's Keywords

- Sorting
- Quicksort
- Sorting Algorithm Characteristics
- Insertion Sort
- Bubble Sort
- Heap Sort
- Linear time Sorting
- Counting Sort
- Radix Sort

CLRS Readings

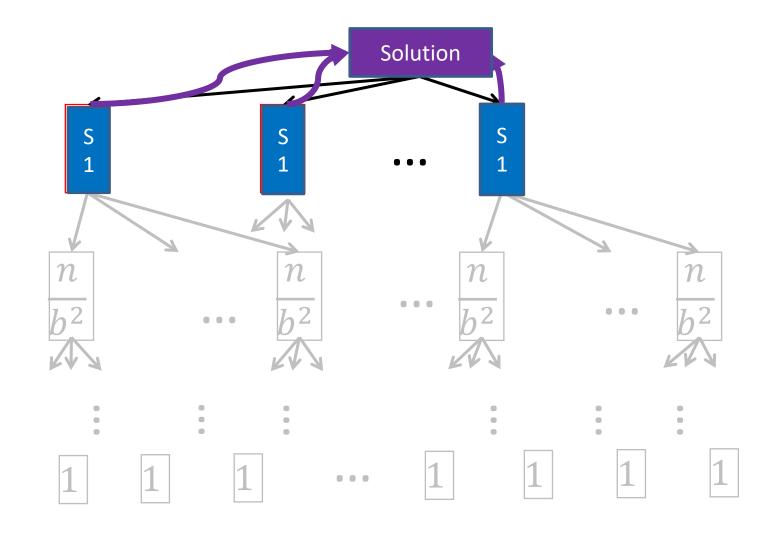
- Chapter 6
- Chapter 8

Homeworks

- HW3 due 11pm Wednesday Feb. 20
 - Divide and conquer
 - Written (use LaTeX!)
- HW4 coming on Wednesday
- Grading Notes
 - HWO has been graded and released
 - HW1 grades (and solutions) released on Wednesday
 - HW2 is currently being graded (released tomorrow!)

Generic Divide and Conquer Solution def **myDCalgo**(problem): if baseCase(problem): solution = solve(problem) #brute force if necessary return solution subproblems = Divide(problem) for subproblem of problem: subsolutions.append(myDCalgo(subproblem)) solution = Combine(subsolutions) return solution

Generic Divide and Conquer Solution



MergeSort Divide and Conquer Solution

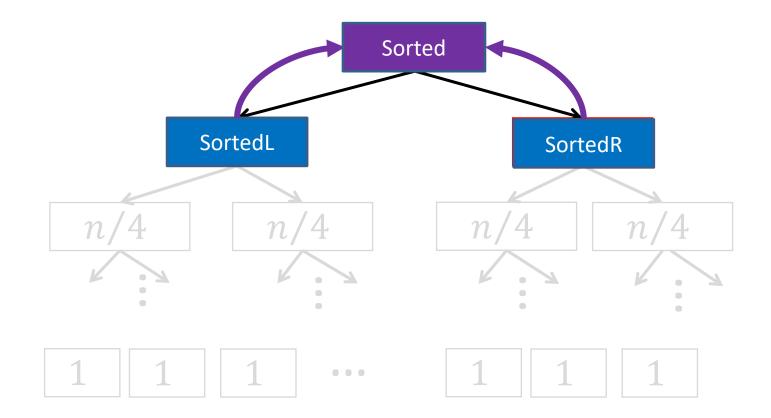
def mergesort(list):

if list.length < 2:
 return list #list of size 1 is sorted!
 {listL, listR} = Divide_by_median(list)
 for list in {listL, listR}:</pre>

sortedSubLists.append(mergesort(list))
solution = merge(sortedL, sortedR)

