CS4102 Algorithms

Warm up

Show that finding the minimum of an
unordered list requires {1(n) comparisons

Find Min, Lower Bound Proof

Show that finding the minimum of an unordered
list requires {1(n) comparisons

Suppose (toward contradiction) thgt there is an algorithm for
Find Min that does fewer than = 1(n) comparisons.

This means there is at least one “uncompared” element
We can’t know that this element wasn’t the min!

2 8 | 19 20. 3 9 -4

0 1 2 3 4 5 6 7

Announcements

HW4 due Monday 3/4 at 11pm

— Sorting

— Written (use LaTeX!)

No Instructor Office Hours this week
— I’ll be at SIGCSE

— Available on Piazza and Email!

HW1 solutions in-class on Wednesday

Midterm next Wednesday
— Covers material through today
— Review session M or Tu evening

Today’s Keywords

Sorting

Linear time Sorting
Counting Sort
Radix Sort

Maximum Sum Continuous Subarray

CLRS Readings

* Chapter 8

Sorting in Linear Time

* Cannot be comparison-based

* Need to make some sort of assumption about the contents of
the list
— Small number of unique values
— Small range of values
— Etc.

Counting Sort

* |dea: Count how many things are less than

each element

L = 3 6 6 1 3 4 1 6

1 2 3 4 5 6 7 8
1.Range is [1, k] (here [1,6])

make an array C of size k
populate with counts of each value

Foriin L: _
+ +C[L[l]] running sum'

2.Take “running sum” of C C=|2|2(aYs|s5]|s
to count things less than each value 1 2\3/4 5 6
Fori = 1tolen(C): To sort: last item of

Cli] =C[i — 1] + C[i] value 3 goes at index 4

Counting Sort
* |dea: Count how many things are less than
each element
L:3661341ﬂC:22455m
1 2 3 4 5 6 7 8 1 2 3 4 5 6

Last item of value 6
goes at index 8

For each element of L (last to first): | Fori = len(L) downto 1:
Use C to find its proper place in B B [C[L[i]]] = LJi]
Decrement that position of C C[L[i]] _ C[L[i]] —1

Counting Sort

* |dea: Count how many
each element

things are less than

L:366134m

6 |[C= [/ 1\ 2|45

1 2 3 4 5 6 7

For each element of L (last to first):

Use C to find its proper place in B
Decrement that position of C

5

7

8 1 2 3 4

5

6

Last item of value 1

goes at index 2

Fori = len(L) downto 1:

B [C[L[i]]] = L[i]

c|Lli]] = C|L[i]] -1

Memory: O(n + k)

9

Run Time: 0(n + k)

Counting Sort

 Why not always use counting sort?

* For 64-bit numbers, requires an array of
length 264 > 101°

— 5 GHz CPU will require > 116 years to initialize
the array

— 18 Exabytes of data

* Total amount of data that Google has

12 Exabytes

11

Radix Sort

* |dea: Stable sort on each digit, from least
significant to most significant

103 |1 80114011323 |255(823 1999101113901 |555|512|245|800|018| 121

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Place each element into
a “bucket” according to

. V4
its 1’s place 201 s
401 393 255
800 | 101 | 512 555 018 | 999
901 ﬁg 245
121

12

* |dea: Stable sort on each digit, from least

Radix Sort

significant to most significant

Place each element into
a “bucket” according to
its 10’s place

801

401 ;gg 255
8001101 | 512 555 018 | 999
823
901 113 245
121
0 1 2 3 4 5 8 9
800
igi 512 | 121 555
101 1131323 245 555 999
901 018 | 823
103
0 1 2 3 4 5 8 9

13

Radix Sort

* |dea: Stable sort on each digit, from least

significant to most significant
800

801 512|121

401 1131323 245 253 999

. 101 555
Place each element into | g1 | 918|823

a “bucket” according to L103
its 100’s place S e S S A

101

: 800
Run Time: 0(d(n + b)) 018 12; ;:2 323 | 401 2;; 801 gg;
d = digits in largest value 121 823
b = base of representation

Maximum Sum Continuous Subarray Problem

The maximum-sum subarray of a given array of integers A is the
interval [a, b| such that the sum of all values in the array
between a and b inclusive is maximal.

Given an array of n integers (may include both positive and

negative values), give a O(nlogn) algorithm for finding the
maximum-sum subarray.

Divide and Conquer ®(nlogn)

518|143 |7 |-15| 2) 8 (-20]17| 8 |-50(-5 | 22

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Recursively Recursively

Solve on Left Divide in half Solve on Right

16

Divide and Conquer ®(nlogn)

Largest sum N Largest sum
that ends here that starts here

11

6 1 -7 3 -6 -13 28 -12 5 13 -37 -42 -20

2 | 8 -20--50 -5 | 22

6 7 8 9 10 11 12 13

Recursively LN Recursively
Solve on Left Divide in half Solve on Right
19 Find Largest 25

sum that spans
the cut

17

Divide and Conquer ®(nlogn)

Return the Max of
Left, Right, Center

6 1 -7 -3 -6 -13 2 -12 5 13 -37 -42 -20
-5 |22

o 1 2 3 4 9 10 11 12 13

Recursively LN Recursively

Solve on Left Divide in half Solve on Right

19 Find Largest 25
sum that spans
the cut

. T(n) = 2T (7%) +n

18

Divide and Conquer Summary

Typically multiple subproblems.
e Divide Typically all roughly the same size.

