CS4102 Algorithms

Warm up
Build a Max Heap from the following Elements:
4,15, 22, 6,18, 30, 14, 21

2/18/19

Heap

* Heap Property: Each node must be larger than its children

I |30|21|22|19|15|4|14|6|

T T 3

Today’s Keywords

Sorting

Quicksort

Sorting Algorithm Characteristics
Insertion Sort

Bubble Sort

Heap Sort

Linear time Sorting

Counting Sort

Radix Sort

CLRS Readings

2/18/19

e Chapter 6
e Chapter 8
Homeworks
?HM 2
* HW3 due 11pm Wednesday Feb. 20

— Divide and conquer

— Written (use LaTeX!)

HW4 coming on Wednesday

Grading Notes

— HWO has been graded and released

— HW1 grades (and solutions) released on Wednesday
— HW2 is currently being graded (released tomorrow!)

.

.

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)
return solution

subproblems = Divide(problem)

for subproblem of problem:
subsolutions.append(myDCalgo(subproblem))

solution = Combine(subsolutions)

return solution

Generic Divide and Conquer Solution

2/18/19

MergeSort Divide and Conquer Solution

def mergesort(list):

if list.length < 2:
return list

{listL, listR} = Divide_by_median(list)

for list in {listL, listR}:
sortedSublLists.append(mergesort(list))

solution = merge(sortedL, sortedR)

return solution

MergeSort Divide and Conquer Solution

Sorted

SortedL SortedR

Strategy: Decision Tree

* Conclusion: Worst Case Optimal run time of sorting is

O(nlogn)
— There is no (comparison-based) sorting algorithm with run
o(nlogn)
Possible Result of

execution path

comparison
>

N IR 5
log(n!) = S
G
0(n logn)

l [1,2,3,4,5] l

- I [52,4,1,3] I - I [54,3,2,1] I
J

n! Possible permutations

time

Permutation

of sorted list

2/18/19

.

.

Sorting, so far

Sorting algorithms we have discussed:
— Mergesort O(nlogn) Optimal!

— Quicksort

O(nlogn) Optimal!

Other sorting algorithms

— Bubblesort 0(n?)
— Insertionsort 0(n?)
— Heapsort O(nlogn) Optimal!

Speed Isn’t Everything
Important properties of sorting algorithms:
Run Time
— Asymptotic Complexity
— Constants
In Place (or In-Situ)

— Done with only constant additional space
Adaptive

— Faster if list is nearly sorted

Stable

— Equal elements remain in original order
Parallelizable

— Runs faster with multiple computers

Mergesort

Divide:
— Break n-element list into two lists of "/, elements
Conquer:

— Ifn > 1: Sort each sublist recurs

— Ifn = 1: Listis already sorted (base case)

Combine:
— Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?
No No Yes!
(usually)

Run Time?

B(nlogn)
Optimal!

2/18/19

Merge

We have:

— 2 sorted lists (Ly, L)
— 1output list (L)

While (L, and L, not empty):
If L1[0] < L,[0]:

Combine: Merge sorted sublists into one sorted list

Stable:
If elements are
equal, leftmost

Loye-append(L; .pop() comes first
Else:
Lou-append(L.pop())
Lout-append(L;)
Lout-append(Ly)
Mergesort
* Divide: Run Time?
— Break n-element list into two lists of "/, elements -
« Conquer: @(n log Tl)
— Ifn > 1: Sort each sublist recurs Optimal!

— Ifn = 1: List s already sorted (bas

Combine:
~ Merge together sorted sublists into one sorted list

In Place? Adaptive? Stable?

Parallelizable?

No No Yes!
(usually)

Yes!

Mergesort
Parallelizable:
* Divide: Allow different
— Break n-element list into two lists of '/, elements | Machines to work
on each sublist
¢ Conquer:
—-ifn>1:
« Sort each sublist recursively
—-lfn=1:
« List is already sorted (base case)
* Combine:

— Merge together sorted sublists into one sorted list

2/18/19

Mergesort (Sequential)
T(n) = ZT(;L) +n

n total / level

log, n levels
of recursion

Run Time: ©(nlogn)

Mergesort (Parallel)

n
T(n) = T(f) +n

Run Time: ©(n)

Quicksort

Idea: pick a partition element, recursively sort
two sublists around that element

Divide: select an element p, Partition(p)
Conquer: recursively sort left and right sublists
Combine: Nothing!