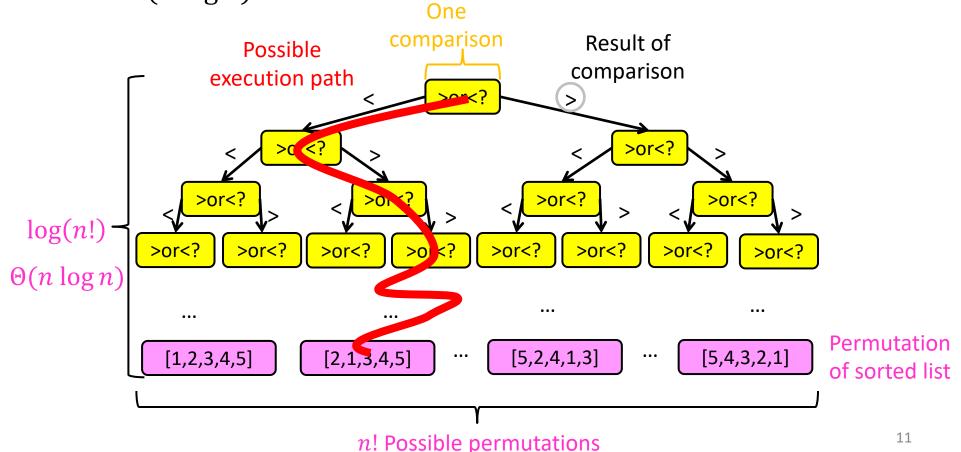
return solution

MergeSort Divide and Conquer Solution



Strategy: Decision Tree

- Conclusion: Worst Case Optimal run time of sorting is $\Theta(n \log n)$
 - There is no (comparison-based) sorting algorithm with run time $o(n \log n)$



Sorting, so far

- Sorting algorithms we have discussed:
 - Mergesort $O(n \log n)$ Optimal!
 - Quicksort $O(n \log n)$ Optimal!
- Other sorting algorithms
 - Bubblesort $O(n^2)$
 - Insertionsort $O(n^2)$
 - Heapsort $O(n \log n)$ Optimal!

Speed Isn't Everything

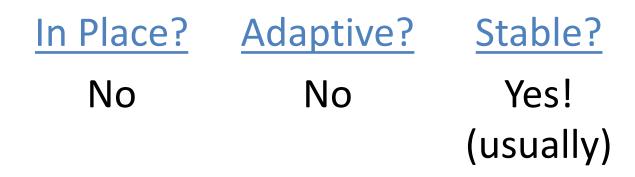
- Important properties of sorting algorithms:
- Run Time
 - Asymptotic Complexity
 - Constants
- In Place (or In-Situ)
 - Done with only constant additional space
- Adaptive
 - Faster if list is nearly sorted
- Stable
 - Equal elements remain in original order
- Parallelizable
 - Runs faster with multiple computers

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list

 $\frac{\text{Run Time?}}{\Theta(n \log n)}$ Optimal!



Merge

- **Combine:** Merge sorted sublists into one sorted list
- We have:
 - 2 sorted lists (L_1 , L_2)
 - -1 output list (L_{out})

```
While (L_1 \text{ and } L_2 \text{ not empty}):

If L_1[0] \le L_2[0]:

L_{out}.append(L_1.pop())

Else:
```

Stable:

If elements are equal, leftmost comes first

$$L_{out}.append(L_2.pop())$$

 $L_{out}.append(L_1)$
 $L_{out}.append(L_2)$

Mergesort

• Divide:

- Break *n*-element list into two lists of n/2 elements
- Conquer:
 - If n > 1: Sort each sublist recursively
 - If n = 1: List is already sorted (base case)

• Combine:

Merge together sorted sublists into one sorted list

 $\frac{\text{Run Time?}}{\Theta(n \log n)}$ Optimal!

In Place?	Adaptive?	Stable?	Parallelizable?
No	No	Yes!	Yes!
		(usually)	