— Break the list in half

* Conquer
— Find the best subarrays on the left and right
* Combine

— Find the best subarray that “spans the divide”

— |.e. the best subarray that ends at the divide concatenated with the
best that starts at the divide

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)
return solution

subproblems = Divide(problem)

for sub in subproblems:
subsolutions.append(myDCalgo(sub))

solution = Combine(subsolutions)

return solution

20

MSCS Divide and Conquer O(n logn)

def MSCS(list):
if list.length < 2:
return list[O]
{listL, listR} = Divide (list)
for list in {listL, listR}:
subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution

21

Types of “Divide and Conquer”

* Divide and Conquer

— Break the problem up into several subproblems of roughly equal size,
recursively solve

— E.g. Karatsuba, Closest Pair of Points, Mergesort...

* Decrease and Conquer
— Break the problem into a single smaller subproblem, recursively solve
— E.g. Gotham City Police, Quickselect, Binary Search

Pattern So Far

* Typically looking to divide the problem by some fraction
(%2, Y4 the size)
* Not necessarily always the best!

— Sometimes, we can write faster algorithms by finding unbalanced
divides.

Unbalanced Divide and Conquer

e Divide
— Make a subproblem of all but the last element
* Conquer
— Find best subarray on the left (BSL(n — 1))
— Find the best subarray ending at the divide (BED(n — 1))
e Combine
— New Best Ending at the Divide:
* BED(n) = max(BED(n — 1) + arr[n], 0)
— New best on the left:
* BSL(n) = max(BSL(n — 1), BED(n))

8| E

5| 8| -4 -151 2 | 8
o 1 2 5 6 7
Recursively
Solve on Left

25

5[z

8 9 10 11

Find Largest
sum ending at

the cut
22

12

13

Divide

5| 8| -4 -151 2 | 8 -20--50 -5 122
o 1 2 5 6 7 8 9 10 11 12 f 13
Recursively Divide
Solve on Left

25

Find Largest
sum ending at

the cut
0

5| 8| -4 -151 2 | 8
o 1 2 5 6 7
Recursively
Solve on Left

25

Find Largest
sum ending at

the cut
0

8 9 10 11

12

Divide

518|143 |7 |-15] 2| 8

0 1 2 3 4 5 6 7

Recursively Divide
Solve on Left
25 Find Largest
sum ending at
the cut

25

Recursively Divide
Solve on Left
19 Find Largest
sum ending at
the cut

17

2 | 8 |-20) 17

6 7 8 9

Recursively Divide
Solve on Left
19 Find Largest
sum ending at
the cut

0

Recursively Divide
Solve on Left

13 Find Largest
sum ending at
the cut
12

Unbalanced Divide and Conquer

e Divide
— Make a subproblem of all but the last element
* Conquer
— Find best subarray on the left (BSL(n — 1))
— Find the best subarray ending at the divide (BED(n — 1))
e Combine
— New Best Ending at the Divide:
* BED(n) = max(BED(n — 1) + arr[n], 0)
— New best on the left:
* BSL(n) = max(BSL(n — 1), BED(n))

Was unbalanced better? YES

n
. Old: T(n) = 2T (E) +n
— We divided in Half
— We solved 2 different problems: T(n) = O(nlogn)

* Find the best overall on BOTH the left/right
* Find the best which end/start on BOTH the left/right respectively

— Linear time combine

* New: Tn)=1T(n—1)+ 1
— We divide by 1, n-1
— We solve 2 different problems: T(TL) — @(n)

* Find the best overall on the left ONLY
* Find the best which ends on the left ONLY

— Constant time combine

Maximum Sum Continuous Subarray Problem Redux

* Solve in O(n) by increasing the problem size by 1 each time.

* |dea: Only include negative values if the positives on both sides
of it are “worth it”

®(n) Solution

Begin here

8|-4|13 1|7 1-15| 2| 8 |-20|1 17| 8 |-50| -5 | 22
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Remember two values: Best So Far Best ending here

5

5

35

®(n) Solution

3|7 1-151 2 | 8 [-20117 | 8 |-50| -5 | 22
3 4 5 6 7 8 9 10 11 12 13
Remember two values: Best So Far Best ending here

13

13

36

®(n) Solution

Remember two values:

13

3|7 1-151 2 | 8 [-20117 | 8 |-50| -5 | 22
3 4 5 6 7 8 9 10 11 12 13
Best So Far Best ending here

9

37

®(n) Solution

7 |-15| 2 | 8 [-201 17| 8 |-50]| -5 | 22
4 5 6 7 8 9 10 11 12 13
Remember two values: Best So Far Best ending here

13

12

38

®(n) Solution

2 | 8 |[-20117| 8 |-50| -5 | 22
6 7 8 9 10 11 12 13
Remember two values: Best So Far Best ending here

19

19

39

®(n) Solution

8 [-20]117| 8 |[-50| -5 | 22
7 8 9 10 11 12 13
Remember two values: Best So Far Best ending here

19

4

40

®(n) Solution

17

Remember two values: Best So Far

19

Best ending here

14

41

®(n) Solution

2 | 8 |-20) 17

22

Remember two values: Best So Far
19

10 11

12

13

Best ending here

0

42

®(n) Solution

2 | 8 -208

6 7 8 9 10

Remember two values: Best So Far

11

12 13

Best ending here

19

17

43

®(n) Solution

Remember two values:

2 | 8 -5 122
6 7 12 13
Best So Far Best ending here

25 25

44

End of Midterm Exam Materials!

Hreor—

il

“Mr. Osborne, may | be excused? My brain is full.”

45

Mid-Class Stretch

How many ways are there to tile a 2Xn
board with dominoes?

How many ways to .
tile this: With these?

