
2/18/19

1

Warm up
Build a Max Heap from the following Elements:

4, 15, 22, 6, 18, 30, 14, 21

CS4102 Algorithms
Spring 2019

1

Heap

• Heap Property: Each node must be larger than its children

2

30

21 22

19 15 4 14

6

1

2 3

4 65 7

8 30 21 22 19 15 4 14

0 1 2 3 4 5 6 7

6

8

Today’s Keywords
• Sorting
• Quicksort
• Sorting Algorithm Characteristics
• Insertion Sort
• Bubble Sort
• Heap Sort
• Linear time Sorting
• Counting Sort
• Radix Sort

3

2/18/19

2

CLRS Readings

• Chapter 6
• Chapter 8

4

Homeworks

• HW3 due 11pm Wednesday Feb. 20
– Divide and conquer
–Written (use LaTeX!)

• HW4 coming on Wednesday
• Grading Notes
– HW0 has been graded and released
– HW1 grades (and solutions) released on Wednesday
– HW2 is currently being graded (released tomorrow!)

5

Generic Divide and Conquer Solution
def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem) #brute force if necessary
return solution

subproblems = Divide(problem)
for subproblem of problem:

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)
return solution

6

2/18/19

3

Generic Divide and Conquer Solution

7

!
!
"

!
"

!
"

…!
"#

!
"#

!
"#

!
"#

… … … … … …
1 1 1 1 1 1 1…

…

… …

S
1

S
1

S
1

Solution

MergeSort Divide and Conquer Solution
def mergesort(list):

if list.length < 2:

return list #list of size 1 is sorted!
{listL, listR} = Divide_by_median(list)

for list in {listL, listR}:
sortedSubLists.append(mergesort(list))

solution = merge(sortedL, sortedR)

return solution

8

MergeSort Divide and Conquer Solution

9

!

⁄! 2 ⁄! 2

⁄! 4 ⁄! 4 ⁄! 4 ⁄! 4

… … … …

1 1 1 … 1 1 1

SortedL SortedR

Sorted

2/18/19

4

Strategy: Decision Tree

11

>or<?

>or<? >or<?

>or<? >or<? >or<? >or<?

>or<?>or<?>or<?>or<?>or<?>or<?>or<?>or<?

[1,2,3,4,5] [2,1,3,4,5] [5,2,4,1,3] [5,4,3,2,1]… …

… … … …

><

< >

< > >> >

<

< <<

>

One
comparison Result of

comparison

Permutation
of sorted list

• Conclusion: Worst Case Optimal run time of sorting is
Θ(# log #)
– There is no (comparison-based) sorting algorithm with run time
((# log #)

Possible
execution path

#! Possible permutations

log #!
Θ(# log #)

Sorting, so far

• Sorting algorithms we have discussed:
–Mergesort
– Quicksort

• Other sorting algorithms
– Bubblesort
– Insertionsort
– Heapsort

12

!(# log #)
!(# log #)

!(# log #)

!(#()
!(#()

Optimal!

Optimal!

Optimal!

Speed Isn’t Everything
• Important properties of sorting algorithms:

• Run Time
– Asymptotic Complexity
– Constants

• In Place (or In-Situ)
– Done with only constant additional space

• Adaptive
– Faster if list is nearly sorted

• Stable
– Equal elements remain in original order

• Parallelizable
– Runs faster with multiple computers 13

2/18/19

5

Mergesort
• Divide:

– Break !-element list into two lists of ⁄# $ elements

• Conquer:
– If ! > 1: Sort each sublist recursively
– If ! = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?
Θ(! log!)
Optimal!

In Place? Adaptive? Stable?
No No Yes!

(usually)

Merge
• Combine: Merge sorted sublists into one sorted list
• We have:
– 2 sorted lists (!", !#)
– 1 output list (!$%&)

While (!" and !# not empty):
If !" 0 ≤ !#[0]:

!$%&.append(!".pop())
Else:

!$%&.append(!#.pop())
!$%&.append(!")
!$%&.append(!#)

Stable:
If elements are
equal, leftmost
comes first

15

Mergesort
• Divide:

– Break !-element list into two lists of ⁄# $ elements

• Conquer:
– If ! > 1: Sort each sublist recursively

– If ! = 1: List is already sorted (base case)

• Combine:
– Merge together sorted sublists into one sorted list

Run Time?