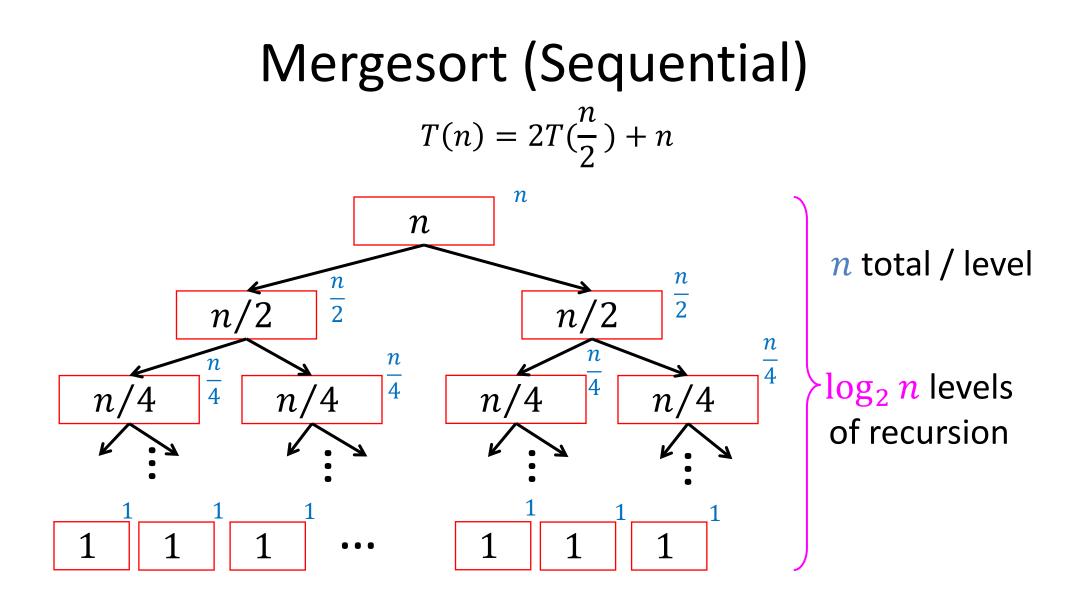
Mergesort

• Divide:

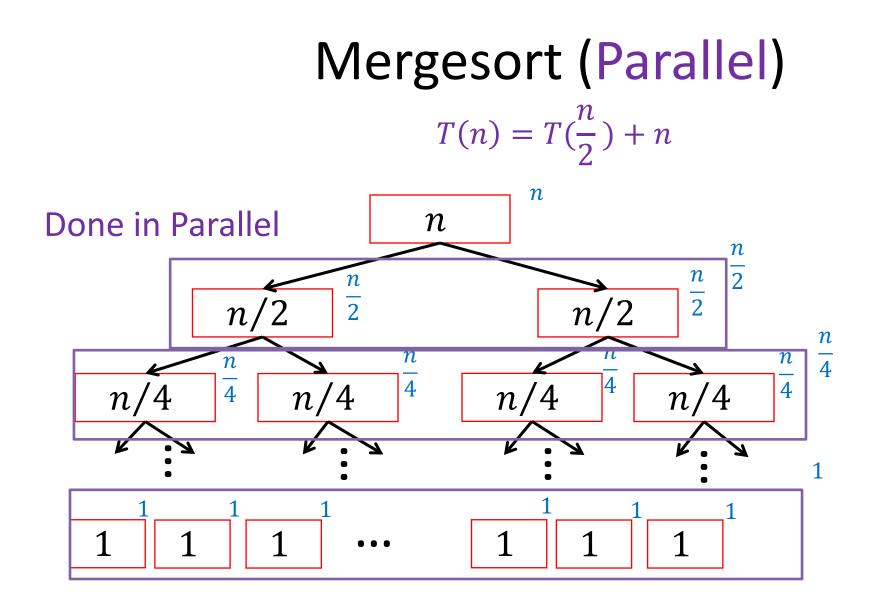
- Break *n*-element list into two lists of n/2 elements

Parallelizable: Allow different machines to work on each sublist

- Conquer:
 - If n > 1:
 - Sort each sublist recursively
 - If n = 1:
 - List is already sorted (base case)
- Combine:
 - Merge together sorted sublists into one sorted list



Run Time: $\Theta(n \log n)$



Run Time: $\Theta(n)$

Quicksort

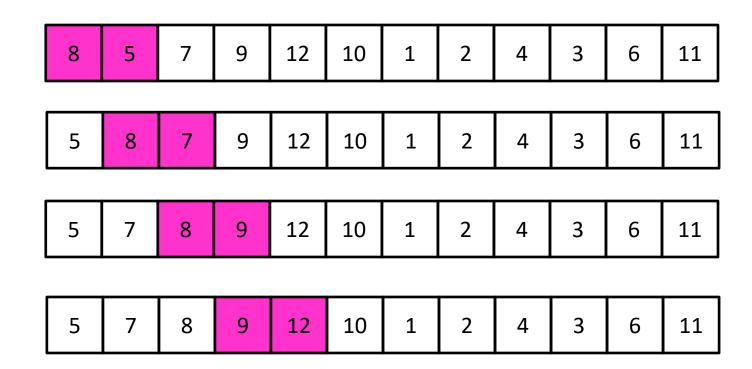
- Idea: pick a partition element, recursively sort two sublists around that element
- Divide: select an element *p*, Partition(*p*)
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

 $\frac{\text{Run Time?}}{\Theta(n \log n)}$ (almost always)
Better constants
than Mergesort

In Place?	Adaptive?	Stable?	Parallelizable?
kinda Uses stack foi	No!	No	Yes!
recursive calls			

Bubble Sort

• Idea: March through list, swapping adjacent elements if out of order, repeat until sorted



Bubble Sort

• Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

Run Time?