Run Time?
B(nlogn)

(almost always)
Better constants

In Place? Adaptive? Stable?

than Mergesort

Parallelizable?

kinda No! No
Uses stack for

recursive calls

Yes!

2/18/19

Bubble Sort

* ldea: March through list, swapping adjacent
elements if out of order, repeat until sorted

-7|9|12 10|1|2|A|3|6|11|

_gllzllolllzlAlalEllll
5|7-1Z|10|1|2|A|3|6|11|

|5|7|8-10|1|2|A|3|.—,|n|

Bubble Sort

* Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

Run Time?
0(n?)

In Place? Adaptive?

Constants worse
than Insertion Sort

Yes Kinda “Compared to straight
insertion [...], bubble
sorting requires a more
complicated program and
takes about twice as long!”
—Donald Knuth

Bubble Sort is “almost” Adaptive

* Idea: March through list, swapping adjacent
elements if out of order

-3|4|5|6|7|8|9|10|11|12|
4|5|6|7|8|9|10|11|12|

Only makes one “pass”

IzIaI4I5Ie|7|8|9|10|11|12|1|

After one “pass”

IzIaI4I5Ie|7|8|9|10|11|1|12|

Requires n passes, thus is 0(n?)

2/18/19

Bubble Sort
Run Time?
+ Idea: March through list, swapping adjacent —
elements if out of order, repeat until sorted @(nz)
Constants worse

than Insertion Sort
In Place? Adaptive? Stable? Parallelizable?

Yes! Kinda Yes No
Not really

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” —Donald Knuth, The Art of
Computer Programming

Insertion Sort

* ldea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Bnann
Bnann
[e fe e o)

Sorted Prefix

Bnann

Insertion Sort

— - Run Time?
* Idea: Maintain a sorted list prefix, extend that —
prefix by “inserting” the next element @(nz)
(but with very small
constants)
In Place? Adagtive? Great for short lists!

Yes! Yes

2/18/19

Insertion Sort is Adaptive

* ldea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

T T-TT

Sorted Prefix

T

Only one comparison needed per element! Runtime: O(n)

Insertion Sort

Run Time?
* Idea: Maintain a sorted list prefix, extend that ——
prefix by “inserting” the next element @(le)

(but with very small
constants)

In Place? Adaptive? Stable? Great for short lists!

Yes! Yes Yes

Insertion Sort is Stable

* |dea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Sorted Prefix

Sorted Prefix
A

The “second” 10 will stay to the right

2/18/19

Insertion Sort)
Run Time?

* Idea: Maintain a sorted list prefix, extend that @ TLZ
prefix by “inserting” the next element

(but with very small
constants)

. Great for short lists!
In Place? Adaptive? Stable? Parallelizable?

Yes! Yes Yes No

Cansortallistasitis received, QOnline?
i.e., don’t need the entire list

“All things considered, it’s to begin sorting Yes
actually a pretty good sorting

algorithm1” —Nate Brunelle

Heap Sort
* |dea: Build a Heap, repeatedly extract max element
from the heap to build sorted list Right-to-Left

Clelofefef 100 1]

Max Heap
Property: Each
node is larger
than its children

10

Heap Sort

* Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

2/18/19

Heap Sort
* Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)
HE DOEDRnnE
0 6 7 8 9 10

i 2 3 4 5

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort

* Remove the Max element (i.e. the root) from the
Heap: replace with last element, call Heapify(root)

HOOn DaBnan
0 7 8 0

12 3 4 5 6

Max Heap
Property: Each
node is larger
than its children

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

11

Heap Sort

* Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

Clelelelel Toqe0o00
MaxHeap ° ' 2 * * 5 L 7 ‘
Property: Each
node is larger
than its children

2/18/19

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
i ?
+ Idea: Build a Heap, repeatedly extract max _Run Times
element from the heap to build sorted list Right-
to-Left O(nlogn)
Constants worse

than Quick Sort

In Place? When removing an element
Yes! from the heap, move it to the
es: (now unoccupied) end of the list

