CS4102 Algorithms Spring 2019

From Last Time

How many ways are there to tile a $2 \times n$ board with dominoes?

How many ways to tile this:						With these?

Today's Keywords

- Dynamic Programming
- Log Cutting

CLRS Readings

• Chapter 15

Homework

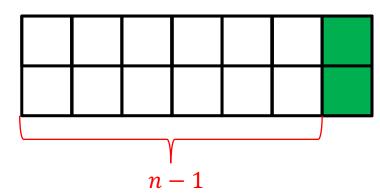
- Hw4 Due Tonight at 11pm
 - Sorting
 - Written

Midterm

- Wednesday March 6 in class
 - Covers all content through last Monday
 - We will have a review session
 - Tonight! 7pm, Olsson 120
 - Will be recorded, so you'll have it if you can't make it

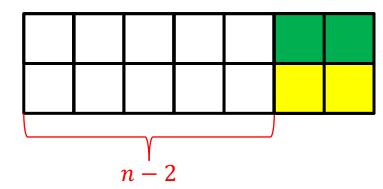
How many ways are there to tile a $2 \times n$ board with dominoes?

Two ways to fill the final column:



$$Tile(n) = Tile(n-1) + Tile(n-2)$$

$$Tile(0) = Tile(1) = 1$$



How to compute Tile(n)?

```
Tile(n):

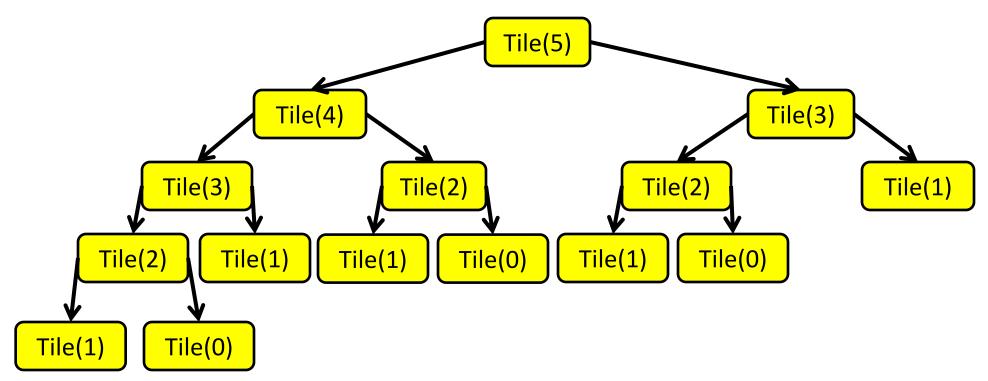
if n < 2:

return 1

return Tile(n-1)+Tile(n-2)
```

Problem?

Recursion Tree



Many redundant calls!

Run time: $\Omega(2^n)$

Better way: Use Memory!

Computing Tile(n) with Memory

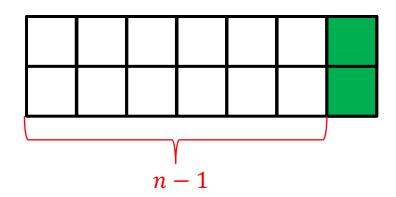
```
Initialize Memory M
                                            M
Tile(n):
     if n < 2:
          return 1
     if M[n] is filled:
          return M[n]
                                               4
     M[n] = Tile(n-1)+Tile(n-2)
     return M[n]
```

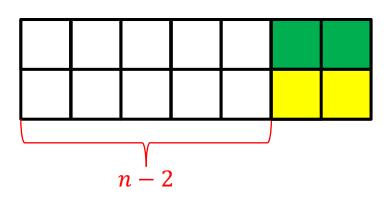
Computing Tile(n) with Memory "Top Down"

```
Initialize Memory M
                                             M
Tile(n):
     if n < 2:
           return 1
     if M[n] is filled:
                                             3
           return M[n]
                                             5
     M[n] = Tile(n-1)+Tile(n-2)
                                             8
     return M[n]
                                             13
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?





Generic Divide and Conquer Solution

```
def myDCalgo(problem):
      if baseCase(problem):
             solution = solve(problem)
             return solution
      for subproblem of problem: # After dividing
             subsolutions.append(myDCalgo(subproblem))
      solution = Combine(subsolutions)
      return solution
```

Generic Top-Down Dynamic Programming Soln

```
mem = \{\}
def myDPalgo(problem):
      if mem[problem] not blank:
             return mem[problem]
      if baseCase(problem):
             solution = solve(problem)
             mem[problem] = solution
             return solution
      for subproblem of problem:
             subsolutions.append(myDPalgo(subproblem))
      solution = OptimalSubstructure(subsolutions)
      mem[problem] = solution
      return solution
```

Computing Tile(n) with Memory "Top Down"