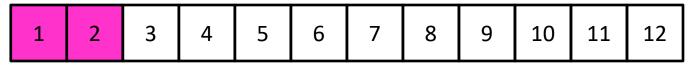
 $\Theta(n^2)$ Constants worse

than Insertion Sort

"Compared to straight insertion [...], bubble sorting requires a more complicated program and takes about twice as long!" –Donald Knuth

Bubble Sort is "almost" Adaptive

 Idea: March through list, swapping adjacent elements if out of order



1	2	3	4	5	6	7	8	9	10	11	12	
---	---	---	---	---	---	---	---	---	----	----	----	--

Only makes one "pass"

2	3	4	5	6	7	8	9	10	11	12	1	
---	---	---	---	---	---	---	---	----	----	----	---	--

After one "pass"

2	3	4	5	6	7	8	9	10	11	1	12	
---	---	---	---	---	---	---	---	----	----	---	----	--

Requires n passes, thus is $O(n^2)$

Bubble Sort

Idea: March through list, swapping adjacent elements if out of order, repeat until sorted

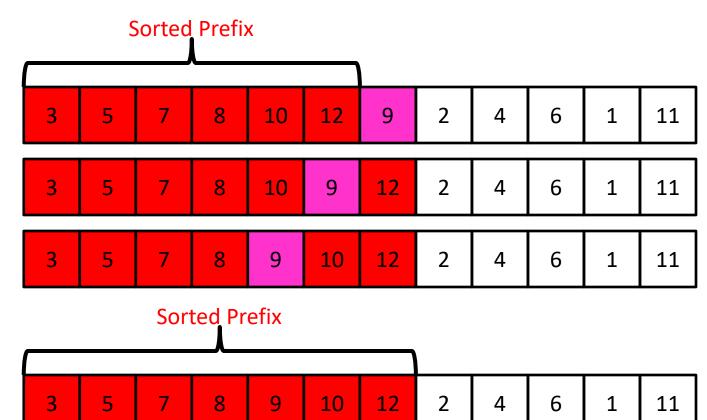
Run Time? $\Theta(n^2)$ **Constants worse** than Insertion Sort Parallelizable? No

In Place?	Adaptive?	Stable?
Yes!	Kinda	Yes
	Not really	

"the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems" – Donald Knuth, The Art of **Computer Programming**

Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

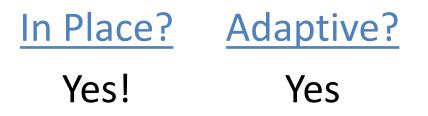


Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

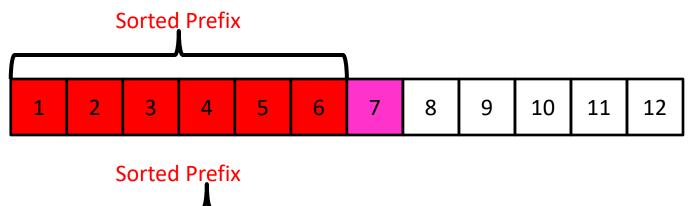
Run Time?

 $\Theta(n^2)$ (but with very small constants) Great for short lists!



Insertion Sort is Adaptive

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element





Only one comparison needed per element! Runtime: O(n)

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element

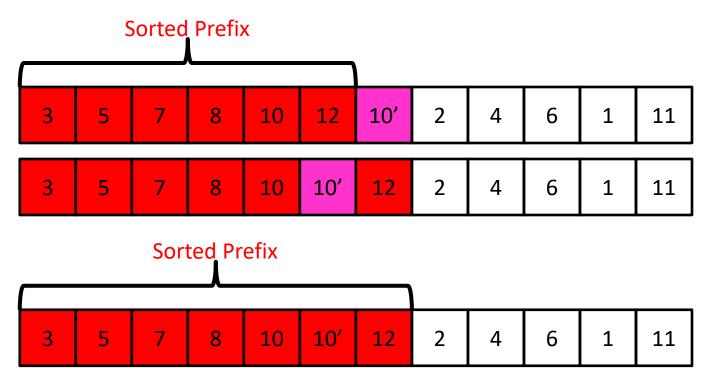
 $\frac{\text{Run Time?}}{\Theta(n^2)}$ (but with very small constants)

Great for short lists!

