CS4102 Algorithms

Warm up
Show that finding the minimum of an
unordered list requires (1) comparisons

2/26/19

Find Min, Lower Bound Proof
Show that finding the minimum of an unordered
list requires (1) comparisons

Suppose (toward contradiction) that there is an algorithm for
Find Min that does fewer than-;l = Q(n) comparisons.

This means there is at least one “uncompared” element
We can’t know that this element wasn’t the min!

Announcements

HW4 due Monday 3/4 at 11pm

— Sorting

— Written (use LaTeX!)

No Instructor Office Hours this week
—I'll be at SIGCSE

— Available on Piazza and Email!

HW?1 solutions in-class on Wednesday
Midterm next Wednesday

— Covers material through today

— Review session M or Tu evening

Today’s Keywords

* Sorting

* Linear time Sorting

* Counting Sort

* Radix Sort

* Maximum Sum Continuous Subarray

2/26/19

CLRS Readings

* Chapter 8

Sorting in Linear Time

* Cannot be comparison-based
* Need to make some sort of assumption about the contents of
the list
— Small number of unique values
— Small range of values
— Etc.

Counting Sort

* Idea: Count how many things are less than
each element

L=|3Is|e|1|3|4|1|s|

3 4 5 6 7 8

1 2
1.Range s [1, k] (here [1,6])
make an array (of size k X
populate with counts of each value = nnn
ForiinL: voros g 88
++C[L[{] running sum'

2.Take “running sum” of C= nﬁ
1 2 \3/ 4

to count things less than each value

Fori =1tolen(C): To sort: last item of
Cli] = Cli— 1]+ C[i] value 3 goes at index 4

2/26/19

Counting Sort

* Idea: Count how many things are less than
each element

1 2 3 4 5 6 7
Last item of value 6

goes at index 8

For each element of L (last to first): |For i = len(L) downto 1:
Use C to find its proper place in B B [(;[L[i]]] =L[i]
Decrement that position of C {J[L[i]] — (][L[i]] 1

Counting Sort

* Idea: Count how many things are less than
each element
NoononnanSonnonn
1 2 8 Uz 3 4 5

3 4 5 6 \OJ 56

Last item of value 1
goes at index 2

For each element of L (last to first): For i =len(L) downto 1:
Use C to find its proper place in B B [C[L[i]]] =L[i]
Decrement that position of C ClLLi] = L] -1

Run Time: O0(n + k)

A Memory: 0(n + k)

Counting Sort

* Why not always use counting sort?
* For 64-bit numbers, requires an array of
length 264 > 1019

— 5 GHz CPU will require > 116 years to initialize
the array
— 18 Exabytes of data
+ Total amount of data that Google has

2/26/19

12 Exabytes

Radix Sort

* |dea: Stable sort on each digit, from least
significant to most significant

|103|801|401|323|255|823|999|101|]13|901|555|512|245|800|018|121|
— 0 1 2 13 14 15

Place each element into
a “bucket” according to

its 1's place 501
401 ;g: 255
800 | 101|512 823 555 018 1999
901 113 245
121
0 1 3 4 7 8 9

Radix Sort

* Idea: Stable sort on each digit, from least
significant to most significant

2/26/19

801
401 ;g; 255
800 | 101 §512 823 555 018 999
. 901 245
Place each element into 121 us
u ” :
a‘“bucket”accordingto o L 5 . - . o s o
S 10y,
its 10’s place)
801
201 512121 255
101 113323 245 555 999
901 018 | 823
103
o 1 2 3 4 s 7 8 9

* |dea: Stable sort on each digit, from least
significant to most significant

800

igi 5121121 255

101 113323 245 555 999
Place each elementinto |01 |18 |%23
a “bucket” accordingto 103
its 100’s place R e S N A

101
Run Time: O(d(n + b)) 018 1031245 323 401 512 :gg 201
d = digits in largest value ol 555 823 %%
b = base of representation
0 1 2 3 4 5 6 7 8)

Maximum Sum Continuous Subarray Problem

The maximum-sum subarray of a given array of integers A is the

interval [a, b] such that the sum of all values in the array
between a and b inclusive is maximal.

Given an array of n integers (may include both positive and
negative values), give a O(nlogn) algorithm for finding the
maximum-sum subarray.

Divide and Conquer ©(nlogn)

G o] =]
o 1 2 3 4 5 6

7 8 9 10 11 12 13

Recursively o if Recursively
Solve on Left Divide in ha Solve on Right

2/26/19

Divide and Conquer O(nlogn)

Largest sum + Largest sum
that ends here that starts here

6 1 -7 -3 -6 -13 2|8 -12 5 13 -37 -42 -20

BT - - T

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Recursively S Recursively
Solve on Left Divide in half Solve on Right
19 Find Largest 25
sum that spans
the cut

Divide and Conquer ©(nlogn)

Return the Max of
Left, Right, Center

6 1 -7 -3 6 -13 2|8 -12 5 13 -37 -42 -20

_ ©opo zoo
7 8

0 1 2 3 4 5 6 9 10 11 12 13

Recursively . Recursively
Solve on Left Divide in half Solve on Right
19 Find Largest 25
sum that spans
the cut n
s T =2T(5) +n

Divide and Conquer Summary

Typically multiple subproblems.
Divide Typically all roughly the same size.