```
Initialize Memory M
                                             M
Tile(n):
     if n < 2:
           return 1
     if M[n] is filled:
                                             3
           return M[n]
                                             5
     M[n] = Tile(n-1)+Tile(n-2)
                                             8
     return M[n]
                                             13
```

Recursive calls happen in a predictable order

Better Tile(n) with Memory "Bottom Up"

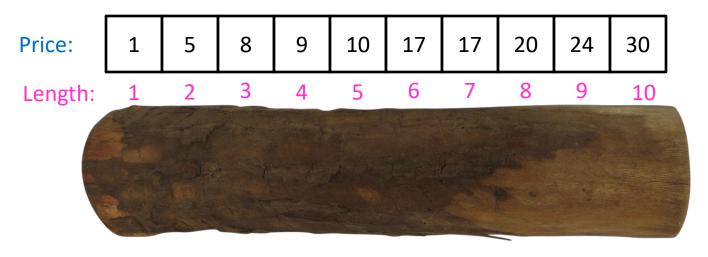
```
Tile(n):
                                           M
     Initialize Memory M
     M[0] = 1
     M[1] = 1
     for i = 2 to n:
          M[i] = M[i-1] + M[i-2]
     return M[n]
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

Log Cutting

Given a log of length nA list (of length n) of prices P (P[i] is the price of a cut of size i) Find the best way to cut the log



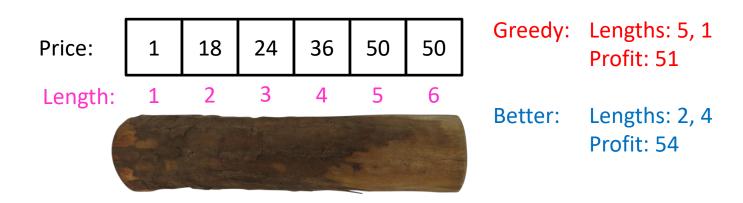
Select a list of lengths ℓ_1, \dots, ℓ_k such that:

$$\sum \ell_i = n$$
to maximize
$$\sum P[\ell_i]$$

Brute Force: $O(2^n)$

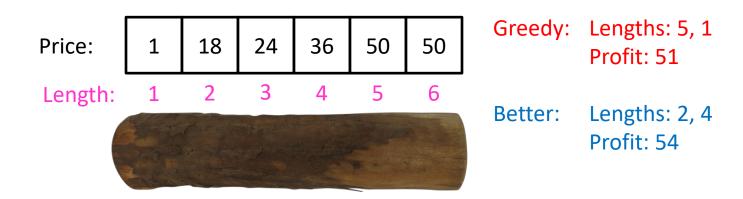
Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the most profitable cut first



Greedy won't work

- Greedy algorithms (next unit) build a solution by picking the best option "right now"
 - Select the "most bang for your buck"
 - (best price / length ratio)



Dynamic Programming

- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

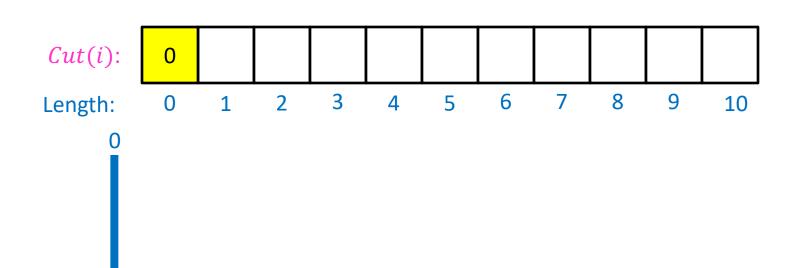
1. Identify Recursive Structure

```
P[i] = value of a cut of length i
 Cut(n) = value of best way to cut a log of length n
 Cut(n) = \max - \begin{cases} Cut(n-1) + P[1] \\ Cut(n-2) + P[2] \end{cases}
                         Cut(0) + P[n]
              Cut(n-\ell_n)
best way to cut a log of length n-\ell_n
```

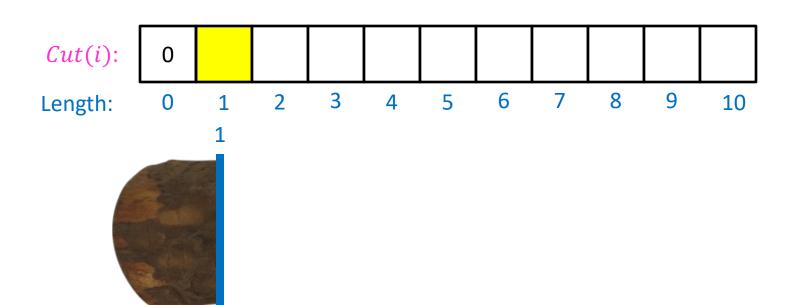
Dynamic Programming

- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"