Θ(! log!)
Optimal!

In Place? Adaptive? Stable? Parallelizable?

No No Yes!
(usually)

Yes!

16

2/18/19

6

Mergesort

• Divide:
– Break !-element list into two lists of ⁄# $ elements

• Conquer:
– If ! > 1:
• Sort each sublist recursively

– If ! = 1:
• List is already sorted (base case)

• Combine:
–Merge together sorted sublists into one sorted list

17

Parallelizable:
Allow different
machines to work
on each sublist

Mergesort (Sequential)

! total / level

log% ! levels
of recursion

!

& ! = 2&(!2) + !

⁄! 2 ⁄! 2

⁄! 4 ⁄! 4 ⁄! 4 ⁄! 4

… … … …

1 1 1 … 1 1 1

!

!
2

!
2

!
4

!
4

!
4

!
4

1 1 1 1 1 1

Run Time: Θ(! log !)

Mergesort (Parallel)

!

" ! = "(!2) + !

⁄! 2 ⁄! 2

⁄! 4 ⁄! 4 ⁄! 4 ⁄! 4

… … … …

1 1 1 … 1 1 1

!

!
2

!
2

!
4

!
4

!
4

!
4

1 1 1 1 1 1

Run Time: Θ(!)

Done in Parallel !
2

!
4

1

2/18/19

7

Quicksort
Run Time?

Θ(# log#)
(almost always)

Better constants

than Mergesort

In Place? Adaptive? Stable?

kinda No! No

Parallelizable?

Yes!

• Idea: pick a partition element, recursively sort

two sublists around that element

• Divide: select an element (, Partition(()

• Conquer: recursively sort left and right sublists

• Combine: Nothing!

Uses stack for

recursive calls

Bubble Sort

• Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

21

8 5 7 9 12 10 1 2 4 3 6 11

5 8 7 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

5 7 8 9 12 10 1 2 4 3 6 11

Bubble Sort
Run Time?
Θ(#$)

Constants worse
than Insertion Sort

In Place? Adaptive?
Yes Kinda

• Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

“Compared to straight
insertion […], bubble
sorting requires a more
complicated program and
takes about twice as long!”
–Donald Knuth

2/18/19

8

Bubble Sort is “almost” Adaptive

• Idea: March through list, swapping adjacent
elements if out of order

23

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Only makes one “pass”

2 3 4 5 6 7 8 9 10 11 12 1

After one “pass”
2 3 4 5 6 7 8 9 10 11 1 12

Requires ! passes, thus is "(!$)

Bubble Sort
Run Time?
Θ(#$)

Constants worse
than Insertion Sort

In Place? Adaptive? Stable?
Yes! Kinda

Not really
Yes

Parallelizable?
No

• Idea: March through list, swapping adjacent
elements if out of order, repeat until sorted

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” –Donald Knuth, The Art of
Computer Programming

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

25

3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix

2/18/19

9

Insertion Sort
Run Time?

Θ(#$)
(but with very small

constants)
Great for short lists!In Place? Adaptive?

Yes! Yes

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Insertion Sort is Adaptive

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

27

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

1 2 3 4 5 6 7 8 9 10 11 12

Sorted Prefix

Only one comparison needed per element! Runtime: !(#)

Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element Θ(#$)

(but with very small
constants)

Great for short lists!

2/18/19

10

Insertion Sort is Stable

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

29

3 5 7 8 10 12 10’ 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 10’ 12 2 4 6 1 11

3 5 7 8 10 10’ 12 2 4 6 1 11

Sorted Prefix

The “second” 10 will stay to the right

Insertion Sort
Run Time?

In Place? Adaptive? Stable?
Yes! Yes Yes

Parallelizable?
No

• Idea: Maintain a sorted list prefix, extend that
prefix by “inserting” the next element

Online?
Yes

Can sort a list as it is received,
i.e., don’t need the entire list
to begin sorting“All things considered, it’s

actually a pretty good sorting
algorithm!” –Nate Brunelle

Θ(#$)
(but with very small

constants)
Great for short lists!