In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

Llefelelef-Te00 0]"]
0 6

1 2 3 4 5

Max Heap
Property: Each
node is larger
than its children

12

In Place Heap Sort

* Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

D 9 I 6 I 8 I 7 I 5 I 2 I 4 I 1 I 10 I
0 > 3 4 5 6 7 c «
Max Heap 2 ‘ g9

Property: Each
node is larger
than its children

2/18/19

In Place Heap Sort

* Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

CLelefefeqrdeqaqe0:]=]
0 1 3 4 5 7 8 9 10

Max Heap
Property: Each
node is larger
than its children

In Place Heap Sort

* |dea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

HOEBnaaRnnn
01 34 5 ¢ 8

Max Heap
Property: Each
node is larger
than its children

13

In Place Heap Sort

* Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

I |7|4|6|3|1|5|2|8|9|1o|
Max Heap 0 1 2 3 4 5 6 7 8 9 10
Property: Each
node is larger
than its children

2/18/19

Heap Sort
i ?
+ Idea: Build a Heap, repeatedly extract max _Run Times
element from the heap to build sorted list Right-
to-Left O(nlogn)

Constants worse

than Quick Sort
In Place? Adaptive? Stable? Parallelizable?

Yes! No No No

Sorting in Linear Time

¢ Cannot be comparison-based

* Need to make some sort of assumption about the contents of
the list
— Small number of unique values

— Small range of values
— Etc.

14

Counting Sort
* |dea: Count how many things are less than
each element
p=fefefe]o]e]o]e]
1 2 3 4 5 6 7 8

1.Range s [1, k] (here [1,6])

make an array C of size k R
populate with counts of each value C= n. n

T 7

ForiinL:
C[L[l]]++ runmngsum'

2.Take “running sum” of C C=
to count things less than each value

Fori = 1tolen(C): To sort: last item of
clil]=cli—1]+C[i] value 3 goes at index 4

2/18/19

Counting Sort

* |dea: Count how many things are less than
each element

T 2 3 4 5 6 7\G& T 2 3 4 35
Last item of value 6
goes at index 8

For each element of L (last to first): |For i = len(L) downto 1:
Use C to find its proper place in B ple[Lr] = Lii)
Decrement that position of C C[L[i]] _ L'[L[i]] -1
e=l LI 1T 111
Counting Sort

* |dea: Count how many things are less than
each element
L= 3 6 6 1 3 4 1 6 C = 1 2 4 5 5 7

T 2 3 4 5 6 \Z2J 8 1) 2 3 4 5 6

Last item of value 1
goes at index 2

For each element of L (last to first): For i = len(L) downto 1:
Use C to find its proper place in B B [C[L[i]]] = L[i]
Decrement that position of C L'[L[i]] — L'[L[i]] -1

BZI Ill I I I I IGI Run Time: 0(n + k)

Tozos s e s Memory: O(n + k)

15

Counting Sort

* Why not always use counting sort?

* For 64-bit numbers, requires an array of
length 264 > 10%°
— 5 GHz CPU will require > 116 years to initialize
the array
— 18 Exabytes of data
* Total amount of data that Google has

2/18/19

12 Exabytes

Radix Sort

* |dea: Stable sort on each digit, from least
significant to most significant

|103|801|401I323|zss|823|999|101|113|901|555|512|245|500|015|121|

0 1 2 3 r 5 6 7 8 9 10 11 12 13 14 15

Place each element into
a “bucket” according to

its 1’s place 301 o
401 255
800 | 101 | 512 ;i; 555 018 | 999
901 113 245
121
o 1 2 4 5 6 7 8 9

16

Radix Sort

* |dea: Stable sort on each digit, from least
significant to most significant

801 103
401 255
800 f 101|512 2;; 555 018 | 999
. 901 245
Place each element into 121 113
a “bucket” accordingto o . . 5 24 5 ¢ PR
its 10s place (550
801
512 121
401 255
113 1323 245 999
101
018 | 823 555
901
103
3 9

Radix Sort

* |dea: Stable sort on each digit, from least
significant to most significant

] I I
101|113 323 il P 999
Place each element into |40, | 18223
a “bucket” according to 103
- ;. 0 1 2 3 4 6 7 8 9
its 100’s place Y
101
. 800
Run Time: 0(dn +0)) oz fas e 22| [Lo |22
d = digits in largest value 121 823
b = base of representation
0 1 2 3 4 5 6 7 8
.

2/18/19

17