In Place?	Adaptive?	Stable?
Yes!	Yes	Yes

Insertion Sort is Stable

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element



The "second" 10 will stay to the right

Insertion Sort

 Idea: Maintain a sorted list prefix, extend that prefix by "inserting" the next element $\frac{\text{Run Time?}}{\Theta(n^2)}$ (but with very small constants)
Great for short lists!
Parallelizable?
No

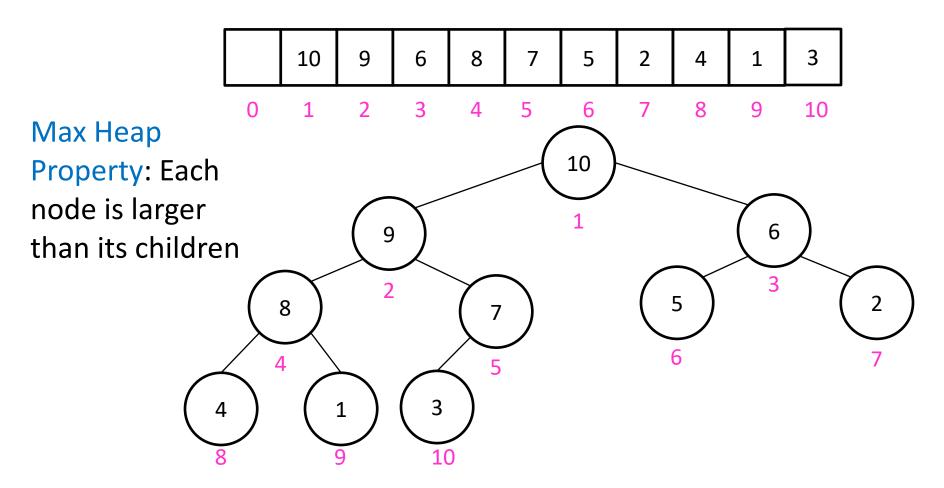
<u>In Place?</u> <u>Adaptive?</u> <u>Stable?</u> Yes! Yes Yes

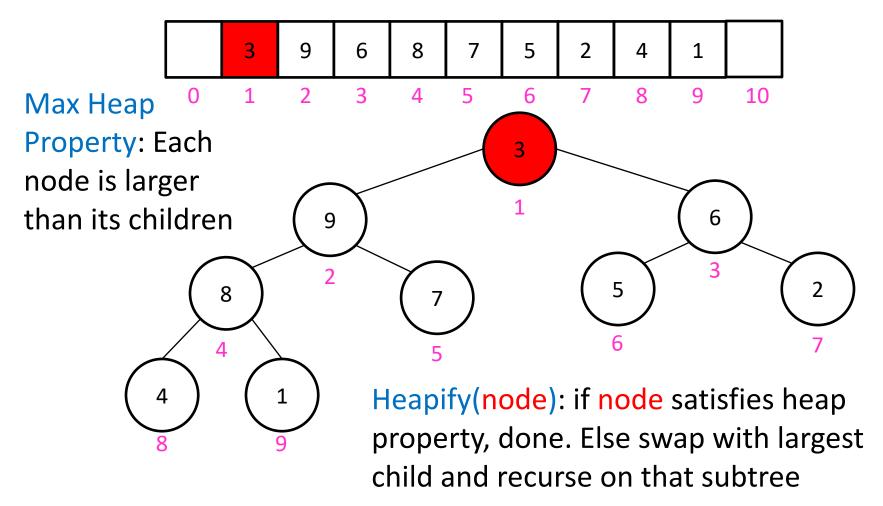
"All things considered, it's actually a pretty good sorting algorithm!" –Nate Brunelle Can sort a list as it is received, i.e., don't need the entire list to begin sorting