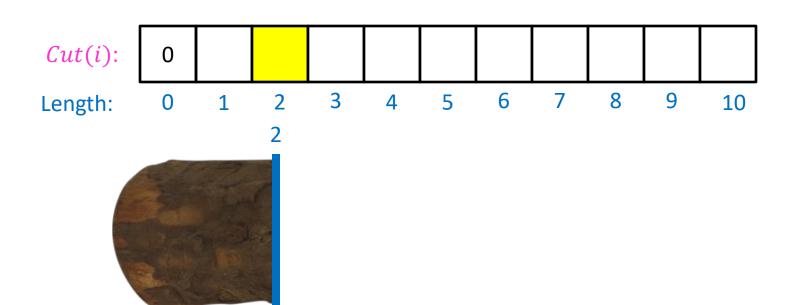
$$Cut(0) = 0$$

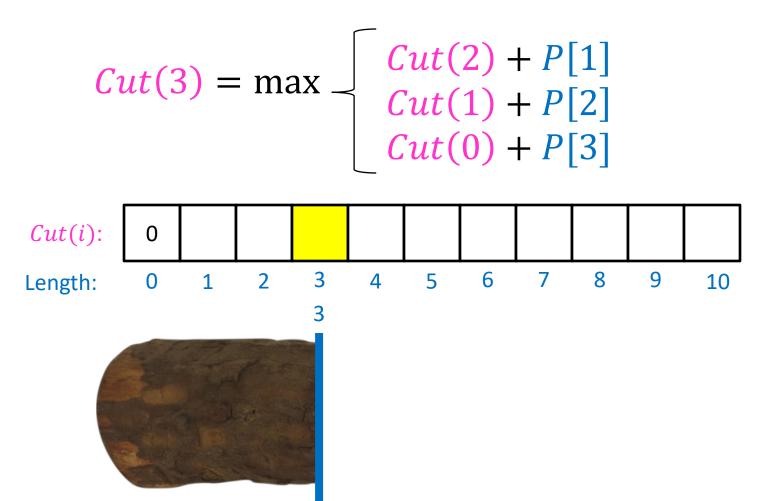


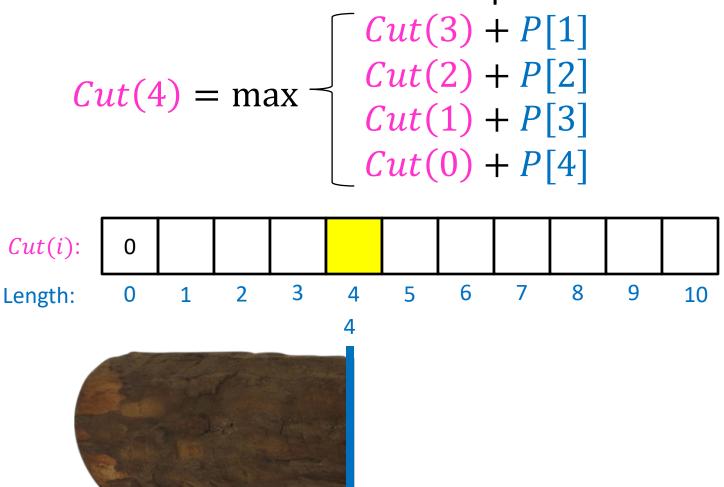
$$Cut(1) = Cut(0) + P[1]$$



$$Cut(2) = \max \left\{ \frac{Cut(1) + P[1]}{Cut(0) + P[2]} \right\}$$







Log Cutting Pseudocode

```
Initialize Memory C
Cut(n):
     C[0] = 0
                                 Run Time: O(n^2)
     for i=1 to n:
           best = 0
           for j = 1 to i:
                best = max(best, C[i-j] + P[j])
           C[i] = best
     return C[n]
```

How to find the cuts?

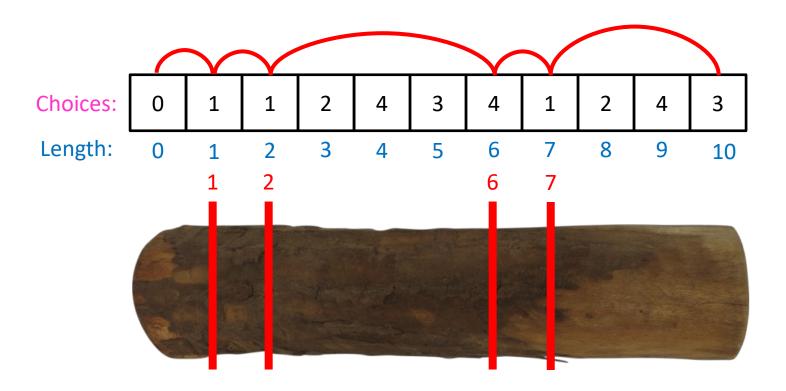
- This procedure told us the profit, but not the cuts themselves
- Idea: remember the choice that you made, then backtrack

Remember the choice made

```
Initialize Memory C, Choices
Cut(n):
      C[0] = 0
      for i=1 to n:
            best = 0
            for j = 1 to i:
                   if best < C[i-j] + P[j]:
                         best = C[i-j] + P[j]
                         Choices[i]=j Gives the size
                                          of the last cut
            C[i] = best
      return C[n]
```

Reconstruct the Cuts

Backtrack through the choices



Backtracking Pseudocode

```
i = n
while i>0:
    print Choices[i]
    i = i - Choices[i]
```

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - What is the "last thing" done?
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first
 - "Bottom up"