CS4102 Algorithms

From Last Time

How many ways are there to tile a 2Xn
board with dominoes?

How many ways to

tile this: With these?

Today’s Keywords

* Dynamic Programming

* Log Cutting

CLRS Readings

* Chapter 15

Homework

* Hw4 Due Tonight at 11pm
— Sorting
— Written

Midterm

* Wednesday March 6 in class
— Covers all content through last Monday

— We will have a review session
* Tonight! 7pm, Olsson 120
* Will be recorded, so you’ll have it if you can’t make it

How many ways are there to tile
a 2Xn board with dominoes?

Two ways to fill the final column:

Y Tile(n) = Tile(n — 1) + Tile(n — 2)

m

Tile(0) =Tile(1) =1

How to compute Tile(n)?

Tile(n):
if n<2:
return 1
return Tile(n-1)+Tile(n-2)

Problem?

Recursion Tree

Tile(5)
‘l Tile(3) l ‘lme(z) k ‘l Tile(2) l [Tile(1) |

I Tl & Tile(1) [T|Ie(1) T|Ie(0)][T|Ie(1) T|Ie(0)

[Tile(n) | | Tile(0) |

Many redundant calls!
Run time: Q(2™)

Better way: Use Memory!

Computing Tile(n) with Memory

Initialize Memory M

M

Tile(n): i
if n<2: 1
return 1)

if M[n] is filled: .
return M[n] \

M[n] = Tile(n-1)+Tile(n-2) :
return M[n])

Computing Tile(n) with Memory

“Top Down”
Initialize Memory M

Tile(n): :
if n < 2: A
return 1 ,

if M[n] is filled: 3
return M[n] 5

M[n] = Tile(n-1)+Tile(n-2) g
return M[n] 13

Dynamic Programming

* Requires Optimal Substructure
— Solution to larger problem contains the solutions to smaller ones
* |dea:

1. Identify recursive structure of the problem
* Whatis the “last thing” done?

m

n—1 n-—2

12

Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem:
subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution

13

Generic Top-Down Dynamic Programming Soln

mem = {}
def myDPalgo(problem):
if mem|[problem] not blank:
return mem|[problem]
if baseCase(problem):
solution = solve(problem)
mem|[problem] = solution
return solution
for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))
solution = OptimalSubstructure(subsolutions)
mem|[problem] = solution
return solution

14

Computing Tile(n) with Memory

“Top Down”
Initialize Memory M

Tile(n): :
if n < 2: A
return 1 ,

if M[n] is filled: 3
return M[n] 5

M[n] = Tile(n-1)+Tile(n-2) g
return M[n] 13

Recursive calls happen in a predictable order

Better T'ile(n) with Memory

“Bottom Up”
Tile(n):

Initialize Memory M

M[O] =1

M[1] =1

fori=2ton:

M[i] = M[i-1] + M[i-2]

return M[n]

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones

* |dea:
1. Identify recursive structure of the problem
* Whatis the “last thing” done?

2. Select a good order for solving subproblems
e Usually smallest problem first
e “Bottom up”

Log Cutting

Given a log of length n
A list (of length n) of prices P (P|i] is the price of a cut of size i)
Find the best way to cut the log

Price: 1 5 8 9 1110|1717 | 20| 24| 30

Length: 1 2 3 4 5 6 7 8 9 10

Select a list of lengths 4, ..., € such that:
2.t =n
to maximize), P[?;] Brute Force: O(2")

18

Greedy won’t work

* Greedy algorithms (next unit) build a solution by picking the
best option “right now”

— Select the most profitable cut first

Greedy: Lengths: 5,1

Price: 1 118)| 24| 36| 50| 50 Profit: 51

Length: 1 2 3 4 5 6

Better: Lengths: 2,4

Greedy won’t work

e Greedy algorithms (next unit) build a solution by picking the
best option “right now”

— Select the “most bang for your buck”
* (best price / length ratio)

Greedy: Lengths: 5,1

Price: 1 118)| 24| 36| 50| 50 Profit: 51

Length: 1 2 3 4 5 6

Better: Lengths: 2, 4

Dynamic Programming

dea:

1. Identify recursive structure of the problem

* Whatis the “last thing” done?
2. Select a good order for solving subproblems

e Usually smallest problem first
e “Bottom up”

1. Identify

Recursive Structure

Pli] = value of a cut of length i
Cut(n) = value of best way to cut a log of length n

Cut(n) = max —

" Cut(n—1) + P[1]
Cut(n —2) + P|2]

\.C.’.ut(O) + P[n]

Cut(n —4¥,)

22

Dynamic Programming

e |dea:

1. Identify recursive structure of the problem
* Whatis the “last thing” done?

2. Select a good order for solving subproblems

e Usually smallest problem first
e “Bottom up”

2. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Cut(0) =0

Cut(i): 0

Length: 0 1 2 3 4 5 6 7 8 9 10

o

24

2. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

Cut(1) = Cut(0) + P[1]

25

2. Select a Good Order for Solving Subproblems

Solve Smallest subproblem first

" Cut(1) + P[1]

Cut(2) = max — Cut(0) + P[2]

26

2. Select a Good Order for Solving Subproblems

Cut(3) = max —

Cut(i):

Length:

Solve Smallest subproblem first

 Cut(2) + P
Cut(l)+ P
- Cut(0)+P

1
2
3

0

10

27

2. Select a Good Order for Solving Subproblems

Cut(i):

Solve Smallest subproblem first
- Cut(3) + P[1]
Cut(2) + P|[2
Cut(4) = m -
ut(4) =max 3. o5 L pr3
_ Cut(0) + P[4]
0
0 2 3 4 5 6 7/ 8 9 10

Length:

28

Log Cutting Pseudocode

Initialize Memory C

Cut(n):
C[0] =0 Run Time: 0(n?)
for i=1 to n:
best=0
forj=1toi:
best = max(best, C[i-j] + P[j])
Cli] = best

return C[n]

How to find the cuts?

* This procedure told us the profit, but not the cuts themselves
* |dea: remember the choice that you made, then backtrack

Remember the choice made

Initialize Memory C, Choices
Cut(n):
C[0] =0
for i=1 to n:
best=0
forj=1toi:
if best < Cli-j] + P[j]:
best = C[i-]] + P[j]
Choices[i]=j| Gives the size
C[i] = best of the last cut
return C[n]

31

Reconstruct the Cuts

e Backtrack through the choices

Choices: | 0 1 1 2 4 3 4 1 2 4

Length: 0 1 2 3 4 5 6 7 8 9

32

Backtracking Pseudocode

l=n

while i>0:
print Choices|i]
| =i — Choices|i]

Dynamic Programming

* Requires Optimal Substructure

— Solution to larger problem contains the solutions to smaller ones

* |dea:
1. Identify recursive structure of the problem
* Whatis the “last thing” done?

2. Select a good order for solving subproblems
e Usually smallest problem first
e “Bottom up”