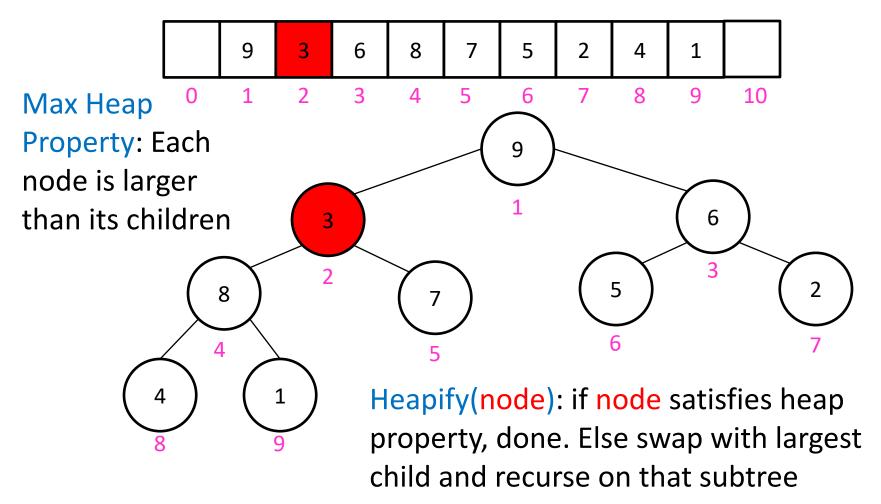
Yes

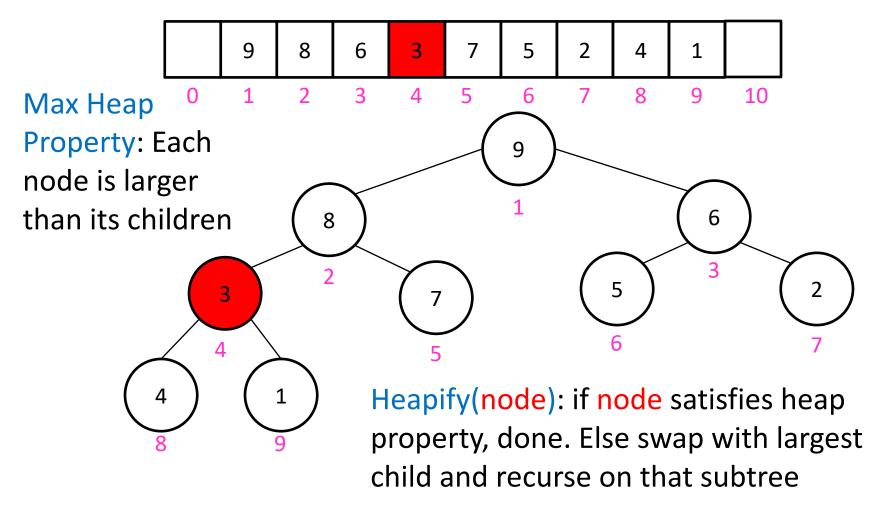
Heap Sort

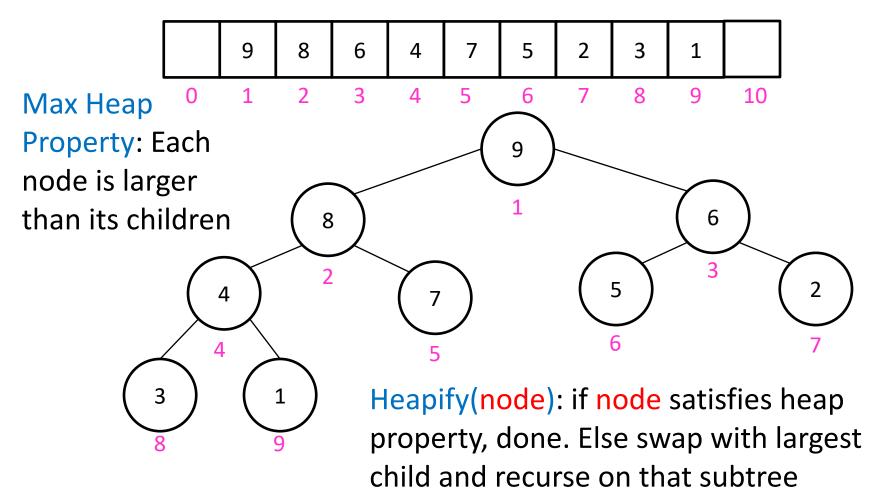
• Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Right-to-Left











