
From Last Time
How many ways are there to tile a 2×#

board with dominoes?

CS4102 Algorithms
Spring 2019
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How many ways to 
tile this: With these?



Today’s Keywords

• Dynamic Programming
• Log Cutting
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CLRS Readings

• Chapter 15
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Homework

• Hw4 Due Tonight at 11pm
– Sorting
– Written
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Midterm

• Wednesday March 6 in class
– Covers all content through last Monday
– We will have a review session
• Tonight! 7pm, Olsson 120
• Will be recorded, so you’ll have it if you can’t make it
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How many ways are there to tile 
a 2×# board with dominoes?
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Two ways to fill the final column:

# − 1

# − 2

&'() # = &'() # − 1 + &'()(# − 2)

&'() 0 = &'() 1 = 1



How to compute !"#$(&)?
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Tile(n):
if n < 2:

return 1
return Tile(n-1)+Tile(n-2)

Problem?



Recursion Tree
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Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!
Run time: Ω(2$)



Computing !"#$(&) with Memory
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]
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Computing !"#$(&) with Memory
“Top Down”
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

12! − 1 ! − 2



Generic Divide and Conquer Solution

def myDCalgo(problem):

if baseCase(problem):
solution = solve(problem)

return solution
for subproblem of problem:    # After dividing

subsolutions.append(myDCalgo(subproblem))
solution = Combine(subsolutions)

return solution
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Generic Top-Down Dynamic Programming Soln
mem = {}
def myDPalgo(problem):

if mem[problem] not blank:
return mem[problem]

if baseCase(problem):
solution = solve(problem)
mem[problem] = solution
return solution

for subproblem of problem:
subsolutions.append(myDPalgo(subproblem))

solution = OptimalSubstructure(subsolutions)
mem[problem] = solution
return solution
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Computing !"#$(&) with Memory
“Top Down”
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Initialize Memory M
Tile(n):

if n < 2:
return 1

if M[n] is filled:
return M[n]

M[n] = Tile(n-1)+Tile(n-2)
return M[n]
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Recursive calls happen in a predictable order



Better !"#$(&) with Memory
“Bottom Up”
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Tile(n):
Initialize Memory M
M[0] = 1
M[1] = 1
for i = 2 to n:

M[i] = M[i-1] + M[i-2]
return M[n]
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”
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Log Cutting
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Given a log of length !
A list (of length !) of prices " ("[$] is the price of a cut of size $) 
Find the best way to cut the log

1 5 8 9 10 17 17 20 24 30

10987654321Length:

Price:

Select a list of lengths ℓ', … , ℓ* such that:
∑ℓ, = !

to maximize ∑"[ℓ,] Brute Force: .(21)



Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the 
best option “right now”
– Select the most profitable cut first

19

Greedy: Lengths: 5, 1
Profit: 51

Better: Lengths: 2, 4
Profit: 54

1 18 24 36 50

54321Length:

Price: 50

6



Greedy won’t work

• Greedy algorithms (next unit) build a solution by picking the 
best option “right now”
– Select the “most bang for your buck” 
• (best price / length ratio)

20

1 18 24 36 50

54321Length:

Price:
Greedy: Lengths: 5, 1

Profit: 51

Better: Lengths: 2, 4
Profit: 54

50
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Dynamic Programming

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”
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1. Identify Recursive Structure
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!"#(%) = value of best way to cut a log of length %

ℓ)
!"#(% − ℓ))

!"# % = max
!"# % − 1 + 0 1
!"# % − 2 + 0 2
…
!"# 0 + 0[%]

Last Cutbest way to cut a log of length 6 − ℓ6

0 7 = value of a cut of length 7



Dynamic Programming

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”
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2. Select a Good Order for Solving Subproblems
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10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 0 = 0

0



2. Select a Good Order for Solving Subproblems
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10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 1 = !"# 0 + +[1]

1



2. Select a Good Order for Solving Subproblems
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10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 2 = max !"# 1 + . 1
!"# 0 + . 2

2



2. Select a Good Order for Solving Subproblems
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10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 3 = max !"# 2 + . 1
!"# 1 + . 2
!"# 0 + .[3]
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2. Select a Good Order for Solving Subproblems
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10987654321Length:

!"#(%): 0

0

Solve Smallest subproblem first

!"# 4 = max
!"# 3 + .[1]
!"# 2 + . 2
!"# 1 + . 3
!"# 0 + .[4]
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Log Cutting Pseudocode
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Initialize Memory C
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

best = max(best, C[i-j] + P[j])
C[i] = best

return C[n]

Run Time: !(#$)



How to find the cuts?

• This procedure told us the profit, but not the cuts themselves
• Idea: remember the choice that you made, then backtrack
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Remember the choice made
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Initialize Memory C, Choices
Cut(n):

C[0] = 0
for i=1 to n:

best = 0
for j = 1 to i:

if best < C[i-j] + P[j]:
best = C[i-j] + P[j]
Choices[i]=j

C[i] = best
return C[n]

Gives the size 
of the last cut



Reconstruct the Cuts
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1 1 2 4 3 4 1 2 4 3

10987654321Length:

Choices: 0

0

• Backtrack through the choices

7621



Backtracking Pseudocode

i = n
while i>0:

print Choices[i]
i = i – Choices[i]
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Dynamic Programming

• Requires Optimal Substructure
– Solution to larger problem contains the solutions to smaller ones

• Idea:
1. Identify recursive structure of the problem
• What is the “last thing” done?

2. Select a good order for solving subproblems
• Usually smallest problem first
• “Bottom up”
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