— Break the list in half
Conquer

— Find the best subarrays on the left and right
Combine

— Find the best subarray that “spans the divide”

— l.e. the best subarray that ends at the divide concatenated with the
best that starts at the divide

2/26/19

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)
return solution

subproblems = Divide(problem)

for sub in subproblems:
subsolutions.append(myDCalgo(sub))

solution = Combine(subsolutions)

return solution

MSCS Divide and Conquer ©(nlogn)

def MSCS(list):
if list.length < 2:
return list[0]
{listL, listR} = Divide (list)
for list in {listL, listR}:
subSolutions.append(MSCS(list))
solution = max(solnL, solnR, span(listL, listR))
return solution

Types of “Divide and Conquer”

Divide and Conquer

— Break the problem up into several subproblems of roughly equal size,
recursively solve

— E.g. Karatsuba, Closest Pair of Points, Mergesort...
Decrease and Conquer

— Break the problem into a single smaller subproblem, recursively solve
— E.g. Gotham City Police, Quickselect, Binary Search

2/26/19

Pattern So Far

* Typically looking to divide the problem by some fraction
(%, % the size)

* Not necessarily always the best!

— Sometimes, we can write faster algorithms by finding unbalanced
divides.

Unbalanced Divide and Conquer
Divide
— Make a subproblem of all but the last element
Conquer

— Find best subarray on the left (BSL(n — 1))
— Find the best subarray ending at the divide (BED (n — 1))
Combine
— New Best Ending at the Divide:
* BED(n) = max(BED(n — 1) + arr[n], 0)
— New best on the left:
* BSL(n) = max(BSL(n — 1), BED(n))

CLEELELEEEER =
o 1 2 3 4 5 6 7 8

Recursively
Solve on Left
25

9 10 11 12 13

Divide

Find Largest
sum ending at
the cut
22

2/26/19

|5|8|-4|3|7|-15|2|8|-20--50|-5 22|
0 1 2 3 4 5 6 7 8 2

Recursively
Solve on Left
25

9 10 11 1] 13

Divide

Find Largest
sum ending at
the cut
0

|5|8|—4|3|7|—15|2|8|—20-—50 5
0 1 2 3 4 5 6 7 8

Recursively
Solve on Left
25

9 10 11|12

Divide

Find Largest
sum ending at
the cut
0

2/26/19

Gl = [==
o 1 2 3 4 5 6 7 8 9 10fu
Recursively Divide
Solve on Left

25 Find Largest
sum ending at
the cut
25

0 1 2 3 4

Recursively
Solve on Left
19 Find Largest
sum ending at
the cut
17

o 1 2 3 4 7 8 9
Recursively Divide
Solve on Left
19 Find Largest
sum ending at
the cut

0

10

Recursively Divide
Solve on Left
13

Find Largest
sum ending at
the cut
12

2/26/19

Unbalanced Divide and Conquer

* Divide
— Make a subproblem of all but the last element
¢ Conquer
— Find best subarray on the left (BSL(n — 1))
— Find the best subarray ending at the divide (BED (n — 1))
* Combine
— New Best Ending at the Divide:
* BED(n) = max(BED(n — 1) + arr[n], 0)
— New best on the left:
* BSL(n) = max(BSL(n — 1), BED(n))

Was unbalanced better? YES

n
. Old: T(n) =2T (—2) +n
— We divided in Half
— We solved 2 different problems: T(n) = G)(n logn)

+ Find the best overall on BOTH the left/right
* Find the best which end/start on BOTH the left/right respectively

— Linear time combine

* New:

— We divide by 1, n-1

— We solve 2 different problems:
+ Find the best overall on the left ONLY T(n) =06(n)
+ Find the best which ends on the left ONLY

— Constant time combine

Tn)=1T(n—1) +1

11

Maximum Sum Continuous Subarray Problem Redux

* Solve in O(n) by increasing the problem size by 1 each time.

* |Idea: Only include negative values if the positives on both sides
of it are “worth it”

2/26/19

0(n) Solution

8|-4|3|7|-15|2|8|-20|17|8|-50|-5|22|
1 2 3 4 5 6 7 8 9

10 11 12 13

Begin here

Remember two values: Best So Far Best ending here
5 5

0(n) Solution

—4| 3 I 7 |—15| 2 I 8 |—20|17| 8 |—50|—5|22|

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
13 13

12

0(n) Solution

B -G EEEREE R

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Bestending here
13 9

2/26/19

0(n) Solution

w

--4l 7|-15|2|8|-20|17|8|-50|-5|22|
7 8 9

0 1 2 3 4 5 6

10 11 12 13

Remember two values: Best So Far Best ending here
13 12

0(n) Solution

—15| 2 I 8 |—20|17| 8 |—50|—5|22|

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
19 19

13

0(n) Solution

_-15 2 | 8 |-20|17| 8 |-50|-5|22|

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Bestending here
19 4

2/26/19

0(n) Solution

___ Dooo
8

17| 8 |-50| -5|22|

0 1 2 3 4 5 6 7

Remember two values: Best So Far
19

9 10 11 12 13

Best ending here
14

0(n) Solution

EEEEE 1=

17| 8 |—50|—5|22|

0 1 2 3 4 5 6 7 8

Remember two values: Best So Far
19

9 10 11 12 13

Best ending here
0

14

0(n) Solution

_-15| 2 | 8 |-20|17 8 |-50|-5|22|

0 1 2 3 4 5 6 7 8 9 f10 11 12 13

Remember two values: Best So Far Bestending here
19 17

2/26/19

0(n) Solution

|5|8|-4|3|7|-15|2|8|-20 -50|-5|22|
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Remember two values: Best So Far Best ending here
25 25

End of Midterm Exam Materials!

“Mr. Osbome, may | be excused? My brain s full”

15

Mid-Class Stretch

How many ways are there to tile a 2Xn

board with dominoes?

How many ways to

tile this:

With these?

H

2/26/19

16