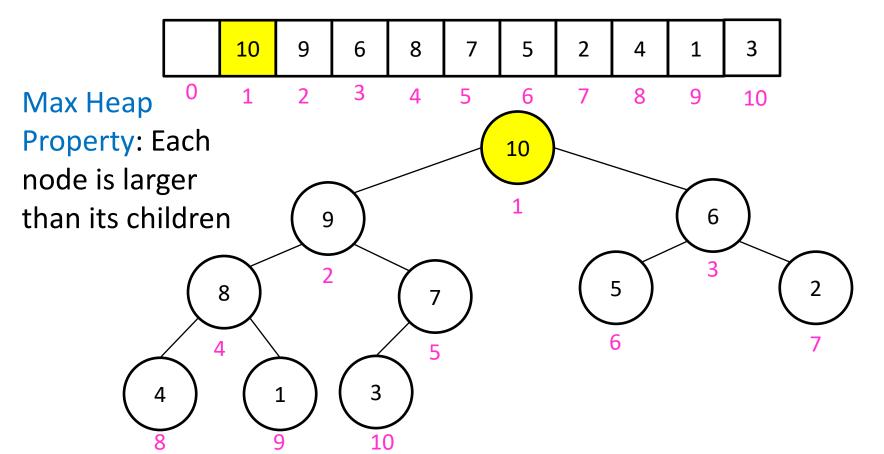
Heap Sort

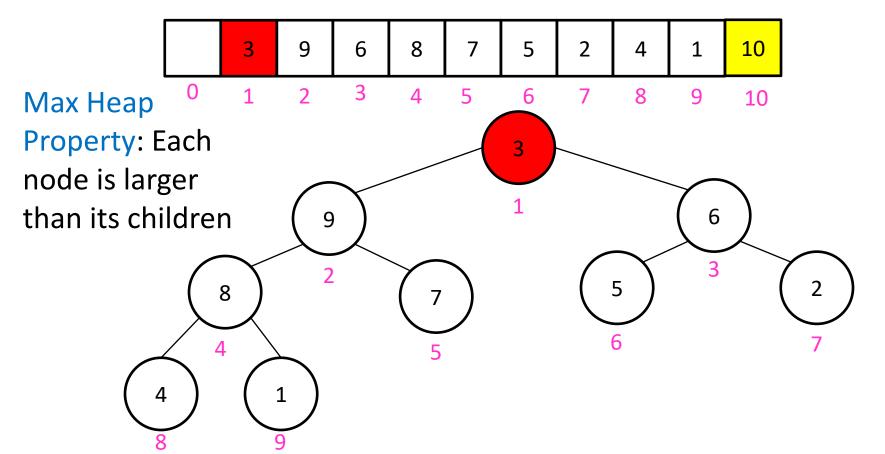
 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left $\frac{\text{Run Time?}}{\Theta(n \log n)}$ Constants worse
than Quick Sort

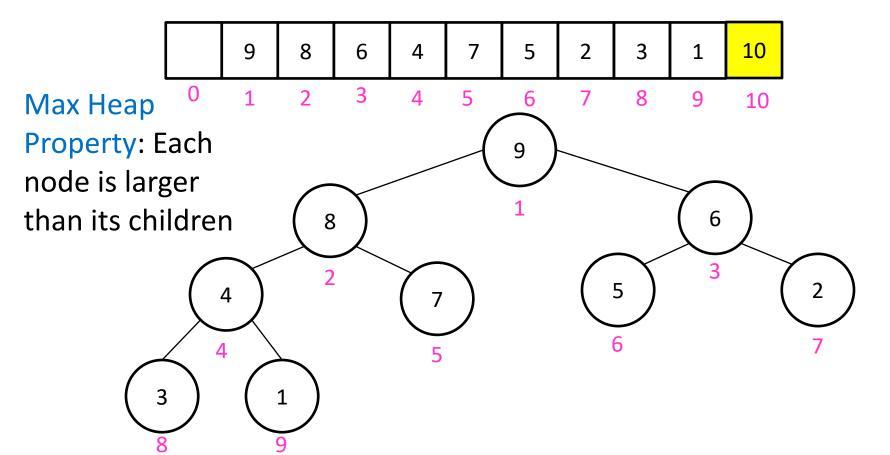
When removing an element from the heap, move it to the (now unoccupied) end of the list