Heap Sort
• Idea: Build a Heap, repeatedly extract max element

from the heap to build sorted list Right-to-Left

31

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10

2/18/19

11

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

32

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

33

9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

34

9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

2/18/19

12

Heap Sort
• Remove the Max element (i.e. the root) from the

Heap: replace with last element, call Heapify(root)

35

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

Heapify(node): if node satisfies heap
property, done. Else swap with largest
child and recurse on that subtree

Heap Sort
Run Time?
Θ(# log#)

Constants worse
than Quick Sort

In Place?
Yes!

• Idea: Build a Heap, repeatedly extract max
element from the heap to build sorted list Right-
to-Left

When removing an element
from the heap, move it to the
(now unoccupied) end of the list

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

37

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9 10

2/18/19

13

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

38

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

39

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8 9

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

40

8

7 6

4 1 5 2

3

8 7 6 4 1 5 2 3 9 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

8

2/18/19

14

In Place Heap Sort

• Idea: When removing an element from the heap,
move it to the (now unoccupied) end of the list

41

7

4 6

3 1 5 2

7 4 6 3 1 5 2 8 9 10

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9 10

1

2 3

4 65 7

Heap Sort
Run Time?
Θ(# log#)

Constants worse
than Quick Sort

In Place? Adaptive? Stable?
Yes! No No

Parallelizable?
No

• Idea: Build a Heap, repeatedly extract max
element from the heap to build sorted list Right-
to-Left

Sorting in Linear Time

• Cannot be comparison-based
• Need to make some sort of assumption about the contents of

the list
– Small number of unique values
– Small range of values
– Etc.

43

2/18/19

15

Counting Sort
• Idea: Count how many things are less than

each element

Range is [1, $] (here [1,6])
make an array ' of size $
populate with counts of each value

3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

2 0 2 1 0 3

1 2 3 4 5 6

' =
For) in *:

C *) ++

1.

* =

Take “running sum” of '
to count things less than each value

2 2 4 5 5 8

1 2 3 4 5 6

' =

For) = 1 to len('):
') = ') − 1 + '[)]

2.

running sum

To sort: last item of
value 3 goes at index 4

44

Counting Sort
• Idea: Count how many things are less than

each element
3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

! =

For each element of ! (last to first):
Use # to find its proper place in $
Decrement that position of C

2 2 4 5 5 8

1 2 3 4 5 6

=

Last item of value 6
goes at index 8

1 2 3 4 5 6 7 8

$ =

For % = len(!) downto 1:

$ # ! % = ! %
! % = # ! % − 1

45

7

6

Counting Sort
• Idea: Count how many things are less than

each element
3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8

! =

For each element of ! (last to first):
Use # to find its proper place in $
Decrement that position of C

2 2 4 5 5 7

1 2 3 4 5 6

=

Last item of value 1
goes at index 2

6

1 2 3 4 5 6 7 8

$ =

For % = len(!) downto 1:

$ # ! % = ! %
! % = # ! % − 1

46

1

1

Run Time: - . + 0

Memory: - . + 0

2/18/19

16

Counting Sort

• Why not always use counting sort?
• For 64-bit numbers, requires an array of

length 2"# > 10'(
– 5 GHz CPU will require > 116 years to initialize

the array
– 18 Exabytes of data
• Total amount of data that Google has

47

12 Exabytes

48

Radix Sort

• Idea: Stable sort on each digit, from least
significant to most significant

49

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

Place each element into
a “bucket” according to
its 1’s place

999018
255

555
245

103

323
823
113

512

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

801

401
101
901

121

800

8 9

2/18/19

17

Radix Sort

• Idea: Stable sort on each digit, from least
significant to most significant

50

Place each element into
a “bucket” according to
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

Radix Sort

• Idea: Stable sort on each digit, from least
significant to most significant

51

Place each element into
a “bucket” according to
its 100’s place

999255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

Run Time: ! " # + %
" = digits in largest value
% = base of representation