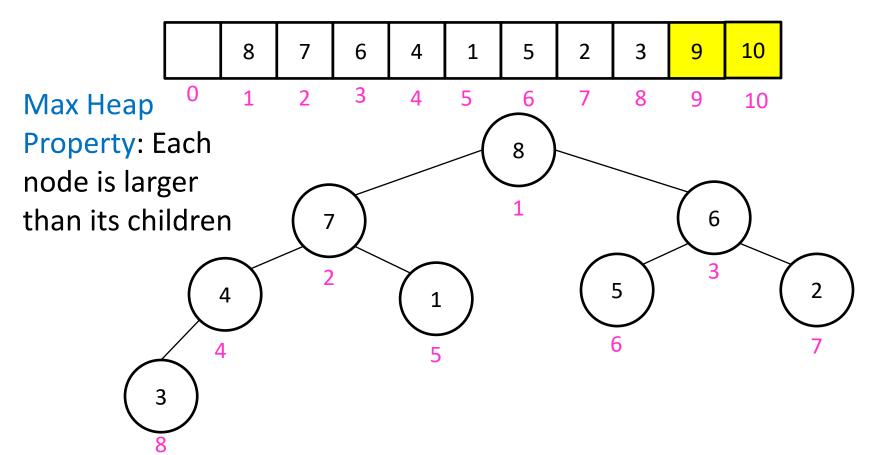
In Place Heap Sort

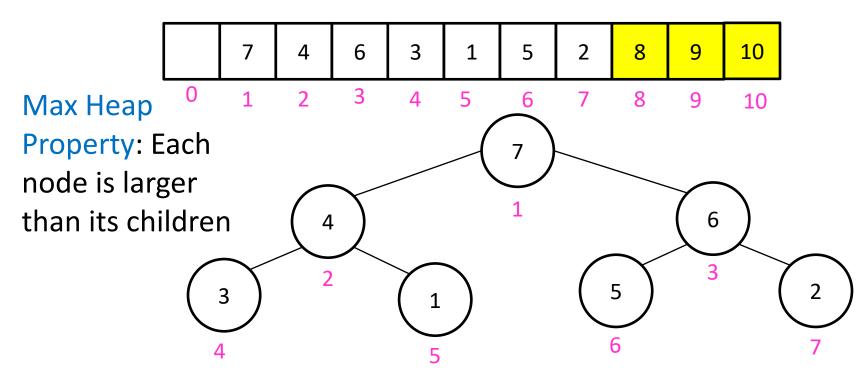
• Idea: When removing an element from the heap, move it to the (now unoccupied) end of the list











Heap Sort

 Idea: Build a Heap, repeatedly extract max element from the heap to build sorted list Rightto-Left Run Time? Θ(n log n) Constants worse than Quick Sort Parallelizable? No

In Place?	Adaptive?	Stable?
Yes!	No	No

Sorting in Linear Time

- Cannot be comparison-based
- Need to make some sort of assumption about the contents of the list
 - Small number of unique values
 - Small range of values
 - Etc.

Counting Sort

Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

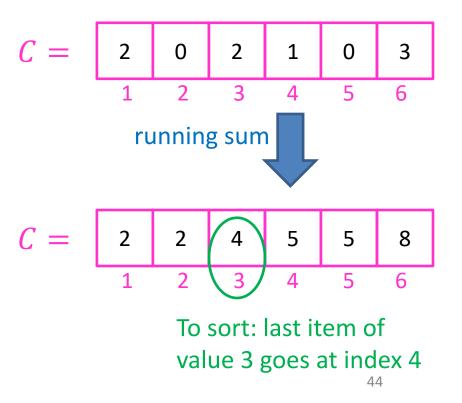
1.Range is [1, k] (here [1,6])

make an array *C* of size *k* populate with counts of each value

2.Take "running sum" of *C* to count things less than each value

For
$$i = 1$$
 to len(C):

$$C[i] = C[i - 1] + C[i]$$



Counting Sort • Idea: Count how many things are less than each element _ L =Last item of value 6 goes at index 8

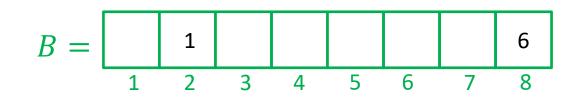
For each element of *L* (last to first): Use *C* to find its proper place in *B* Decrement that position of C

For
$$i = \operatorname{len}(L)$$
 downto 1:

$$B\left[C[L[i]]\right] = L[i]$$

$$C[L[i]] = C[L[i]] - 1$$

Counting Sort • Idea: Count how many things are less than each element = L =Last item of value 1 goes at index 2 For i = len(L) downto 1: For each element of *L* (last to first): $B\left[C[L[i]]\right] = L[i]$ Use C to find its proper place in B Decrement that position of C C[L[i]] = C[L[i]] - 1



Run Time: O(n + k)

Memory: O(n + k)

Counting Sort

- Why not always use counting sort?
- For 64-bit numbers, requires an array of length $2^{64}>10^{19}$
 - 5 GHz CPU will require > 116 years to initialize the array
 - 18 Exabytes of data
 - Total amount of data that Google has

12 Exabytes

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

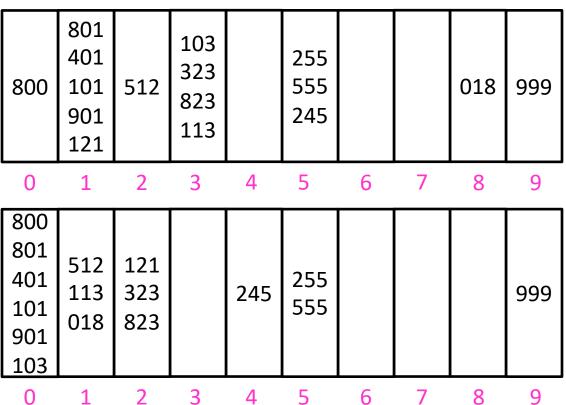
Place each element into a "bucket" according to its 1's place

800	801 401 101 901 121	512	103 323 823 113		255 555 245			018	999
0	1	2	3	4	5	6	7	8	9

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 10's place



Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 100's place

Run Time: O(d(n + b)) d = digits in largest valueb = base of representation

